Multimodal Classification of Emotions in Latin Music

Presented by: Damian Domela s1853767

2020 IEEE International Symposium on Multimedia

<u>Authors:</u> Leonardo G. Catharin Rafael P. Ribeiro Carlos N. Silla Jr.

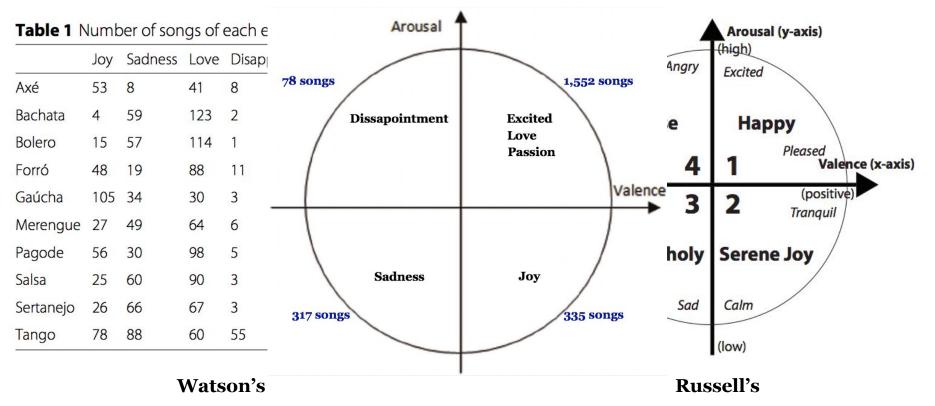
Problem Statement

- This paper refers to/builds onto the paper which I used as inspiration for my API project [1]
- Streaming services still struggle with automatically classifying their large music repositories.[1]
- Classification of songs by emotion
 - 'What emotion is felt by the listener'

The Latin Music Mood Database

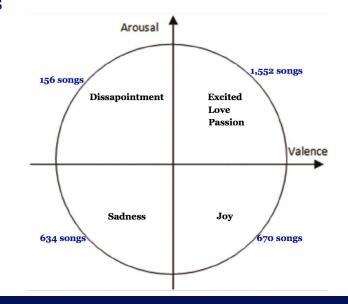
- LMMD [2] contains 3,139 audio clips
 - 2,282 unique songs after pre-processing
- 'Ethnic Lyrics Fetcher tool' is used to retrieve the lyrics for LMMD
- Emotion labels based on Watson's model [3]
 - Mapping to Russell's model [4]

The Latin Music Mood Database



Data Imbalance

- May lead to loss of accuracy on minority classes
- SMOTE was used to oversample the minority classes
 - Creating synthetic data points based on existing ones
 - Synthetic data points based on features
- Oversampled Result:



Feature Extraction

Features extracted from lyrics						
Feat. (Dim.)	Description					
EST (16)	Stylistic Features					
2G (614) 3G (4,590) 4G (17,171) ST (13,798)	N-grams normalized with TF-IDF.					
2G (100) 3G (100) 4G (100) ST (100)	N-grams normalized with TF-IDF and reduced with LSA.					
D2V (250)	Paragraph Vector Embeddings.					
Featu	Features extracted from audio					
Feat. (Dim.)	Description					
RLBP (59)	Extracted textural features with RLBP.					
BA (48)	MFCC, rolloff, spectral centroid, flux and zerocrossings.					
SSD (1,668)	Features SSD and complementary RP e RH.					

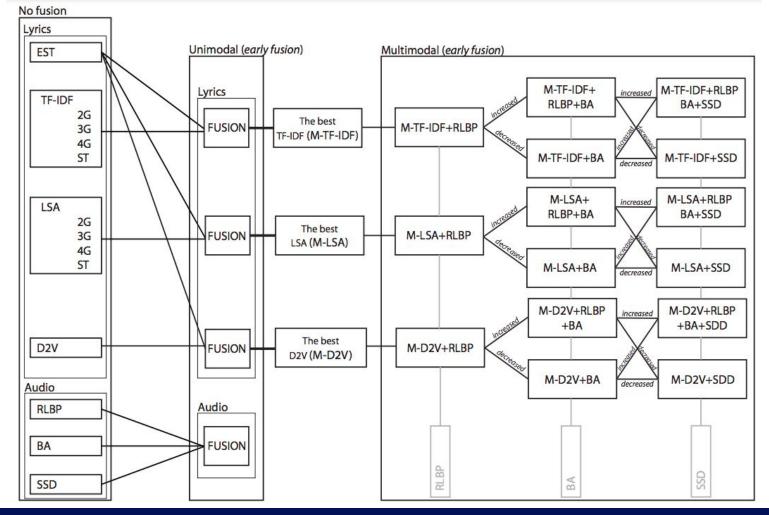
- Stylistic Features: word counts, lines and special characters
- TF-IDF with Latent Semantic Analysis reduction
- D2V: Word embeddings as features
- Robust Local Binary Pattern: Time-frequency spectogram image as input, textural embedded features as output
- Basic Acoustic: Mel-Frequency Cepstral Coefficient, Rolloff, spectral centroid, flux and zerocrossings.
- Statistical Spectrum Descriptor, RP and RH:

