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ABSTRACT

The music industry has seen an immense growth in new applica-
tions throughout recent years, aided by the advance of available
and accessible computing power. Furthermore does the widespread
availability of music mean that fans are no longer bound to radio
or other forms of linear media but can create their completely per-
sonal soundtrack, anytime, anywhere. In this paper we propose and
outline a first prototype of a pipeline for automated personalized
music generation. The task is to create coherent song covers based
on individual musical taste profiles. The pipeline is build upon
three main parts: genre classification for automatically creating
broad musical “taste profiles”, state-of-the-art music generation
techniques to transform a piece of music from one genre domain
into another and finally cover song detection to create an objec-
tive measure of success for the quality of generated cover songs.
In our work on automated music creation we are building upon
existing open source software for music source separation, timbre
transfer and audio mixing such as Demucs, DDSP and Audacity.
We find that genre classification and cover song detection can be
accomplished to a satisfying degree. We are furthermore able to
provide a pipeline to successfully curated coherent cover songs in
the style of a personalized genre with a lot of creative variation.
Such a pipeline may be used by artists to discover new dimensions
of their music in a explorative and playful way.
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1 INTRODUCTION

The music industry has seen an immense growth in applications
throughout recent years, following an unseen advance of comput-
ing power and technological abilities leading the way to new forms
of music creation, production and marketing. The widespread avail-
ability of music means fans are no longer bound to radio or other
forms of media but can create their completely personal soundtrack.
Typically, users may find their unique “taste profiles” satisfied in
several manners, one of which is through the enjoyment of a cover
song: a popular song personalized to match an artists unique mu-
sical taste by adopting new vocals, instrumentation, tempo and
genre.

The curation of a cover song may pose great creative difficulty
for an artist, however these difficulties are multiplied when the task
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is posed to a computer. The automatic generation of a cover song
has several layers of complexity as it is posed with several tasks:
style translation, music generation and cover similarity detection.

In order to create a unique cover song the music must transcend
its original space. One solution for this is the translation of music to
a new genre, which can be achieved through a deep understanding
of genre features. Genre classification should be considered a cru-
cial part in cover song generation, as it can not only provide genre
information but also an understanding of an individuals genre pref-
erences. Many methods exist for it, but classical machine learning
methods remain the most popular choice in regards to interpretable
results. Such methods usually utilize music features of a song (such
as the BPM and timbre) as input, rather than the raw audio. In
recent years convolutional neural networks building genre classifi-
cation on top of visual representations of the raw audio files have
proven to be a highly successful alternative to classical methods in
terms of the classification performance. Within this paper we will
briefly outline and compare both approaches.

Genre translation, and generally music synthesis, are tasks in
which there are few available existing models. Most models utilize
deep and complex neural networks to understand musical syntax,
requiring lengthy training times. Using a mixture of domain knowl-
edge about existing prevalent patterns of a given genre and modern
autoencoder networks to perform timbre transfer the complexity
of the problem can be significantly reduced.

However, not only is music difficult to synthesize, but it is diffi-
cult to evaluate the quality of the generated music. In our case, it
is the challenge of determining whether generated music contains
enough of the same musical qualities as the original song. As hu-
mans this is not a difficult task, given that there is familiarity with
the original piece. However, training a model to do so has proven to
be difficult. The many creative freedoms that a musician has in their
interpretation of a cover song provides a level of complexity in the
correct classification of cover songs to the original music. There are
several existing methods that evaluate cover song detection, none
of which can accurately classify cover songs consistently.

In this paper we propose and outline a first prototype of a pipeline
for personalized music generation (outlined in Figure 1). The task
is to create coherent song cover based on an individual’s musical
taste profile. The pipeline is built upon three main parts: genre clas-
sification for automatically creating broad musical “taste profiles”,
state-of-the-art (SOTA) music generation techniques to transform
a piece of music from one genre domain into another and finally
cover song detection to create an objective measure of success for



the quality of generated cover songs. The presented tool may be
used by musicians as a quick form of experimentation with dif-
ferent genres and imagining their musical identities in different
roles. As well as by fans as an interactive instrument to translate
their favourite tracks into their favourite genres. Providing a novel
notion of human computer interactions.
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Figure 1: We outline an end-to-end pipeline that strives to
consider and utilize both the intrinsic characteristics of a
musical piece as well as a listeners personal musical taste
profile, in order to adapt an original piece of work and cre-
ate a new and unique cover version based on the discovered
taste profile of a given individual listener.

