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Biopolymer sequences
DNA: double-helical nucleic acid. 
Monomers: nucleotides C, A, T, G.

from “ Molecular Cell Biology”, Lodish et al. (2000)
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Figure 4-3 Alternative ways of representing nucleic acid chains, in this case a single strand of
DNA containing only three bases: cytosine (C), adenine (A), and guanine (G)

(a) Chemical structure of the trinucleotide CAG. Note the free hydroxyl group at the 3′ end and free phosphate group
at the 5′ end. (b) Two common simplified methods of representing polynucleotides. In the “stick” diagram (left), the
sugars are indicated as vertical lines and the phosphodiester bonds as slanting lines; the bases are denoted by their
single-letter abbreviations. In the simplest representation (right), the bases are indicated by single letters. By
convention, a polynucleotide sequence is always written in the 5′ → 3′ direction (left to right).

From: Section 4.1, Structure of Nucleic Acids

Molecular Cell Biology. 4th edition.
Lodish H, Berk A, Zipursky SL, et al.
New York: W. H. Freeman; 2000.

Copyright © 2000, W. H. Freeman and Company.

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.
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Figure 4-4 Two representations of contacts within the DNA double helix

(a) Space-filling model of B DNA, the most common form of DNA in cells. The sugar and phosphate residues (gray)
in each strand form the backbone, which is traced by a red line, showing the helical twist of the overall molecule. The
bases project inward, but are accessible through major and minor grooves; a pair of bases from opposite strands in the
ma- jor groove are highlighted in light and dark blue. The hydrogen bonds between the bases are in the center of the
structure. (b) Stick diagram of the chemical structure of double-helical DNA, unraveled to show the sugar-phosphate
backbones (sugar rings in green), base-paired bases (light blue and light red), and hydrogen bonds between the bases
(dark red dotted lines). The backbones run in opposite directions; the 5′ and 3′ ends are named for the orientation of
the 5′ and 3′ carbon atoms of the sugar rings. Each base pair has one purine base — adenine (A) or guanine (G) — 
and one pyrimidine base — thymine (T) orcytosine (C) — connected by hydrogen bonds. In this diagram, carbon
atoms occur at the junction of every line with another line and no hydrogen atoms are shown. [Part (a) courtesy of A.
Rich; part (b) from R. E. Dickerson, 1983, Sci. Am. 249(6):94.]
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Figure 6-4 The chemical structure of RNA

(A) RNA contains the sugar ribose, which differs from deoxyribose, the sugar used in DNA, by the presence of an
additional -OH group. (B) RNA contains the base uracil, which differs from thymine, the equivalent base in DNA, by
the absence of a -CH  group. (C) A short length of RNA. The phosphodiester chemical linkage between nucleotides
in RNA is the same as that in DNA.

From: From DNA to RNA

Molecular Biology of the Cell. 4th edition.
Alberts B, Johnson A, Lewis J, et al.
New York: Garland Science; 2002.

Copyright © 2002, Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walter; Copyright ©
1983, 1989, 1994, Bruce Alberts, Dennis Bray, Julian Lewis, Martin Raff, Keith Roberts, and James D. Watson .

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

3

RNA: (single-stranded) nucleic acid. 
Monomers: nucleotides C, A, U, G.
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Figure 6-4 The chemical structure of RNA

(A) RNA contains the sugar ribose, which differs from deoxyribose, the sugar used in DNA, by the presence of an
additional -OH group. (B) RNA contains the base uracil, which differs from thymine, the equivalent base in DNA, by
the absence of a -CH  group. (C) A short length of RNA. The phosphodiester chemical linkage between nucleotides
in RNA is the same as that in DNA.

From: From DNA to RNA

Molecular Biology of the Cell. 4th edition.
Alberts B, Johnson A, Lewis J, et al.
New York: Garland Science; 2002.

Copyright © 2002, Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walter; Copyright ©
1983, 1989, 1994, Bruce Alberts, Dennis Bray, Julian Lewis, Martin Raff, Keith Roberts, and James D. Watson .

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.
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from “ Molecular Biology of the Cell”, Alberts et al. (2002)
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Figure 3-3 The peptide bond

(a) A condensation reaction between two amino acids forms the peptide bond, which links all the adjacent residues in
a protein chain. (b) Side-chain groups (R) extend from the backbone of a protein chain, in which the amino N, α
carbon, carbonyl carbon sequence is repeated throughout.

From: Section 3.1, Hierarchical Structure of Proteins

Molecular Cell Biology. 4th edition.
Lodish H, Berk A, Zipursky SL, et al.
New York: W. H. Freeman; 2000.

Copyright © 2000, W. H. Freeman and Company.

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

Proteins: polypeptide chains. Monomers: amino acids (20 types).

from “ Molecular Cell Biology”, Lodish et al. (2000)



Biopolymer sequences

DNA 5’- ATGGCGCAGGG...-3’
3’ -TACCGCGTCCC...-5’

Watson-Crick complementarity: 
AT and GC pairs in double helix

RNA 5’- AUGGCGCAGGG...-3’

transcription (RNA polymerase)

protein MetAlaGlnGly...

translation (ribosome)

replication (DNA polymerase)

Genetic code is redundant: 
4×4×4=64 nucleotide triplets 
encode for 20 amino acids. Only 
two amino acids (Met and Trp) are 
encoded by a single codon. Other 
amino acids can be encoded by 2,  
4 or 6 codons. Usually the last 
“wobble” position of a triplet 
determines “silent” substitutions. 
ATG (Met) is start codon (usually). 
TAA, TAG, TGA - stop codons.



Basic signals in gene expression

genome 
(dsDNA)

transcript 
(mRNA)

transcription start

transcription termination

coding  
sequence 
(ORF)

start-codon 
     ATG

stop-codon 
   TAA  or 
   TAG  or 
   TGAuntranslated region 

(5’-UTR) untranslated region 
(3’-UTR)



Basic signals in gene expression

genome 
(dsDNA)

transcript 
(mRNA)

transcription start
transcription termination

ORF1

Prokaryotes (bacteria): polycistronic mRNA

ORF2 ORF3



Basic signals in gene expression

genome 
(dsDNA)

pre-mRNA

transcription start
transcription termination

exon1

Eukaryotes: precursor-mRNA (pre-mRNA) processing (splicing)

exon2 exon3

intron1 intron2 intron3

splicing: removal of introns, ligation of exons 
in the mature mRNA

mRNA
exon1 exon2 exon3 exon4

ORF

Alternative splicing, such as exon skipping or intron retention, leads to 
diverse isoforms of mRNAs and proteins encoded by the same gene. Due to 
frameshifts the sequences of proteins could be different.



NCBI database resources / Entrez retrieval system



Nucleotide sequence databases

Initially three main databases: GenBank (USA), 
                                                 EMBL (Europe), 
                                                 DDBJ (Japan). 

Later the three databases became parts of  
the International Nucleotide Sequence Database Collaboration. 

The three organizations exchange data on a daily basis. 

Each record is assigned a unique identifier, Accession number, that is 
shared by three databases. 

