RNA secondary structure:
thermodynamics and structure predictions
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At physiological conditions, all
RNAs fold into secondary
structures consisting of double-
helical stems and single-
stranded loops.

Stems stabilize the folding
(Gibbs free energy AG < 0),
loops destabilize it (AG > 0)



RNA secondary structure

\
«*
.
.
.
.
.
.
.
.
13
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.*
.

AG(stem): stacking of base pairs.

Usually described in terms of the
nearest-neighbor model.

AG(stem) =

A A AG(Gc/an) +
G-C AG(au/Gec) +
A-U AG(ua/ac) +
C A AG(au/ca) +
A-U AG(au/au) +
A-U AG(AU/AU) +
A-U AG(au/au) +
A-U AG(ua/uUC)
C U

Adjacent mismatches are also
stacked on base pairs.
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AG(loop): the first approximation is
zero enthalpic contribution:
AG=AH-TAS=-TAS (AH=0)

AS - conformational entropy, can be
calculated as

AS=-R[A+1.75In N ], where

R - universal gas constant,
A depends on loop configuration,
N - number of monomers in the loop.

In practice, AG of loops can be
approximated as

AG=a+bxIn(N), whereaandb
are fitted for various loop topologies.



RNA secondary structure

Apart from the nearest-neighbor
stacking free energies in the stems
and conformational free energies of
loops, there are other contributions
taken into account by various RNA
secondary structure models, such as:

- sequence-dependent loop
contributions (extra stable hairpin
tetraloops, triloops, small internal
loops etc.);

- asymmetry terms in internal loops;

- coaxial stacking of stems;

- closing mismatches in hairpins and
internal loops;

- dangling ends.



RNA secondary structure prediction

Given the set of free energy

vged e parameters, the lowest free energy
R ¥ state can be computed using a
", 00" o dynamic programming algorithm. The
> approach resembles the alignment
e algorithm.
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RNA secondary structure prediction

Dynamic programming algorithm can
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Prediction of RNA pseudoknots

Pseudoknot a
formation:

[ “H(airpin)-pseudoknot” ]

(Pleij et al., 1985)

Prediction of pseudoknot structures is more difficult as compared to the
“‘orthodox” RNA secondary structure. Many programs ignore pseudoknot
formation.



Prediction of RNA pseudoknots

H-pseudoknots are usually stabilized by coaxial stacking of two stems. Among three
possible stacking topologies, one (below in the centre) is the most abundant “classic”
pseudoknot. The pseudoknot loops are topologically different: in classic pseudoknot the loop
L1 crosses helical deep groove whereas L2 crosses shallow groove.

(i)

L1 = Ont or 1nt

most abundant

v

(i)

L2 = Ont or Int

5y

(iii)

L3 = Ont or 1nt

(Jaeger et al., 1991)



Prediction of RNA pseudoknots

Conformational free energies of pseudoknot loops depend on both their sizes and
lengths of the crossed stems. The approximated values and conformational
restrictions are different for loops crossing deep and shallow grooves of RNA
helices. Various approximations were suggested for the use in computer
programs, one of the first ones is shown below:

AGe;;
37 -
loop size

stem (nt)

size

(bp) 1 2 3 4 5 6 8 10 15 20 30

(S2) deep groove (L1)
— 5.0 57 6.2 6.5 6.7 71 7.4 7.8 8.2 8.6
4.7 5.4 5.9 6.2 6.4 6.6 6.9 7.2 7.6 7.9 8.4
4.2 4.9 54 5.7 5.9 6.1 6.4 6.7 71 7.4 7.9
3.5 4.2 4.7 5.0 5.2 54 57 6.0 6.4 6.7 7.2
3.5 4.2 4.7 5.0 5.2 5.4 5.7 6.0 6.4 6.7 7.2
— 4.2 4.9 5.4 57 5.9 6.3 6.6 7.0 7.4 7.8
- 4.7 5.4 5.9 6.2 6.4 6.8 71 7.5 7.9 8.3

