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Problem Description (What’s it all about?!)

» Most existing generative audio models do not utilize existing knowledge of how sound is
generated and perceived

 Can’t be interpreted
* They require huge amounts of data (hours of play)

» Are expensive to compute(SOTA generative models often take several GPU days to weeks to
train from scratch)
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Problem Description (What’s it all about?!)

» Existing models are not scalable
« Badly generalize to unseen examples

* Can’t be easily adjusted. No way of live integration

* No way to control parts separately
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Proposed solution

* Utilize extensive knowledge on dsp and human perception
- No need for autoregressive models or adversarial losses

 Make it modular

* Keep it simple (and be aware of limitations)
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- “Pitch detector” L i‘

- Fundamental frequencies

- Pretrained CREPE (Kim et al., 2018) network

Multi-Scale Spectrogram Loss

Fixed weights for supervised task .

A convolutional network for pitch estimation (SOTA)
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- Unsupervised task: use a Resnet architecture (He et al., 2016)
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Extremely deep
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Smart use of skip connections

Cleverly linked conv blocks, normalizations,... fight vanishing gradient
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- Extracted directly from audio ' \ @ v /

- Detect note segmentation? MUt cale “boshogam (o=

- “residual information”
- Use Mel-frequency cepstral coefficients(MFCC) coefficients (30 per a frame)

- transformed by a single GRU layer
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* Concatenate latent space
* GRU yet again

* Dense network to obtain estimated parameters
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» The synthesizer generates audio as a sum of

Multi-Scale Spectrogram Loss

sinusoids at multiples of fundamental frequency Note Detection

You can leave this at 1.0 for most cases

« Allow parameters to be controlled externally
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Results
Comparable to SOTA model for NSynth dataset

Outperforms SOTA despite more general loss function

Even unsupervised version outperforms supervised WaveRNN

Qualitatively show good interpolation (independent control ¢
generative factors: for example loudness adjustment) and

extrapolation quality(generalize to unseen data)

Qualitatively demonstrated abilities in deverbaration and acoust

transfer as well as timber transfer.
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Demonstration Results
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Conclusion

DDSP is:

* A way to utilize our extensive existing dsp knowledge

+ Avery light weight network that can be trained within hours without large amounts of data(violin model
based on 13 minutes of data)

» Enables live interaction with DL output. From passive to active role in the process

* Astonishing timber transfer and reverberation ability

* Limited to monophonic audio. Can only handle single instrument data (extension in progress).

Samples should share a consistent room environment.
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Demonstration Results
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Thank you for your attention!

Stay curious
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Additional interesting details on the Methods: What is a GRU?

GRU
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sigmoid tanh pointwise pointwise vector
multiplication addition concatenation
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