
RNA secondary structure:  
thermodynamics and structure predictions



RNA secondary structure
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RNA secondary structure
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At physiological conditions, all 
RNAs fold into secondary 
structures consisting of double-
helical stems and single-
stranded loops. 

Stems stabilize the folding 
(Gibbs free energy ΔG < 0), 
loops destabilize it (ΔG > 0)
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RNA secondary structure
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ΔG(stem): stacking of base pairs. 

Usually described in terms of the 
nearest-neighbor model: 

      ΔG(stem) =
A   A    ΔG(GC/AA) +
 G-C     ΔG(AU/GC) +
 A-U     ΔG(UA/AC) +
C   A    ΔG(AU/CA) +
 A-U     ΔG(AU/AU) +
 A-U     ΔG(AU/AU) +
 A-U     ΔG(AU/AU) +
 A-U     ΔG(UA/UC)
C   U

Adjacent mismatches are also 
stacked on base pairs.
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ΔG(loop): the first approximation is 
zero enthalpic contribution: 

ΔG = ΔH - TΔS = - TΔS     (ΔH = 0) 

ΔS - conformational entropy, can be 
calculated as 

ΔS = - R [ A + 1.75 ln N ], where 

R - universal gas constant, 
A depends on loop configuration, 
N - number of monomers in the loop. 

In practice, ΔG of loops can be 
approximated as  

ΔG = a + b × ln (N), where a and b 
are fitted for various loop topologies. 
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Apart from the nearest-neighbor 
stacking free energies in the stems 
and conformational free energies of 
loops, there are other contributions 
taken into account by various RNA 
secondary structure models, such as: 

 - sequence-dependent loop 
contributions (extra stable hairpin 
tetraloops, triloops, small internal 
loops etc.); 

 - asymmetry terms in internal loops; 

 - coaxial stacking of stems; 

 - closing mismatches in hairpins and 
internal loops; 

 - dangling ends.



RNA secondary structure prediction
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Given the set of free energy 
parameters, the lowest free energy 
state can be computed using a 
dynamic programming algorithm. The 
approach resembles the alignment 
algorithm.
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RNA secondary structure prediction

1 111a
a
a
u
g
a
a

a
a
a
a

a
g

a
u
u
u
a

u
a
a
a

ggc
g c c

g g c u
agcc

u
u
u
g

u
a
a
a
u

c
u

u
u
u
u

u
u
c
a
u
u
u

a

a
c

c

a
c

a
c
u
a
u

u
a
a
a

u
a

auu
a g a

g
g u g u

u
u u

u
c

u
u

u
u

g
a
u

u

c
a
u
u
u

u
a

a

u
u
a

a

Dynamic programming algorithm can 
compute both optimal and suboptimal 
structures that can be shown in 
various ways in e.g. “dot-plots”:

Output of boxplot_ng (©)
mfold_util 4.6

Created Thu Oct  2 10:26:13 2014

Fold of CaCV_MIGR at 37 C.

Lower Triangle: Optimal Energy

δG in Plot File =     1.0 kcal/mol

  Optimal Energy   =    -20.6  kcal/mol 
   -20.6 < Energy <=   -20.5  kcal/mol 
   -20.5 < Energy <=   -20.3  kcal/mol 
   -20.3 < Energy <=   -20.2  kcal/mol 
   -20.2 < Energy <=   -20.0  kcal/mol 
   -20.0 < Energy <=   -19.9  kcal/mol 
   -19.9 < Energy <=   -19.7  kcal/mol 
   -19.7 < Energy <=   -19.6  kcal/mol 
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Prediction of RNA pseudoknots

Prediction of pseudoknot structures is more difficult as compared to the 
“orthodox” RNA secondary structure. Many programs ignore pseudoknot 
formation.