A single flat file format of database entries is used.



Datafields of sequence database entries: 

LOCUS       NM_000518                626 bp    mRNA    linear   PRI 24-MAY-2014
DEFINITION  Homo sapiens hemoglobin, beta (HBB), mRNA.
ACCESSION   NM_000518
VERSION     NM_000518.4  GI:28302128
KEYWORDS    RefSeq.
SOURCE      Homo sapiens (human)
  ORGANISM  Homo sapiens
            Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
            Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
            Catarrhini; Hominidae; Homo.
REFERENCE   1  (bases 1 to 626)
  AUTHORS   Mei Y, Yin N, Jin X, He J and Yin Z.
  TITLE     The regulatory role of the adrenergic agonists phenylephrine and
            isoproterenol on fetal hemoglobin expression and erythroid
            differentiation
  JOURNAL   Endocrinology 154 (12), 4640-4649 (2013)
   PUBMED   24080366
… etc. 

FEATURES             Location/Qualifiers
     source          1..626
                     /organism="Homo sapiens"
                     /mol_type="mRNA"
                     /db_xref="taxon:9606"
                     /chromosome="11"
                     /map="11p15.5"
     gene            1..626
                     /gene="HBB"
                     /gene_synonym="beta-globin; CD113t-C"
                     /note="hemoglobin, beta"
                     /db_xref="GeneID:3043"
                     /db_xref="HGNC:HGNC:4827"
                     /db_xref="HPRD:00786"
                     /db_xref="MIM:141900"
     exon            1..142
                     /gene="HBB"
                     /gene_synonym="beta-globin; CD113t-C"
                     /inference=“alignment:Splign:1.39.8"
     CDS             51..494
                     /gene="HBB"
                     /gene_synonym="beta-globin; CD113t-C"
                     /note="beta globin chain; hemoglobin beta chain"
                     /codon_start=1
                     /product="hemoglobin subunit beta"
                     /protein_id="NP_000509.1"
                     /db_xref="GI:4504349"
                     /db_xref="CCDS:CCDS7753.1"
                     /db_xref="GeneID:3043"
                     /db_xref="HGNC:HGNC:4827"
                     /db_xref="HPRD:00786"
                     /db_xref="MIM:141900"
                     /translation="MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFE
                     SFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPE
                     NFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH”
                 … etc. 
ORIGIN      
        1 acatttgctt ctgacacaac tgtgttcact agcaacctca aacagacacc atggtgcatc
       61 tgactcctga ggagaagtct gccgttactg ccctgtgggg caaggtgaac gtggatgaag

Header

Features

Sequence

http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=9606
http://www.ncbi.nlm.nih.gov/pubmed/24080366
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=9606
http://www.ncbi.nlm.nih.gov/nuccore/28302128?from=1&to=626&sat=4&sat_key=112633714
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=full_report&list_uids=3043
http://www.genenames.org/cgi-bin/gene_symbol_report?hgnc_id=HGNC:4827
http://www.hprd.org/protein/00786
http://www.ncbi.nlm.nih.gov/omim/141900
http://www.ncbi.nlm.nih.gov/nuccore/28302128?from=1&to=142&sat=4&sat_key=112633714
http://www.ncbi.nlm.nih.gov/nuccore/28302128?from=51&to=494&sat=4&sat_key=112633714
http://www.ncbi.nlm.nih.gov/protein/4504349
http://www.ncbi.nlm.nih.gov/CCDS/CcdsBrowse.cgi?REQUEST=CCDS&DATA=CCDS7753.1
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=full_report&list_uids=3043
http://www.genenames.org/cgi-bin/gene_symbol_report?hgnc_id=HGNC:4827
http://www.hprd.org/protein/00786
http://www.ncbi.nlm.nih.gov/omim/141900


Examples of features annotated: 

   gene            1..7898
                     /gene="SRSF7"

    mRNA            join(1..266,1301..1481,1790..1966,2842..2916,3338..3448,
                     4748..4801,6308..7898)
                     /gene="SRSF7"

    CDS             join(239..266,1301..1481,1790..1966,2842..2916,3338..3448,
                     4748..4801,6308..6362)
                     /gene="SRSF7"
 

   CDS             complement(46224..48638)
                     /locus_tag="KPHS_00400"
                     /codon_start=1
                     /transl_table=11
                     /product="formate dehydrogenase-O alpha subunit"
                     /protein_id="YP_005224340.1"
                     /db_xref="GeneID:11845018"

   regulatory      7153..7158
                     /regulatory_class="polyA_signal_sequence"

     exon            697..832

https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=c#SG11
https://www.ncbi.nlm.nih.gov/protein/378976199
https://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=full_report&list_uids=11845018


Statistics of nucleotide sequence databases

[ https://www.ncbi.nlm.nih.gov/genbank/statistics/, accessed 15.09.2018 ]

05/09/16 13:04GenBank and WGS Statistics
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GenBank Submit Genomes WGS HTGs EST/GSS Metagenomes TPA
TSA INSDC

GenBank and WGS Statistics

Notes on GenBank statistics
The following table lists the number of bases and the number of sequence records in each release of GenBank, beginning with
Release 3 in 1982. CON-division records are not represented in these statistics: because they are constructed from the non-CON
records in the database, their inclusion here would be a form of double-counting. From 1982 to the present, the number of bases
in GenBank has doubled approximately every 18 months.

Notes on WGS statistics
The following table lists the number of bases and the number of sequence records for WGS sequences processed at GenBank,
beginning with Release 129.0 in April of 2002. Please note that WGS data are not distributed in conjunction with GenBank
releases. Rather, per-project data files are continuously available in the WGS areas of the NCBI FTP site:
ftp://ftp.ncbi.nih.gov/ncbi-asn1/wgs ftp://ftp.ncbi.nih.gov/genbank/wgs