Directly taken from audio, rhythm fluctuations features

Approach 1: Single-step Classification

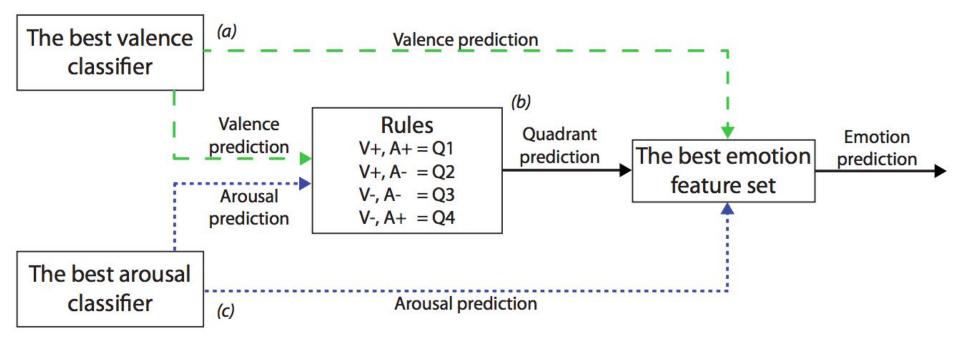
- Classify each song with SVM into one of six (Watson's) emotions + map it onto Russell's model.
- Unimodal feature groups: Combined features from the same information source (lyrics/audio)

 e.g.: Stylistic features + TF-IDF
- Multimodal feature groups: Combines best lyrical unimodal group with each audio feature set
 - e.g.: RLBP + (Stylistic features + TF-IDF)
 - Introduce another audio feature set and assess performance



Approach 2: Multi-step Classification

- Use prediction of the best valence/arousal Single-step Q classifiers to:
 - Classify corresponding quadrant
- Use valence/arousal/quadrant predictions as features to classify emotions
- The best emotion feature set: feature set from Single-step Q with the best performance.



Results Single-step Q

RESULTS FOR SINGLE-STEP VALENCE, AROUSAL, QUADRANT, AND EMOTION CLASSIFICATION WITH AND WITHOUT SMOTE

Feat.		Mean
Val	D2V+EST+RLBP+SSD	0.796
	D2V+EST+RLBP+SSD - SMOTE	0.716
0.	TF-IDF(4G)	0.700
Aro	TF-IDF(4G) - SMOTE	0.914
Qua	TF-IDF(3G)+SSD	0.644
	TF-IDF(3G)+SSD - SMOTE	0.656
Emo	TF-IDF(3G)+EST+RLBP+BA	0.470
	TF-IDF(3G)+EST+RLBP+BA - SMOTE	0.481

Results Multi-step Q

MULTISTEP QUADRANT CLASSIFICATION RESULTS

Feat.	Q1	Q2	Q3	Q4	Mean
Multi-Q	0.890	0.553	0.288	0.215	0.734
BestSingle-Q	0.771	0.440	0.343	0.614	0.656

Conclusion

- Novel contribution of Emotion Recognition in Spanish/Portuguese context
- State of the art lyrical/audio feature set combinations
- Extremely detailed experiment/results section
- Relatively superior performance to related work

References

[1] Tan, K and Villarino, M and Maderazo, Christian, "Automatic music mood recognition using Russell's twodimensional valence-arousal space from audio and lyrical data as classified using SVM and Naïve Bayes", IOP Conference Series: Materials Science and Engineering 2019

[2] Carolina L. dos Santos and Carlos N. Silla Jr, "*The Latin Music Mood Database*", EURASIP Journal on Audio, Speech, and Music Processing (2015)

[3]] D. Watson and A. Tellegen, "Toward a consensual structure of mood." Psychological bulletin, vol. 98, no. 2, p. 219, 1985.

[4] R. Malheiro, R. Panda, P. Gomes, and R. P. Paiva, "Emotionally-relevant features for classification and regression of music lyrics," IEEE Transactions on Affective Computing, vol. 9, no. 2, pp. 240–254, 2016.