Nucleic Acids Research

a ,.-. - bL
s~~~

5 2

c51> d 5
5

Figure 2. The formation of extended double helices in RNA chains, based
on tertiary interactions of a special kind, shown in four presentations.
Si and S2 represent stem regions formed by normal Watson-Crick base pairing
and Li and L2 the single stranded RNA regions connecting the double helical
segments Si and S2. (a) Conventional representation of the secondary structure
in which nucleotides from the hairpin loop adjacent to stem region Si base
pair with a complementary region at the 3' side of the hairpin. (b) Schematic
illustration of the building principle in a graphical format. (c) Schematic
folding. (d) Three-dimensional folding, showing the quasi-continuous double
stranded helix of 8 base pairs and the two crossing loops connecting the two
double helical segments.

Our experience with the plant viral RNA structures we here make the imDortant
assumption that for all interactions of this kind stem Si and stem S2 are
stacked on top of each other in such a way that a quasi-continuous, right-
handed double helix is formed, comparable to A-RNA (fig. 2d). This assumption
of course is only valid if the single-stranded connecting loops Li and L2
pose no sterical contraints upon this structure. Due to the handedness of
the double helix and the polarity of the chain, loop Li and L2 will not be
equivalent: loop Li crosses the deep groove and loop L2 the shallow groove
of the double helix. This must have consequences for the length and the
conformation of each of the two lOOpS. A first insight in the minimalnumber of
nucleotides needed in loop Li or L2 is provided by an analysis of the data
which emerge from our three-dimensional models of the tRNA-like 3' termini
of the plant viral RNAs. In table 1 we have summnarized these data in terms
of the number of base pairs in stem Si and S2 and the number of nucleotides
in loop Li and L2. Beside the RNAs studied experimentally we also included
related viral RNAs whose 3' terminal sequences are known and which can be
folded in similar tertiary structures (12-14, i8, 19). The lowest number
of base pairs found in the stem regions is 3, which presumably is also the

1721

Pseudoknot 
formation: 

[ “H(airpin)-pseudoknot" ]

(Pleij et al., 1985)



Prediction of RNA pseudoknots
H-pseudoknots are usually stabilized by coaxial stacking of two stems. Among three 
possible stacking topologies, one (below in the centre) is the most abundant “classic” 
pseudoknot. The pseudoknot loops are topologically different: in classic pseudoknot the loop 
L1 crosses helical deep groove whereas L2 crosses shallow groove.

most abundant 

Peripheral Pairing in Group I Introns 1159 
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Fig. 7. 
(Jaeger et al., 1991)



Prediction of RNA pseudoknots
Conformational free energies of pseudoknot loops depend on both their sizes and 
lengths of the crossed stems. The approximated values and conformational 
restrictions are different for loops crossing deep and shallow grooves of RNA 
helices. Various approximations were suggested for the use in computer 
programs, one of the first ones is shown below:

Predicted stability of natural pseudoknots

The suggested set of parameters predicts that all
considered 39-terminal pseudoknots in the plant viral
tRNA-like structures (e+g+, Fig+ 2A) are more stable than
alternative hairpins, with differences in the range of
2–5 kcal/mol+ The individual stabilities of consecutive
pseudoknots in the stalks (Fig+ 2B) are more difficult
to determine, because of coaxial stacking contribu-
tions between them+ Nevertheless, the values given in
Table 2 clearly define the pseudoknot stalks as the
most stable structures in these regions+ The more con-
served pseudoknots PK2 and PK3, which are probably
more important (Leathers et al+, 1993), are mostly more
stable as well+ However, the 59-proximal pseudoknots
are also predicted to be energetically more favorable
than the hairpins formed by S2 stems, although the S1
stems in these pseudoknots are not stabilized by co-
axial stacking on the 59-side+
Ribosomal frameshift sites in the polymerase genes