GENBANK AND WGS STATISTICS

GenBank WGS
Release Date Bases Sequences Bases Sequences

3 Dec 1982 680338 606
14 Nov 1983 2274029 2427
20 May 1984 3002088 3665
24 Sep 1984 3323270 4135
25 Oct 1984 3368765 4175
26 Nov 1984 3689752 4393
32 May 1985 4211931 4954
36 Sep 1985 5204420 5700
40 Feb 1986 5925429 6642
42 May 1986 6765476 7416
44 Aug 1986 8442357 8823
46 Nov 1986 9615371 9978
48 Feb 1987 10961380 10913
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15/09/2018, 09*31GenBank and WGS Statistics
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200 Feb 2014 157943793171 171123749 591378698544 139725795
201 Apr 2014 159813411760 171744486 621015432437 143446790
202 Jun 2014 161822845643 173353076 719581958743 175779064
203 Aug 2014 165722980375 174108750 774052098731 189080419
204 Oct 2014 181563676918 178322253 805549167708 196049974
205 Dec 2014 184938063614 179295769 848977922022 200301550
206 Feb 2015 187893826750 181336445 873281414087 205465046
207 Apr 2015 189739230107 182188746 969102906813 243779199
208 Jun 2015 193921042946 185019352 1038937210221 258702138
209 Aug 2015 199823644287 187066846 1163275601001 302955543
210 Oct 2015 202237081559 188372017 1222635267498 309198943
211 Dec 2015 203939111071 189232925 1297865618365 317122157
212 Feb 2016 207018196067 190250235 1399865495608 333012760
213 Apr 2016 211423912047 193739511 1452207704949 338922537
214 Jun 2016 213200907819 194463572 1556175944648 350278081
215 Aug 2016 217971437647 196120831 1637224970324 359796497
216 Oct 2016 220731315250 197390691 1676238489250 363213315
217 Dec 2016 224973060433 198565475 1817189565845 395301176
218 Feb 2017 228719437638 199341377 1892966308635 409490397
219 Apr 2017 231824951552 200877884 2035032639807 451840147
220 Jun 2017 234997362623 201663568 2164683993369 487891767
221 Aug 2017 240343378258 203180606 2242294609510 499965722
222 Oct 2017 244914705468 203953682 2318156361999 508825331
223 Dec 2017 249722163594 206293625 2466098053327 551063065
224 Feb 2018 253630708098 207040555 2608532210351 564286852
225 Apr 2018 260189141631 208452303 2784740996536 621379029
226 Jun 2018 263957884539 209775348 2944617324086 639804105
227 Aug 2018 260806936411 208831050 3204855013281 665309765



Databases of amino acid sequences

Historically: the first databases. 
                 1965: The Atlas of Protein Sequences an Structures. 

Nowadays amino acid sequences are predominantly determined by translation 
of massively sequenced nucleic acids. 
Thus a database of amino acid sequences is secondary or curated database. 
     (In contrast to e.g. primary GenBank with records obtained from submitters.) 

ENTREZ protein database: a collection of entries from several databases such 
as SWISS-PROT (one of the oldest and popular databases) and translations of 
nucleotide sequences in GenBank. 

UniProtKB (uniprot.org): Knowledgebase, contains both amino acid sequences 
and functional annotation. 
- includes SWISS-PROT (manually annotated and reviewed) and 
- TrEMBL (suggested coding regions in the nucleotide database entries, 

automatically annotated and not reviewed). 

Note that a number of coding regions (ORFs) in the nucleotide database entries 
may remain unannotated.



The Reference Sequence (RefSeq) Database

Non-redundant, richly annotated records of nucleotide and amino acid sequences. 

RefSeq entries are similar to those of GenBank, but they have some distinct 
features, in particular, specific Accession prefixes.

05/09/16 13:18[Table, Table 1. RefSeq accession numbers and molecule types.] - The NCBI Handbook - NCBI Bookshelf
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Table 1. RefSeq accession numbers and molecule types.

Accession prefix Molecule type Comment

AC_ Genomic Complete genomic molecule, usually alternate assembly

NC_ Genomic Complete genomic molecule, usually reference assembly

NG_ Genomic Incomplete genomic region

NT_ Genomic Contig or scaffold, clone-based or WGS

NW_ Genomic Contig or scaffold, primarily WGS

NS_ Genomic Environmental sequence

NZ_ Genomic Unfinished WGS

NM_ mRNA

NR_ RNA

XM_ mRNA Predicted model

XR_ RNA Predicted model

AP_ Protein Annotated on AC_ alternate assembly

NP_ Protein Associated with an NM_ or NC_ accession

YP_ Protein

XP_ Protein Predicted model, associated with an XM_ accession

ZP_ Protein Predicted model, annotated on NZ_ genomic records

 Whole Genome Shotgun sequence data.

 An ordered collection of WGS sequence for a genome.

 Computed.

From: Chapter 18, The Reference Sequence (RefSeq) Database

The NCBI Handbook [Internet].
McEntyre J, Ostell J, editors.
Bethesda (MD): National Center for Biotechnology Information (US); 2002-.
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Entrez Gene database

Gene-centered database. Integrates info from multiple databases. Typically an 
entry follows the annotation of RefSeq entries. The records have multiple links to 
other databases. 

06/09/16 08:26TLR4 toll like receptor 4 [Homo sapiens (human)] - Gene - NCBI

Page 2 of 13http://www.ncbi.nlm.nih.gov/gene?cmd=Retrieve&dopt=full_report&list_uids=7099

Go to nucleotide: Graphics FASTA GenBank

Go to reference sequence details

Genomic Sequence: NC_000009.12 Chromosome 9 Reference GRCh38.p7 Primary Assembly

1. Polymorphisms of Toll-Like Receptor 4 as a Risk Factor for Periodontitis: Meta-Analysis.

Chrzęszczyk D, et al. Adv Clin Exp Med, 2015 Nov-Dec. PMID 26771980

2. Expression and Polymorphism of Toll-Like Receptor 4 and Effect on NF-κB Mediated Inflammation in Colon

Cancer Patients.

Genomic regions, transcripts, and products

Genes, NCBI Homo sapiens Annotation Release 108, 2016-06-07

Genes, Ensembl release 85

dbSNP Build 147 (Homo sapiens Annotation Release 107) all data

ClinVar Short Variations based on dbSNP Build 147 (Homo sapiens An…

Cited Variants, dbSNP Build 147 (Homo sapiens Annotation Release 1…

RNA-seq exon coverage, aggregate (filtered), NCBI Homo sapiens Annotation Release 108 - log base 2 scaled

RNA-seq intron-spanning reads, aggregate (filtered), NCBI Homo sapiens Annotation Release 108 - log base 2 scaled

RNA-seq intron features, aggregate (filtered), NCBI Homo sapiens A…

Bibliography
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NC_000009.12: 118M..118M (17Kbp) Find:

  
  -    +  

 

A fragment of an entry of the Gene database:

Transcript accessions Intron Exon Coding region

Genome browser 
transcript data

Database of known 
mutations (dbSNP)



Sequence alignment

 -   Sequence alignment is used for identification of homology and/or similarity  
      of sequences. 

           Homology (evolutionary history) is not equvalent to similarity (e.g. % identity). 

-    However, identification of sequence similarity helps to reveal the homology. 

-    Similarity of 1D sequences (primary structures) can be seen in sequence 
     monomers of two sequences mapped against each other:

Sequence A   GCTTA----GCTATTGGCTTCTCTAAT--CACCAAGGGATATGCATACAAAAAACATTCT
             | |||    ||||||||||||| ||||   | | |  ||||||       ||||  ||||
Sequence B   GATTATTTAGCTATTGGCTTCTTTAATAATAACCATTGATATG------GAAAAATTTCT

                     Sequences can be aligned in many different ways

Sequence A   GC----TTAGCTATTGGCTTCTCTAATC--ACCAAGGGATATGCATACAAAAAACATTCT
             |     |||||||||||||||| ||||   | | |  ||||         ||||  ||||
Sequence B   GATTATTTAGCTATTGGCTTCTTTAATAATAACCATTGATA------TGGAAAAATTTCT

Alignment algorithms attempt to identify most likely alignment, trying to follow the 
molecular mechanisms of sequence evolution: substitutions, deletions, insertions.