1 — 5.0 5.7 6.2 6.5 6.7 71 7.4 7.8 8.2 8.6

shallow groove (L2)
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- . 5.0 5.2 5.6 5.9 6.3 6.7 71
— - 4.2 4.9 5.4 5.7 6.1 6.4 7.0 7.3 7.8
- - - 4.7 5.4 5.9 6.4 6.8 7.4 7.8 8.3
- - - 5.0 5.7 6.2 6.7 7.1 7.7 8.1 8.6
— - - - 5.2 5.9 6.7 7.1 7.8 8.2 8.7
— — - - 5.4 6.1 6.9 7.3 8.0 8.4 8.9
— — — — - 5.6 6.8 7.3 8.1 8.4 9.0

—_

— 57 6.9 7.4 8.2 8.6 9.2 (Gultyaev et a|_’ 1999)




RNA folding simulations

It is possible to simulate kinetic RNA folding as a stepwise process.

from Isambert (2009):

Energy barriers are mostly determined by positive
free energies of loops and disruptions of stems with
negative free energies.



RNA folding simulations

It is possible to simulate kinetic RNA folding as a stepwise process, for instance:

pseudoknot
C stem_2
loop_hairpin 3 C | A
GGU GGU \GGU/ A . pk_loop_2
¢ c ¢yl _
G G G G G G A
G G G G pk_loop_1 g @
G C Kfolding G-C G-C A
G C — G-C —_— G-C
A U kunfolding A-U A-U A
G C G-C G-C y pk_loop_3
C GUA C-G UA C-G
5' 3 5' 3 5'
stem_1 stem_1
AG = AGstem_1 + AGIoop_hairpin AG = AGstem_Z + Aka_Ioop_1 + Aka_Ioop_Z
kfolding ~ exp (—AGIoop_hairpin / RT) + Aka_loop_3 - AGIoop_hairpin

Kunfolding ~ €XpP (AGstem_1 / RT)

» Such a simulation can use different approximations of elementary folding units,
e.g. single base pairs or stems.

» The folding can be simulated by a stochastic algorithm like Monte Carlo (MC) or
Genetic Algorithm (GA).
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RNA folding simulations

Global minimum

from van Batenburg et al. (1995)

Minimum-energy
algorithm

Local minima

* In a stepwise RNA folding
simulation by a stochastic
algorithm, folding/unfolding

transition steps are chosen with

probabilities that depend on
transition free energies.

« Advantages: predictions of
metastable states in local free
energy minima, pseudoknot

structures, cotranscriptional RNA
folding.

 Disadvantages: lack of

e.g. single base pairs or stems.

Genetic Algorithm (GA).

knowledge of RNA kinetics and
pseudoknot thermodynamics,

» The folding can be simulated by a stochastic algorithm like Monte Carlo (MC) or

computational time complexity.
» Such a simulation can use different approximations of elementary folding units,




RNA structure prediction using experimental data

The algorithms for RNA structure prediction can be greatly improved by an implementation
of constraints that take into account experimental data (e.g. probing).

The most simple way is to force some nucleotides to be in a single-stranded conformation
(prohibit their pairing).

Upon development of quantitative measurements of the nucleotide conformational states
(SHAPE), more accurate incorporation of probing results has become possible. For
instance, using pseudo-energy values. In SHAPE probing, nucleotide reactivities are the
measure of “single-strandedness” (high for loops, low for helices).

SHATTTM T A pseudo-energy can be introduced, for instance, as a term
“07 wn MGG for every nucleotide in the probed sequence:
Ifo'3 +0.2 +0.6
° A AGg (i) = M x In [reactivity(i) + 1] + b,
-‘;vlg? ~N A+
ng U ~ éy‘\'_\ . .
%CA ~ e, where m and b are empirical constants.
v x1 e x SG U%\f' E.g. m = 2.6 kcal/mol and b = -0.8 kcal/mol.
Gi_|] +12 04 408 0 . ,é-”‘\r‘»\;'\
G U U UQ’T,\\ v .
[ I Al W A pseudo-energy is added to the free energy and the total
3-c CACA potential can be used in an algorithm that searches for free
,0_5' "A1IXZIXAZIX‘1 G +ﬁ A energy m.in.ima.
05 22 21 22 K In such an implementation, only the pseudo-energy terms for
base-paired nucleotides are added: once at the ends of
AGyn = Y. AGitacics + 3. AGioops helices and twice for interior nucleotides in helices,
Asapn = 1% T Aongs + 2% 3 Aimsorr mimicking stacking contributions.

AGyora) = AGnN + AGspapg

(Low & Weeks, 2010)