from luteoviruses (Fig+ 3) provide an interesting test
case for energy parameters+ The presence of homolo-
gous pseudoknots in the analyzed sequences is sup-
ported by nucleotide base–base covariations in both
pseudoknot stems+ There is also experimental evi-
dence of pseudoknot involvement in the frameshifting
signals of beet western yellows virus (BWYV) and po-
tato leafroll virus (PLRV) genes (Garcia et al+, 1993;
Kujawa et al+, 1993)+ However, in one of the PLRV
strains and in cucurbit aphid-borne yellows virus
(CABYV), the pseudoknot seems to be destabilized by

a mismatch at the junction (Fig+ 3C,D)+ Also, in a Ger-
man isolate of PLRV (PLRV-G) an alternative stem-
loop structure (Fig+ 3E) was suggested (Prüfer et al+,
1992)+ Our set of free energy values (Table 2) predicts
that in all sequences, the pseudoknots are more stable
than the alternate S1 or S2 hairpins, even in the two
cases with mismatches+ The alternative structure in the
German strain is predicted to be only 3+7 kcal/mol more
stable at 25 8C than the pseudoknot+ However, its ex-
istence may be doubted, because it comprises an ad-
ditional 24 nt downstream of the pseudoknot and could
be disrupted because of competition with other down-
stream foldings+ It is interesting that particularly in this
PLRV variant (Prüfer et al+, 1992) the pseudoknot is
also stabilized by an additional G-C pair in the S2 stem
(Fig+ 3E)+
Pseudoknots at the sites of ribosomal frameshifting

and readthrough in animal viruses contain stems with
many G-C pairs (Fig+ 2D–F) and seem to be very sta-
ble+ All analyzed pseudoknots are estimated to have
considerably lower free energies than the alternate hair-
pins+ In case of readthrough sites from type C retro-
viruses and frameshifting sites from coronaviruses, both
the loops and the stems of pseudoknots are relatively
big (Table 1), so that the pseudoknots comprise rather
extended RNA regions that provide opportunities for
other alternative foldings+ We compared the estimated
pseudoknot free energies with the predicted stabilities
of such structures+ It turned out, however, that only one
(MoMuLV) of the five different readthrough sequences
was folded into a structure with free energy equal to

TABLE 2+ The approximation for free energies (!G 837) of pseudoknot loops (kcal/mol)+ Values not given in the table
can be extrapolated as described in the text+

loop size
(nt)stem

size
(bp) 1 2 3 4 5 6 8 10 15 20 30

(S2) deep groove (L1)
2 — — — — — — — — — — —
3 — 5+0 5+7 6+2 6+5 6+7 7+1 7+4 7+8 8+2 8+6
4 4+7 5+4 5+9 6+2 6+4 6+6 6+9 7+2 7+6 7+9 8+4
5 4+2 4+9 5+4 5+7 5+9 6+1 6+4 6+7 7+1 7+4 7+9
6 3+5 4+2 4+7 5+0 5+2 5+4 5+7 6+0 6+4 6+7 7+2
7 3+5 4+2 4+7 5+0 5+2 5+4 5+7 6+0 6+4 6+7 7+2
8 — 4+2 4+9 5+4 5+7 5+9 6+3 6+6 7+0 7+4 7+8
9 — 4+7 5+4 5+9 6+2 6+4 6+8 7+1 7+5 7+9 8+3
10 — 5+0 5+7 6+2 6+5 6+7 7+1 7+4 7+8 8+2 8+6

(S1) shallow groove (L2)
2 — — — — — — — — — — —
3 — 3+5 4+2 4+7 5+0 5+2 5+6 5+9 6+3 6+7 7+1
4 — — 4+2 4+9 5+4 5+7 6+1 6+4 7+0 7+3 7+8
5 — — — 4+7 5+4 5+9 6+4 6+8 7+4 7+8 8+3
6 — — — 5+0 5+7 6+2 6+7 7+1 7+7 8+1 8+6
7 — — — — 5+2 5+9 6+7 7+1 7+8 8+2 8+7
8 — — — — 5+4 6+1 6+9 7+3 8+0 8+4 8+9
9 — — — — — 5+6 6+8 7+3 8+1 8+4 9+0
10 — — — — — 5+7 6+9 7+4 8+2 8+6 9+2

Approximation of pseudoknot free energies 613
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RNA folding simulations
It is possible to simulate kinetic RNA folding as a stepwise process.

from Isambert (2009):

that simulated trajectories oscillate repeatedly between a few
structures, and only much more slowly transit to visit new config-
urations. To circumvent these local kinetic traps which can se-
verely impact the efficiency of the code, we have developed and
implemented [8,9] ‘exactly clustered stochastic simulations’ which
continuously averaged folding paths at the level of rapidly
exchanging structures (see details in Ref. [8]).