SubstitutionsInsertion A->B or deletion B->A (alignment “gap”)



Searching for optimal alignment

Alternative alignments can be viewed as alternative paths in 2D sequence space.

SeqA   AGCTAGGAG
       |||   |||
SeqB   AGCGGAGAG

        SeqA   
A G C T A G G A G

A
G
C
G
G
A
G
A
G

S
e
q
B

SeqA   AGCTAGGAG--
       |||  ||||
SeqB   AGC--GGAGAG

        SeqA   
A G C T A G G A G

A
G
C
G
G
A
G
A
G

S
e
q
B

Most likely alignment should contain “as-large-as-possible” number of most likely 
events (conservation of monomers -> matched positions) and “as-small-as-possible” 
number of less likely events (substitutions, gaps). It is possible to assign some scores 
to all alignment elements according to their probabilities in biologically relevant model. 

An alignment can be scored, and so can be the corresponding path.



Searching for optimal alignment

Two separate issues in finding the optimal alignment: 

1. Scoring system. 

2. Algorithm to find the alignment with the best score  
            (optimal alignment  = optimal path). 

Scoring may be relatively simple, for instance, the default parameters of the BLASTN 
program for alignment of nucleotide sequences: 

(+2) for match; 
(-3) for mismatch;  
(-5) for the first gap nucleotide and (-2) for each of the nucleotides in gap extension 
              (negative “penalties”)



Scoring system should be derived from observed substitution 
frequencies in homologous sequences

During DNA replication, transitions (A ↔ G, C ↔ T) are more frequent as compared to 
transversions (A ↔ C, A ↔ T, G ↔ T, G ↔ C). This can be taken into account by a 
substitution matrix, e.g. as shown below:

     A     C     G     T
A    91  -114   -31  -123

C  -114   100  -125   -31

G   -31  -125   100  -114

T  -123   -31  -114    91

Identities have positive scores, substitutions - negative penalties. 

Diagonal elements should not be equal, reflecting differences in occurrence of various 
nucleotides.



Amino acid substitution matrices

Amino acid substitution matrices take into account so-called “conservative” 
substitutions between residues with similar properties (e.g. Arg ↔ Lys). 

The scores for a 20 × 20 matrix can be derived from frequencies observed in the 
datasets of related proteins. 

These frequencies should be computed as log-odds: logarithms of ratios of the 
frequencies to the background ones that are determined by chance.

P R I M E R

Back in the good old days, so many things
were easier to understand. I once disassem-
bled the engine of my 1972 MG just to see
how it worked, but now I won’t touch the
squirrel’s nest of technology that’s inside
my modern Honda Civic. Likewise, in the
early days of sequence comparison, align-
ment scores were straightforward stuff that
anybody could tweak. The first sequence
comparisons just assigned –1 per mismatch
and –1 per insertion/deletion, and if you
didn’t like that, you could make up what-
ever scores you thought gave you better-
looking alignments. Those days are gone.
Look inside a modern amino acid score
matrix, and you’ll see a squirrel’s nest of 400
numbers. These highly tuned matrices,
which go by industrialized acronyms like
BLOSUM62 and PAM250, no longer seem
to have any user serviceable parts inside.
Blame probability theory.

Alignment scores are log-odds scores
What we want to know is whether two
sequences are homologous (evolutionarily
related) or not, so we want an alignment
score that reflects that. Theory says that if
you want to compare two hypotheses, a
good score is a log-odds score: the loga-
rithm of the ratio of the likelihoods of your
two hypotheses. If we assume that each
aligned residue pair is statistically inde-
pendent of the others (biologically dubious,
but mathematically convenient), the align-

ment score is the sum of individual log-
odds scores for each aligned residue pair.
Those individual scores make up a 20 × 20
score matrix. The equation for calculating a
score s(a,b) for aligning two residues a and
b is:

1 pabs(a,b) = — log  —–    
λ fa fb

The numerator (pab) is the likelihood of
the hypothesis we want to test: that these
two residues are correlated because they’re

homologous. Thus, pab are the target fre-
quencies: the probability that we expect to
observe residues a and b aligned in homo-
logous sequence alignments. The denomi-
nator ( fa fb) is the likelihood of a null
hypothesis: that these two residues are un-
correlated and unrelated, occurring inde-
pendently. Thus, fa and fb are background
frequencies: the probabilities that we expect
to observe amino acids a and b on average
in any protein sequence. λ is a scaling fac-
tor. It is usually set to something that lets us
round off all the terms in the score matrix
to sensible integers.

If we expect to find a and b aligned
together in homologous sequences more
often than we expect them to occur by

chance (pab>fa fb), then the odds ratio is
greater than one and the score is positive.
Operationally, we say that positive scores
mean conservative substitutions, and nega-
tive scores indicate nonconservative substi-
tutions. This definition of ‘conservative
substitution’ in a score matrix is purely sta-
tistical. It has nothing directly to do with
amino acid structure or biochemistry.

This explains some details in BLOSUM62
that may seem counterintuitive at first
glance. For instance, tryptophan (W/W)
pairs score +11, while leucine (L/L) pairs
only score +4; why shouldn’t all identitites
get the same score? The rarer the amino
acid is, the more surprising it would be to
see two of them align together by chance.
In the homologous alignment data that
BLOSUM62 was trained on, leucine/leucine
(L/L) pairs were in fact more common 
than tryptophan/tryptophan (W/W) pairs
(pLL = 0.0371, pWW = 0.0065), but tryptophan
is a much rarer amino acid ( fL = 0.099,
fW = 0.013). Run those numbers (with BLO-
SUM62’s original λ = 0.347) and you get
+3.8 for L/L and +10.5 for W/W, which
were rounded to +4 and +11.

Another example is that BLOSUM62
awards a +1 to an apparently nonconser-
vative alignment of a positively charged
glutamic acid, but a seemingly more
innocuous alignment of an alanine to a leu-
cine gets penalized –1. A/L pairs are indeed
slightly more frequent in homologous
alignments than K/E pairs (pAL = 0.0044,
pKE = 0.0041 in the BLOSUM62 training
data), but A and L are more common amino
acids (pA = 0.074, pL = 0.099, pK = 0.058,
pE = 0.054). With λ = 0.347, this gives a
score of –1.47 for A/L (rounded to –1) and
0.76 for K/E (rounded to +1).

Where did the BLOSUM62 alignment score
matrix come from?
Sean R Eddy

Many sequence alignment programs use the BLOSUM62 score matrix to score pairs of aligned residues. Where did
BLOSUM62 come from?

Sean R. Eddy is at Howard Hughes Medical
Institute & Department of Genetics,
Washington University School of Medicine,
4444 Forest Park Blvd., Box 8510, Saint Louis,
Missouri 63108, USA.
e-mail: eddy@genetics.wustl.edu
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The definition of ‘conservative
substitution’ in a score matrix
is purely statistical. It has
nothing directly to do with
amino acid structure or
biochemistry.
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Here a and b are two residue types, pab is observed frequency, fa and fb are 
occurrences of a and b, respectively, in all proteins. λ is a scaling factor to make the 
scores convenient integers.