2 THE DATA

Multiple datasets that were implemented to achieve our research.
The datasets that were utilized were the GTZAN Dataset, and the
Million Song Dataset, specifically the Tagtraum and SecondHand-
Songs subdatasets.

GTZAN Dataset . The dataset is composed of 10 different genres,
each genre containing 100 audio clips of music. Each audio clip
is a 30 second sample of the song. The audio clips are 22050 HZ
monophonic files. The genres in the dataset include: blues, classical,
country, disco, hiphop, jazz, metal, pop, reggae and rock. The audio
clips were collected between the years 2000 and 2001 from personal
CD’s, radio and microphone recordings.

Million Song Dataset (MSD). The Million Song Dataset [1] is com-
prised of meta-data features of one million full length tracks. The
data contains 53 features, for example: ‘artist ID’, ‘year’, ‘energy’,
‘pitch’/loudness’ and ‘timber’. The MSD is composed of several
data subsets for different research focuses. In this analysis , we
implemented the tagtraum genre annotations subdataset and the
SecondHandSongs subdataset.

tagtraum Dataset. The tagtraum dataset [19] contains robust
genre annotations to help aid in the genre classification task with
the MSD. The MSD contains genre information for all of its tracks
from the Last.fm database genre tags and the Top-MAGD Annota-
tions (album level annotations from the All Music Guide). However,

genre’s are not consistent across both genre-sources and there is
no genre hierarchy. The Tagtraum dataset merged several existing
genre-labeled datasets to create a new dataset of genre annotations
that is more robust than the ones implemented in the MSD. The
tagtraum dataset ensures consistent labels and genre taxonomies.
We used the CD2C tagtraum dataset that contains 191,401 track-
genre labels of songs existing in the MSD. All track meta-features
are from the MSD.

SecondHandSongs. The final dataset that was implemented was
another MSD data subset,the SecondHandSongs dataset [1]. It con-
tains 18,196 tracks from the Million Song Dataset, organized into
5854 cligeus of tracks - all tracks of the same cover song. Although
there are 5854 available cliques, only 29 cliques exist that contain
a sufficient number of cover songs per title (>15). Therefore the
data that was used for the cover song classification consisted of 441
tracks organized into 29 cliques. All track meta-features are from

the MSD.

3 METHODOLOGY

3.1 Genre Classification

A first step in our pipeline creation is in obtaining a personalized
musical taste profile on which later creation of new music can
be based on. We reduce the complexity of the very nuanced task
of generating musical taste profile by focusing on determining
predominant genres in a given individual listening habits. From
this predominant genres we hope to obtain a somewhat detailed
insight on an individuals musical preferences. One can imagine
executing this on his local music folder when then in turn each
song could be classified towards a genre and a summary statistic
for the available music collection computed. In a similar manner
as it can be used to determine musical preference the approach of
genre classification could also be used to objectively validate the
music generation part of our pipeline by means of evaluating the
classifiers confidence. The more confidently our classifier predicts
the target genre for a cover, the better the cover corresponds to this
genre and hence the closer the expected likeness to non-artificially
generated music.

Genre classification is an inherently hard and context depended
task. One crucial difficulty of the classification problem is that time
changes perception. Hence what used to be considered pop in 1960
might well be considered something completely different when
judged in our days. Hence a dataset which spans a long period of
time like the million song dataset will always have some internal
tension and harmonizing the labeling across decades is a non-trivial
task [1, 19]. Furthermore are borders between genres often “fluid”
and can not be capped at a clear threshold. Neither do most songs
only contain elements of a single genre but are often a mix of
various related genres. Lastly it is to mention that datasets found
in the real world are rarely balanced. Music genre information is
no exception to this as a look at the most popular songs of the last
six decades illustrates. Within in this work we do not try to solve
this inherent issues of genre classification but create algorithms
and tools that tackle the issue with a proper understanding of their
limitations.