Hence, simulations of RNA folding paths [6–14], which provide
unique insights into RNA folding traps, can usefully complement
the predictions of RNA minimum free energy structures, tradition-
ally done with efficient ‘dynamic programming’ algorithms [15–
20].

In particular, RNA folding simulations can investigate co-tran-
scriptional pathways [7,9,21], that is, the folding of nascent RNA
transcripts while their sequence is still being transcribed.

2.2. RNA folding is fast compared to transcription rate

The reason why nascent RNA transcripts actually fold during
transcription is that the folding dynamics of new RNA hairpins oc-
curs on 10–100 ls time scales, which, although molecularly slow
(see above), remains much faster than the time needed to synthe-
size a full transcript, i.e. 1 s to 1 min for a 300 nucleotides (nt) tran-

script depending on the RNA polymerase used (bacteriophage
3 ms/nt; bacteria 20 ms/nt; eukaryote 200 ms/nt).

In fact, it has long been proposed [22–24] that, during transcrip-
tion, the progressive folding of nascent RNAs limits the number of
folding pathways, presumably facilitating their rapid folding into
proper native structures.

The importance of co-transcriptional folding pathways has sub-
sequently been demonstrated in a series of inspiring studies
[11,25–30,13,31–36]. In particular, the efficacy of RNA folding
pathways has been shown to depend on the type of RNA polymer-
ase used, as well as on the conditions of transcription, such as tem-
perature and NTP concentrations, which all affect the average
transcription rate [37]. In addition, specific pause sites along co-
transcriptional folding pathways were also shown to ensure proper
sequential folding into independent RNA domains [31].

More recently, we have however shown experimentally [21]
that folded domains do not simply fold sequentially and indepen-
dently from one another during transcription. Instead, efficient
folding paths actually result from intricate interactions between
helices susceptible to form at successive steps of transcription, as
early simulations already suggested [7]. In particular, we could
demonstrate, using sequence symmetries of bistable RNA switches
[21], that folding paths can be essentially decoupled from equilib-
rium structures, Fig. 3.

Hence, native and transiently formed helices can efficiently
guide co-transcriptional folding of RNA switches into different
alternative long-lived structures. Such folding path is controlled
by the order of helix nucleations and subsequent exchanges during
transcription, and may also be redirected by transient antisense
interactions, Fig. 3.

2.3. RNA relaxation is slow compared to mechanical unfolding

Yet, co-transcriptionally folded RNAs might not have relaxed
into their minimum free energy structures by the end of transcrip-
tion. This is because RNAs are proned to remain trapped in subop-
timum structures for minutes to hours or even days.

This slow relaxation dynamics has been directly observed under
micromechanical unfolding experiments of single RNA molecules,
which probe both their native and long-lived intermediate struc-
tures [38].

In particular, micromechanical stretching of the 1540-nt 16S
ribosomal RNA of Escherichia coli was found to result in a surpris-
ingly well-structured and reproducible unfolding pathway, which
could be compared to out-of-equilibrium stochastic unfolding sim-
ulations, Fig. 4 [38].

This example illustrates what should be expected, in general,
when large RNA secondary structures are probed by mechanical
force. Strong helices resist until their breaking exposes weaker re-
gions, which are unable to withstand the same high force. This
leads to the unfolding of a significant domain with a concomitant
force drop. A fraction of the unpaired bases then typically reform
different helices, which compensate, in part, for the sudden relax-
ation of the mechanical tension. Yet, force-extension responses are
not completely smoothed out, as would be expected for long RNA
sequences (>1000 nt) unfolding under quasistatic equilibrium. This
reveals the slow dynamics of large scale cooperative changes in
large RNA structures.