Gap penalties

Insertions or deletions (indels) are less frequent than point substitutions, and are 
therefore penalized in alignments by negative scores. 

There is no reliable theoretical basis for gap statistics. 
Usually a linear function for gap penalty S(gap) for a gap of  n  monomers: 

                                            S(gap) = G + n × L  

Parameters G (gap opening penalty) and L (gap length or extension) are chosen 
empirically. The optimal choice is dependent on substitution matrices and expected 
similarity of aligned sequences. 

For instance, G = 10 and L = 1 can be used in combination with BLOSUM62. 

In alignments of nucleotide sequences the following parameters are chosen as default 
in BLASTN program for sequence database similarity search: 

G = 3 and L = 2 in combination with match = 2 and mismatch = −3 . 



Searching for optimal alignment

Given a scoring system, the score of any alignment can be computed. 

The problem is, however, to find the optimal alignment with the best score. 

Even for alignment of two sequences of 300 monomers, about 10179 alignments are 
possible... 

Various types of alignment: 

Pairwise alignment : global (full length) or local (finding the best aligned regions). 

Sequence database similarity search: given a query sequence, find the best aligned 
sequences in the database. 

Multiple sequence alignment: alignment of some number (>2) of sequences. 

Different algorithms are designed for each of these problems.



Searching for optimal alignment

Alternative alignments can be viewed as alternative paths in 2D sequence space.

SeqA   AGCTAGGAG
       |||   |||
SeqB   AGCGGAGAG

        SeqA   
A G C T A G G A G

A
G
C
G
G
A
G
A
G

S
e
q
B

SeqA   AGCTAGGAG--
       |||  ||||
SeqB   AGC--GGAGAG

        SeqA   
A G C T A G G A G

A
G
C
G
G
A
G
A
G

S
e
q
B

An alignment can be scored, and so can be the corresponding path.

Diagonal move: match or mismatch.

Vertical or horizontal move: gap.



Searching for optimal alignment by a  
dynamic programming algorithm

Recursive calculation of the optimal alignment score S(i,j):

S
e
q
A

SeqB   

A(i)   

B(j)

S(i,j)   S(i,j-1)   

S(i-1,j-1)   S(i-1,j)   

S(i,j) = max {   S(i,j-1) + G,
S(i-1,j) + G.

S(i,j) + Msubst[A(i),B(j)], Msubst - substitution matrix of 
the scoring system; 

G - gap penalty.



Searching for optimal alignment by a  
dynamic programming algorithm

Recursive calculation of the optimal alignment score S(i,j):

S
e
q
A

SeqB   

A(i)   

B(j)

S(i,j)   S(i,j-1)   

S(i-1,j-1)   S(i-1,j)   

S(i,j) = max {   S(i,j-1) + G,
S(i-1,j) + G.

S(i,j) + Msubst[A(i),B(j)], Msubst - substitution matrix of 
the scoring system; 

G - gap penalty.

The recursive formula allows the calculation of 
dynamic programming matrix starting from 
smaller subalignments. 

All elements of the matrix S(i,j) correspond to the 
optimal scores of partial alignments. 

The score S(m,n), where m and n are two 
sequence lengths, is the optimal global alignment 
score. 

The optimal alignment can be retrieved by 
backtracking of all moves that have led to S(m,n). 

S(m,n)   



A toy example (here match is +5; mismatch is - 2 and insertion/deletion is - 6): 

P R I M E R

Dynamic programming algorithms are a
good place to start understanding what’s
really going on inside computational biology
software. The heart of many well-known pro-
grams is a dynamic programming algorithm,
or a fast approximation of one, including
sequence database search programs like
BLAST and FASTA, multiple sequence align-
ment programs like CLUSTALW, profile
search programs like HMMER, gene finding
programs like GENSCAN and even RNA-
folding programs like MFOLD and phyloge-
netic inference programs like PHYLIP.

Don’t expect much enlightenment from
the etymology of the term ‘dynamic program-
ming,’ though. Dynamic programming was
formalized in the early 1950s by mathemati-
cian Richard Bellman, who was working at
RAND Corporation on optimal decision
processes. He wanted to concoct an impres-
sive name that would shield his work from US
Secretary of Defense Charles Wilson, a man
known to be hostile to mathematics research.
His work involved time series and planning—
thus ‘dynamic’ and ‘programming’ (note,
nothing particularly to do with computer
programming). Bellman especially liked
‘dynamic’ because “it’s impossible to use the
word dynamic in a pejorative sense”; he fig-
ured dynamic programming was “something
not even a Congressman could object to”1.

The best way to understand how dynamic
programming works is to see an example.
Conveniently, optimal sequence alignment
provides an example that is both simple and
biologically relevant.

The biological problem: pairwise
sequence alignment
We have two DNA or protein sequences, and
we want to infer if they are homologous or
not. To do this, we will calculate a score that
reflects how similar the two sequences are
(that is, how likely they are to be derived from
a common ancestor). Because sequences differ
not just by substitution, but also by insertion
and deletion, we want to optimally align the
two sequences to maximize their similarity.

Why do we need a fancy algorithm? Can’t
we just score all possible alignments and pick
the best one? This isn’t practical, because
there are about 22N/√

—––
2πN different align-

ments for two sequences of length N; for two
sequences of length 300, that’s about 10179

different alignments.
Let’s set up the problem with some nota-

tion. Call the two sequences x and y. They are
of length M and N residues, respectively. The
ith residue in x is xi; the jth residue of y is yj. We

need some parameters for how to score align-
ments: we’ll use a scoring matrix σ(a, b) for
aligning two residues a,b to each other (e.g., a
4 × 4 matrix for scoring any pair of aligned
DNA nucleotides, or simply a match and a
mismatch score), and a gap penalty γ for every
time we introduce a gap character.

A dynamic programming algorithm con-
sists of four parts: a recursive definition of the
optimal score; a dynamic programming
matrix for remembering optimal scores of
subproblems; a bottom-up approach of filling
the matrix by solving the smallest subprob-
lems first; and a traceback of the matrix to
recover the structure of the optimal solution
that gave the optimal score. For pairwise
alignment, those steps are the following:

Recursive definition of the optimal
alignment score
There are only three ways the alignment can
possibly end: (i) residues xM and yN are

What is dynamic programming?
Sean R Eddy

Sequence alignment methods often use something called a ‘dynamic programming’ algorithm. What is dynamic
programming and how does it work?

Sean R. Eddy is at Howard Hughes Medical
Institute & Department of Genetics,
Washington University School of Medicine,
4444 Forest Park Blvd., Box 8510, Saint Louis,
Missouri 63108, USA.
e-mail: eddy@genetics.wustl.edu
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Figure 1  The filled dynamic
programming matrix for two DNA
sequences, x = TTCATA and 
y = TGCTCGTA, for a scoring
system of +5 for a match, –2 
for a mismatch and –6 for each
insertion or deletion. The cells in
the optimum path are shown in
red. Arrowheads are ‘traceback
pointers,’ indicating which of 
the three cases were optimal 
for reaching each cell. (Some
cells can be reached by two or
three different optimal paths 
of equal score: whenever two 
or more cases are equally 
optimal, dynamic programming
implementations usually choose
one case arbitrarily. In this
example, though, the optimal
path is unique.)