3. RNA pseudoknots create RNA knots

Another unique feature of RNA folding simulations is their abil-
ity to include and effectively predict the formation of ‘‘pseudo-
knots” [7–10]. Pseudoknots (Fig. 5) are helices interior to loops
which constrain the end-to-end distance of the single strands

1

2
3

5

4

Jerky  dynamics  of  cooperative  base  pairing / unpairing  transitions

time

Fig. 2. RNA dynamics simulations follow the stochastic formation and removal of
individual helices, which are known to be the time limiting steps of RNA/DNA
folding kinetics from seminal experimental results [3,4]. The time step increment,
corresponding to the average delay until the next Arrhenius transition (Fig. 1), reads
si ¼ Rik

"1
i , where ki = k# exp " DGi/kT [6,7,9] (Fig. 1).

∆ +/−+/−k  =  k exp(−   G  /kT)o

G∆ −+G∆

i
j

k k

k

k
+ −

i j

Fig. 1. RNA dynamics involves cooperative base pairing or unpairing transitions
between RNA structures [3,4]. These time limiting steps of RNA folding/ unfolding
dynamics can be modelled by Arrhenius rates, corresponding to rare escapes across
transition barriers, on >10 ls up to minute or hour time scales, compared to the
much faster intramolecular thermal motion (zipping/unzipping base pairs and
backbone conformational changes) on <0.1 ls time scales.

190 H. Isambert / Methods 49 (2009) 189–196

Energy barriers are mostly determined by positive 
free energies of loops and disruptions of stems with 
negative free energies.



RNA folding simulations
It is possible to simulate kinetic RNA folding as a stepwise process, for instance:

G G
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G UG
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U A

3'
C - G
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G G
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C
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⇌
kfolding

kunfolding
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loop_hairpin

C - G
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C U
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5'

U
A

3'

stem_1

A

A

A

A
C

C

pseudoknot

stem_2

pk_loop_1

pk_loop_3

pk_loop_2

ΔG = ΔGstem_1 + ΔGloop_hairpin

kfolding ~ exp (−ΔGloop_hairpin / RT)
kunfolding ~ exp (ΔGstem_1 / RT)

ΔG = ΔGstem_2 + ΔGpk_loop_1  + ΔGpk_loop_2 

                                   + ΔGpk_loop_3  − ΔGloop_hairpin

• Such a simulation can use different approximations of elementary folding units, 
e.g. single base pairs or stems. 

• The folding can be simulated by a stochastic algorithm like Monte Carlo (MC) or 
Genetic Algorithm (GA).



RNA folding simulations

• Such a simulation can use different approximations of elementary folding units, 
e.g. single base pairs or stems. 

• The folding can be simulated by a stochastic algorithm like Monte Carlo (MC) or 
Genetic Algorithm (GA).

PREDICTION OF RNA SECONDARY STRUCTURE 277

of E. coli 16S RNA and 45% for STNV-2 RNA
3'UTR. These values are somewhat less than
computed by the MFOLD program (Zuker et al.,
1991) which predicts about 50–60% correctly.
Nevertheless, for STNV-2 RNA 3'UTR the di}erence
is not so high (83 correct base-pairs in the GA
simulation against 104 base pairs in MFOLD),
whereas the correct number is 182 base pairs.

5. Discussion

The results presented show the possibility to
simulate RNA folding by GA. The flexibility of such
an algorithm allows for introduction of di}erent
models of folding kinetics. A test of these models
on known RNA secondary structures would allow
conclusions about their validity.