T G C T C G T A

–48–42–36–30–24–18–12–60

–37–31–25–19–13–7–15–6

–26–20–14–8–2–33–1–12

–15–9–3328–3–7–18

–4–51062–9–13–24

06–247–4–15–19–30

110251–10–21–25–36

T G C T C G T A
1 2 3 4 5 6 7 8

T

T

C

A

T

A

1

2

3

4

5

6

T – – T C A T A

+5 –6 –6 +5 +5 –2 +5 +5

scores 11:Optimum alignment

Dynamic programming matrix:

0i

0
j (sequence y)

(sequence
x)

M =

 = N

_computational
BIOLOGY

©
20

04
 N

at
ur

e 
Pu

bl
is

hi
ng

 G
ro

up
  h

ttp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy

(Eddy, 2004)

P R I M E R

Dynamic programming algorithms are a
good place to start understanding what’s
really going on inside computational biology
software. The heart of many well-known pro-
grams is a dynamic programming algorithm,
or a fast approximation of one, including
sequence database search programs like
BLAST and FASTA, multiple sequence align-
ment programs like CLUSTALW, profile
search programs like HMMER, gene finding
programs like GENSCAN and even RNA-
folding programs like MFOLD and phyloge-
netic inference programs like PHYLIP.

Don’t expect much enlightenment from
the etymology of the term ‘dynamic program-
ming,’ though. Dynamic programming was
formalized in the early 1950s by mathemati-
cian Richard Bellman, who was working at
RAND Corporation on optimal decision
processes. He wanted to concoct an impres-
sive name that would shield his work from US
Secretary of Defense Charles Wilson, a man
known to be hostile to mathematics research.
His work involved time series and planning—
thus ‘dynamic’ and ‘programming’ (note,
nothing particularly to do with computer
programming). Bellman especially liked
‘dynamic’ because “it’s impossible to use the
word dynamic in a pejorative sense”; he fig-
ured dynamic programming was “something
not even a Congressman could object to”1.

The best way to understand how dynamic
programming works is to see an example.
Conveniently, optimal sequence alignment
provides an example that is both simple and
biologically relevant.

The biological problem: pairwise
sequence alignment
We have two DNA or protein sequences, and
we want to infer if they are homologous or
not. To do this, we will calculate a score that
reflects how similar the two sequences are
(that is, how likely they are to be derived from
a common ancestor). Because sequences differ
not just by substitution, but also by insertion
and deletion, we want to optimally align the
two sequences to maximize their similarity.

Why do we need a fancy algorithm? Can’t
we just score all possible alignments and pick
the best one? This isn’t practical, because
there are about 22N/√

—––
2πN different align-

ments for two sequences of length N; for two
sequences of length 300, that’s about 10179

different alignments.
Let’s set up the problem with some nota-

tion. Call the two sequences x and y. They are
of length M and N residues, respectively. The
ith residue in x is xi; the jth residue of y is yj. We

need some parameters for how to score align-
ments: we’ll use a scoring matrix σ(a, b) for
aligning two residues a,b to each other (e.g., a
4 × 4 matrix for scoring any pair of aligned
DNA nucleotides, or simply a match and a
mismatch score), and a gap penalty γ for every
time we introduce a gap character.

A dynamic programming algorithm con-
sists of four parts: a recursive definition of the
optimal score; a dynamic programming
matrix for remembering optimal scores of
subproblems; a bottom-up approach of filling
the matrix by solving the smallest subprob-
lems first; and a traceback of the matrix to
recover the structure of the optimal solution
that gave the optimal score. For pairwise
alignment, those steps are the following:

Recursive definition of the optimal
alignment score
There are only three ways the alignment can
possibly end: (i) residues xM and yN are

What is dynamic programming?
Sean R Eddy

Sequence alignment methods often use something called a ‘dynamic programming’ algorithm. What is dynamic
programming and how does it work?
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4444 Forest Park Blvd., Box 8510, Saint Louis,
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Figure 1  The filled dynamic
programming matrix for two DNA
sequences, x = TTCATA and 
y = TGCTCGTA, for a scoring
system of +5 for a match, –2 
for a mismatch and –6 for each
insertion or deletion. The cells in
the optimum path are shown in
red. Arrowheads are ‘traceback
pointers,’ indicating which of 
the three cases were optimal 
for reaching each cell. (Some
cells can be reached by two or
three different optimal paths 
of equal score: whenever two 
or more cases are equally 
optimal, dynamic programming
implementations usually choose
one case arbitrarily. In this
example, though, the optimal
path is unique.)
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Needleman - Wunsch algorithm: 
optimal global alignment using dynamic programming. 

Waterman - Smith algorithm: 
optimal local alignment using dynamic programming. 

Optimal local alignment is defined as the alignment of 
subregions of two sequences with the maximum score. 
NB. It does not mean that such subregions are aligned separately, they are identified by 
the dynamic programming matrix constructed for full-length sequences. 

The programs exploiting these algorithms are available via the  
ENTREZ system and in the EMBL-EBI tools.

 26



Needleman - Wunsch algorithm: 
optimal global alignment using dynamic programming. 

Waterman - Smith algorithm: 
optimal local alignment using dynamic programming. 

Optimal local alignment is defined as the alignment of 
subregions of two sequences with the maximum score. 
NB. It does not mean that such subregions are aligned separately, they are identified by 
the dynamic programming matrix constructed for full-length sequences. 

The programs exploiting these algorithms are available via the  
ENTREZ system and in the EMBL-EBI tools.
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“Glocal” alignment:  global on one of the sequences, local on the other. 

(Reasonable in some cases, e.g. when one of the sequences is expected to be 
homologous to a domain within the other). 

Can be computed e.g. with zero gap penalties at the ends of one of the sequences.



Global alignments: no accurate statistical theory. The reliability of an 
alignment can be estimated using multiple alignments of permutations of 
aligned sequences. If the score of alignment of interest is significantly 
higher than the average score obtained from pairs of sequences of the 
same lengths and compositions (permutations), it is judged to be 
significant rather than determined by chance alone.

Estimates of alignment significance:

Say, the optimal global alignment of seqA and seqB has the score SAB.

seqA = {GAGCTAA...}
seqB = {GCAAGCC...}

Alignment score [ perm(seqA), perm(seqB) ] -> S1

permutations of sequences, like e.g.
perm{12345} -> {32451} or {43152} etc.

repeat e.g. 100 times

Average (S1, S2, ...S100) = Savg  If SAB is significantly higher than Savg, 
the alignment is significant.  28



Estimates of alignment significance:

Local alignments: expected number (E-value) of ungapped local 
alignments with score at least S in the alignment of sequences with 
sufficiently large lengths m and n:

E = K m n exp (- 𝛌S),

where K and 𝛌 depend on scoring system and monomer frequencies. 