FOLDING PATHWAY

The existence of certain folding pathways is seen
when unmodified GA is compared with versions
containing non-random formation of stems. Pure GA
seems to be unable to find proper solutions, probably
because the time for such a search would be extremely
long. However, the introduction of better kinetic
models allows a GA to find the solution much faster.

The di}erence in calculation time may be related to the
di.culty to follow the folding pathway through local
minima, rather than to find a global minimum
(Waterman & Smith, 1978). Eigen (1975) has shown
that the well-known tRNA clover-leaf structure has
the advantage of being folded faster than alternative
solutions; this was shown by an algorithm which had
some principles of GA in common.

This characteristic of following the pathway is
illustrated in Fig. 5. Here the solution space is reduced
from a multidimensional hypercube to a two-
dimensional landscape of all possible (including
intermediate) structures. The figure shows the free
energy for each structure; more stable structures are
located in (local) minima. The figure shows the global
minimum to the left and the real structure to the right.
The line shows how the pathway moves from local
minimum to local minimum, finally reaching a local
minimum as its final destination. Although this final
minimum can coincide with the global minimum, it can
also be a di}erent (local) minimum if energy barriers
force the pathway in a di}erent direction as shown in
this figure. The intention of the modifications of the
GA is to force its pathway rather close to the real RNA
folding pathway.Even if thisGAdoesn’t end at the real
structure, modifications that force the GA along the

FIG. 5. Di}erences between the minimum energy algorithm and the GA algorithm shown in an energy landscape. The plane represents
an imaginary solution space with all possible solutions reduced to two dimensions. The height of the plain represents the associated free energy
of that structure. The global minimum energy is shown on the left. The real structure is shown as a local minimum on the right.

from van Batenburg et al. (1995)

• In a stepwise RNA folding 
simulation by a stochastic 
algorithm, folding/unfolding 
transition steps are chosen with 
probabilities that depend on 
transition free energies. 

• Advantages: predictions of 
metastable states in local free 
energy minima, pseudoknot 
structures, cotranscriptional RNA 
folding. 

• Disadvantages: lack of 
knowledge of RNA kinetics and 
pseudoknot thermodynamics, 
computational time complexity.



RNA structure prediction using experimental data
The algorithms for RNA structure prediction can be greatly improved by an implementation 
of constraints that take into account experimental data (e.g. probing).  

The most simple way is to force some nucleotides to be in a single-stranded conformation 
(prohibit their pairing). 

Upon development of quantitative measurements of the nucleotide conformational states 
(SHAPE), more accurate incorporation of probing results has become possible. For 
instance, using pseudo-energy values. In SHAPE probing, nucleotide reactivities are the 
measure of “single-strandedness” (high for loops, low for helices).  

Figure 4.
Summary of thermodynamic and SHAPE-derived free energy change contributions for a
simple HIV-1 hairpin (NL4-3 nucleotides 594 – 626) [41]. Favorable nearest-neighbor stacking
and unfavorable loop thermodynamic terms are shown in green and red, respectively. The total
nearest neighbor free energy change ∆GNN is the sum over all these contributions. ∆GSHAPE
pseudo-free energy change terms are shown for base paired (black) and non-base paired (gray)
nucleotides; only base paired values are included in the net free energy change. The
∆GSHAPE term is added once for each nucleotide at the ends of helices and twice for interior
nucleotides (blue symbols). The ∆GSHAPE calculations used m = 3.0 kcal/mol and b = −0.6
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A pseudo-energy can be introduced, for instance, as a term 
for every nucleotide in the probed sequence: 

ΔGSHAPE(i) = m × ln [reactivity(i) + 1] + b, 

where m and b are empirical constants. 
 E.g. m = 2.6 kcal/mol and b = −0.8 kcal/mol. 

A pseudo-energy is added to the free energy and the total 
potential can be used in an algorithm that searches for free 
energy minima. 
In such an implementation, only the pseudo-energy terms for 
base-paired nucleotides are added: once at the ends of 
helices and twice for interior nucleotides in helices, 
mimicking stacking contributions.

(Low & Weeks, 2010)