No general theory for gapped alignments. Statistics can be estimated 
using quasi-random sequences.

 29



Sequence database similarity search

-Input: sequence query 

-Output: list of similar sequences (“hits”) found in the database



- Sequence database similarity search implies pairwise alignments 
of the query to all entries in the database. 

- A straightforward dynamic programming algorithm is not efficient in 
this case (slow). 

- A faster search can be realized using search for “words”: stretches 
of similar oligomers in two sequences ( the query and a subject 
sequence from the database).



BLAST: Basic Local Alignment Search Tool

BLAST is the most popular program for sequence database similarity search. 

First publicartion: Altschul et al. (1990). 

Main strategy: 

- Searching for “words” in a subject sequence from the database satisfying a 
criterion of a word size at least W and a score (S) at least T compared to a 
word in the query. 

-  If a word is found, BLAST algorithm attempts to extend it and improve the 
score S. 

-   The algorithm is designed for local alignments: if further extension does not 
improve S, the alignment region between the query and the subject sequence 
(“sequence hit”) with the maximal S is returned to the user. 

- The result of BLAST is a list of hits, ordered according to their significance (E-
values). 

S ≥ T

W

Seq1

Seq2



BLAST: Basic Local Alignment Search Tool

Subject ...VDQHGAPPEQRITPRQQ...

contains ITP (S=15) => the algorithm proceeds with the extension phase 
(e.g. alignment by dynamic programming) 

Query  ...FDRIGDGETKLVTPVPT...
Sbjct  ...VDQHGAPPEQRITPRQQ...

Say, searching with a query:  ...FDRIGDGETKLVTPVPT...

“w-mers”: words that score at least T when compared to some word (e.g. VTP) in the query. 

With W=3; T=11 and BLOSUM62 matrix, w-mer scores calculated for VTP:

VTP 16    MTP 13    CTP 11    VSP 12    VVP 11
ITP 15    ATP 12    FTP 11    VAP 11
LTP 13    TTP 12    YTP 11    VNP 11

Score improved ?



Word extension search in the original BLAST algorithm

(Altschul et al., 1990)

Extension length

Score

T : word threshold

S: minimum score to return a hit in the output

X: significance decay

HSP, high-scoring segment pair



The statistics of pairwise alignments

Expected number (E-value) of ungapped HSPs with score at least S in the 
alignment of sequences with sufficiently large lengths m and n:

E = K m n exp (- 𝛌S),

where K and 𝛌 depend on scoring system and monomer frequencies.

Normalized raw score 
                        S’ = ( 𝛌S - lnK) / ln2 
is a “bit score” characterizing HSP significance :  E = m n 2-S’  
(not dependent on scoring system).

For gapped local alignments the statistics can be determined from large-scale 
comparisons of quasi-random sequences.



Gapped BLAST
(Altschul et al., 1997)

Two-hit approach: initial search for two non-overlapping hits of score at least T, within a 
distance A of one another on a diagonal in sequence space. 
      Advantage: faster search without losing significant sequence similarities.

Two-hit approach: initial search for two non-
overlapping hits of score at least T, within a 
distance A of one another on a diagonal in 
sequence space:

Ungapped extension:

If ungapped extension is better than some threshold Sg.  
E.g. chosen so that not more than one gapped extension is 
invoked per 50 database sequences, corresponding to  
Sg = 22 bits: 

Gapped extension is triggered.

S ≥ T

S ≥ T

A W

S’ ≥ Sg



BLAST webpage



Multiple sequence alignment

Multiple: N > 2

N=5:

Hfq_Bsubtilis         --MKPINIQDQFLNQIRKENTYVTVFLLNGFQLRGQVKGFDNFTVLLESEGKQQLIYKHA
Hfq_Lpneumophila      -MSKNHLLQDPFLNELRKEKVPVSVFLVNGIKLHGIIDSFDQYVVMLKN-SITQMVYKHA
Hfq_Ecoli             -MAKGQSLQDPFLNALRRERVPVSIYLVNGIKLQGQIESFDQFVILLKN-TVSQMVYKHA
Hfq_Ngonorrhoeae      MTAKGQMLQDPFLNALRKEHVPVSIYLVNGIKLQGQVESFDQYVVLLRNTSVTQMVYKHA
Hfq_Neuropaea         MGVKGQLLQDPFLNILRKERIPVSIYLVNGIKLQGQIDSFDQYVVLLKN-SVTQMVYKHA

Hfq_Bsubtilis         ISTFAPQKNVQLELE-----------------------------
Hfq_Lpneumophila      ISTVVPSRMVKIPAEESSGEEEGTVAD-----------------
Hfq_Ecoli             ISTVVPSRPVSHHSNNAGGGTSSNYHHGSSAQNTSAQQDSEETE
Hfq_Ngonorrhoeae      ISTIVPARSVNLQHENKPQAAPASTL----VQVETVQQPAE---
Hfq_Neuropaea         ISTIVPAKAISIPIPADTQTEQDEP-------------------

• An accurate alignment of multiple sequences by direct application of dynamic programming is not 
feasible (computationally demanding, could be applied only for small datasets of relatively short 
sequences). 

• Various MSA strategies are used for faster algorithms. One of the most straightforward ones: progressive 
multiple sequence alignment.



Progressive multiple sequence alignment

Progressive MSA: an algorithm starts from aligning the closely related sequences, with 
following iterations consisting of aligning the previously built alignments. At every iteration, a 
pairwise alignment of two clusters of sequences is carried out. Nucleic Acids Research, 1994, Vol. 22, No. 22 4675

Pairwise alignment:

Calculate distance matrix

Unrooted Neighbor-Joining tree
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Figure 1. The basic progressive alignment procedure, illustrated using a set of
7 globins of known tertiary structure. The sequence names are from Swiss Prot
(38): Hba_Horse: horse a-globin; Hba__Human: human a-globin; Hbb_Horse:
horse /3-globin; Hbb Human: human /3-globin; Myg Phyca: sperm whale
myoglobin; Glb5 Petma: lamprey cyanohaemoglobin; Lgb2 Luplu: lupin
leghaemoglobin. In the distance matrix, the mean number of differences per residue
is given. The unrooted tree shows all branch lengths drawn to scale. In the rooted
tree, all branch lengths (mean number of differences per residue along each branch)
are given as well as weights for each sequence. In the multiple alignment, the
approximate positions of the 7 a-helices common to all 7 proteins are shown.
This alignment was derived using CLUSTAL W with default parameters and
the PAM (3) series of weight matrices.

large numbers of sequences to be aligned, even on a
microcomputer. The scores are calculated as the number of k-
tuple matches (runs of identical residues, typically 1 or 2 long
for proteins or 2 - 4 long for nucleotide sequences) in the best
alignment between two sequences minus a fixed penalty for every
gap. We now offer a choice between this method and the slower
but more accurate scores from full dynamic programming
alignments using two gap penalties (for opening or extending
gaps) and a full amino acid weight matrix. These scores are
calculated as the number of identities in the best alignment divided
by the number of residues compared (gap positions are excluded).
Both of these scores are initially calculated as per cent identity
scores and are converted to distances by dividing by 100 and
subtracting from 1.0 to give number of differences per site. We
do not correct for multiple substitutions in these initial distances.

In Figure 1 we give the 7 X 7 distance matrix between the 7 globin
sequences calculated using the full dynamic programming
method.

The guide tree
The trees used to guide the final multiple alignment process are
calculated from the distance matrix of step 1 using the Neighbour-
Joining method (21). This produces unrooted trees with branch
lengths proportional to estimated divergence along each branch.
The root is placed by a 'mid-point' method (15) at a position
where the means of the branch lengths on either side of the root
are equal. These trees are also used to derive a weight for each
sequence (15). The weights are dependent upon the distance from
the root of the tree but sequences which have a common branch
with other sequences share the weight derived from the shared
branch. In the example in Figure 1, the leghaemoglobin
(Lgb2 Luplu) gets a weight of 0.442, which is equal to the
length of the branch from the root to it. The human /3-globin
(Hbb Human) gets a weight consisting of the length of the
branch leading to it that is not shared with any other sequences
(0.081) plus half the length of the branch shared with the horse
/3-globin (0.226/2) plus one quarter the length of the branch
shared by all four haemoglobins (0.061/4) plus one fifth the
branch shared between the haemoglobins and myoglobin
(0.015/5) plus one sixth the branch leading to all the vertebrate
globins (0.062). This sums to a total of 0.221. In contrast, in
the normal progressive alignment algorithm, all sequences would
be equally weighted. The rooted tree with branch lengths and
sequence weights for the 7 globins is given in Figure 1.

Progressive alignment
The basic procedure at this stage is to use a series of pairwise
alignments to align larger and larger groups of sequences,
following the branching order in the guide tree. You proceed
from the tips of the rooted tree towards the root. In the globin
example in Figure 1 you align the sequences in the following
order: human vs. horse /3-globin; human vs. horse a-globin; the
2 a-globins vs. the 2 /3-globins; the myoglobin vs. the
haemoglobins; the cyanohaemoglobin vs. the haemoglobins plus
myoglobin; the leghaemoglobin vs. all the rest. At each stage
a full dynamic programming (26,27) algorithm is used with a
residue weight matrix and penalties for opening and extending
gaps. Each step consists of aligning two existing alignments or
sequences. Gaps that are present in older alignments remain fixed.
In the basic algorithm, new gaps that are introduced at each stage
get full gap opening and extension penalties, even if they are
introduced inside old gap positions (see the section on gap
penalties below for modifications to this rule). In order to
calculate the score between a position from one sequence or
alignment and one from another, the average of all the pairwise
weight matrix scores from the amino acids in the two sets of
sequences is used, i.e. if you align 2 alignments with 2 and 4
sequences respectively, the score at each position is the average
of 8 (2x4) comparisons. This is illustrated in Figure 2. If either
set of sequences contains one or more gaps in one of the positions
being considered, each gap versus a residue is scored as zero.
The default amino acid weight matrices we use are rescored to
have only positive values. Therefore, this treatment of gaps treats
the score of a residue versus a gap as having the worst possible
score. When sequences are weighted (see Improvements to
progressive alignment, below), each weight matrix value is
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ClustalW 
(Thompson et al., 1994):



Using sequence weights in progressive multiple alignment

• E.g. ClustalW algorithm:

seq1
seq2
seq3
seq4
seq5

rooted tree with 
branch lengths

0.1
0.1

0.2 0.1
0.2

0.3
0.25

0.5

W(1) = 0.1 + 0.2/2 + 0.1/4 = 0.225
W(2) = 0.2 + 0.2/2 + 0.1/4 = 0.325
W(3) = 0.3 + 0.1/2 + 0.1/4 = 0.375
W(4) = 0.25 + 0.1/2 + 0.1/4 = 0.325
W(5) = 0.5/1 = 0.5
the contributions of branch lengths to the weights are 
divided by cluster sizes

• Sequences are aligned according to the tree order. At each step, dynamic programming is used for 
pairwise alignment of (clusters of) sequences. The substitution scores are calculated as weighted averages 
of scores for substitutions between clusters.

...VLLESEGKQQL... seq1

...VMLKN-SITQM... seq2

.....(i).........

S(i,j) = S(E,K)× W(1)× W(3) +
       + S(E,R)× W(1)× W(4) +
       + S(K,K)× W(2)× W(3) + 
       + S(K,R)× W(2)× W(4)

. .
V I
L L
L L
R K(j)
N N
. .
s s
e e
q q
4 3

For instance, alignment of two clusters 
{seq1,seq2} vs {seq3,seq4}



e.g. MUSCLE 
(R.C. Edgar, 2004):

Multiple sequence alignment: various strategies
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e.g. T-Coffee 
(Notredame et al., 2004):

Multiple sequence alignment: various strategies
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Lalign local: 10 top-scoring non-intersecting local alignments

-  Monomer x(A) aligned to y(B): constraint. 
- W(constraint) = % similarity in the alignment. 
- W(x,y) = W(x,y, global) + W(x,y, local). 
- W = 0 if x and y are not aligned.

- If x(A) is aligned to z(C) and y(B) is aligned to z(C) as well: 
x and y are aligned through sequence C, thus additional constraint weight: 
W(x,y) = W(x,y) + min [W(x,z) + W(y,z)].

-  Progressive alignment according to the NJ tree from pairwise alignments. 
- Dynamic programming is carried out with account of weights. 
- No gap penalties (indirectly they are already taken into account).



Similar sequences have similar “word” compositions. 
                     Words: L-tuples or k-mers. 

Comparisons of these compositions can be done faster than those based on 
alignments. 
                    Important for large datasets of sequences.

Alignment-free sequence comparisons (k-mer analysis)

Say, sequences X = AAACTGGT... -> 6-mers: AAACTG, AACTGG, ACTGGT, ...
               Y = AGAACTGG... ->         AGAACT, GAACTG, AACTGG, ...   
               Z = AAATTGGT... ->         AAATTG, AATTGG, ATTGGT, ...

=> In this region X and Y share one 6-mer, Z is different.

For a given k, a sequence X can be converted into vector 

     C(X,k) = (cX,k,1, cX,k,2, ... cX,k,N) 
(cX,k,i is word count for the i-th k-mer and N is number of all possible k-mers.) 

Different metrics for a distance d(X,Y) are possible, for instance: 

                                    N 
                    d(X,Y) =  ∑ (cX,k,i − cY,k,i)2                (Euclidean distance) 
                                   i=1 
                                                                             or fractional common k-mer count F: 
                                    N 
                    F(X,Y) =  ∑ min(cX,k,i , cY,k,i) / [ min (lengthX, lengthY) - k + 1 ] 
                                   i=1 
(Here an upper limit of homologous i-th k-mers in two sequences is normalised by the maximum number of homologous k-mers. 
 This value decreases with increasing evolutionary distance).