EEEEEEEE-EES SESEEEEEEEEE

Figure 2: Looking at the most prominent genres in the MSD
according to the Tagtraum-labeling we find that especially
rock and jazz is predominant while other genres like world
are heavily underrepresented.

We benchmark various ways of classification to achieve this
goal. First we outline traditional machine learning methods based
on pre-computed characteristics of a song such as support vector
machines and random forest models.

Secondly we investigate the abilities of several SOTA convo-
lutional neural networks to accuratly predict a given genre-label
based on a songs visual timbre and pitch representation.

3.1.1  Random Forests and Support Vector machines. Random Forests
are an effective combination of multiple tree models to reduce the
overall generalization error of the classifier [4]. They have been
successfully applied in various fields of study from ecology to bioin-
formatics and finance [2]. We also attempted classification with
decision trees only, however the results turned out worse than the
random forest model in every case which is why we focus only on
RF here.

Support Vector machine(SVM) as Introduced by Vapnik et al. [3]
is a class of algorithms which work by maximizing the margin of
the separating hyperplane to the closest point of each existing class.
This optimization procedure can be formulated as a convex problem
and hence efficiently solved to optimality. The main statistical “trick”
of SVMs is in allowing higher dimensional data embeddings via
various specialized kernels which supports large separation margins
and therefore oftentimes better classification.

In this approach we utilize the fact that this indicators can cap-
ture crucial properties of a song. The zero crossing rate for example
can capture how “vocal (dependent)” a song is which we hypothesis
to be a valuable in the distinction for example between jazz and
pop or folk music. Similar arguments can be made for tempo, key,
etc. We utilize 15 features for the MSD dataset and 60 features for
GTZAN. A more detailed outline of those can be found in section
4.1.

3.1.2  Convolutional Neural Networks. Convolutional neural net-
works as first outlined by LeCun et al. [12]! are a deep learning
paradigm allowing state-of-the-art pattern recognition on a global
and local scale. They have outperformed SOTA performance in
various computer vision as well as audio processing applications

Iwho in turn was inspired by neurological research in perception and cognition [16]

[7, 13]. In essence a CNN is a multi-layer neural network with spe-
cial constraints on the connections within the convolutional layers
enforcing weight sharing between a given convlutional kernel as
well as limited receptive fields. Because a given kernel is shared
across a feature map, it becomes a pattern detector which can be
activated on a certain pattern of the input. More shallow layers
are usually respond strongly to simpler patterns such as stripes
or checker patterns while deeper layers respond to more complex
patterns such as the shape of a human, a dog or the qualities of
a specific instrument detected in a MFCC. The wide success and
applicability of the architecture has lead to an explosion of vari-
ous specialised CNN architectures. For our propose we examined
and fine tuned 3 universally recognised pretrained CNN models
which all clearly outperformed the benchmark of a shallow naive
CNN approach trained from scratch. We examined ResNet34 [10],
ResNet50[10], Squeezenet1_0[11].

ResNet34 and ResNet50 have been chosen for their well-known
ability of transfer learning between domains. We chose a deeper and
a more constrained version in order to pin point differences of the
network depth on the classification performance. The Squeezenet
was selected as a contrast to investigate whether classification
would also be possible with a heavily reduced parameter space
which would be attractive for applications on devices with limited
memory such as mobile devices or a raspberry pi.

The Resnet is a very deep CNN architecture which was one of
the first ones to circumvent the vanishing gradient problem by
allowing skip connections between the various layers enabling
backpropagation through tens (to this day even hundreds) of layers.
It uses an initale 7x7 convolutional kernel with stride 2 and 32
output channels followed by a max pooling layers and various 3x3
kernels with stride 2 and 64 output channels which are grouped
together in blocks of common operations. The squeeznet follows a
similar structure, however employs smaller kernels (1x1), reduces
the number of input channels per layer and downsamples only in
the end of the network so that each convolution layer has larger ac-
tivation maps. Together with some smart adaptions to the standard
convolutional block operations this architecture leads to design
with up 50 times less parameters than comparable CNNs with com-
petitive accuracy [11]. We obtain the original pretrained models
from the open source fast-ai library 2.

It is important to note that to execute our experiments with the
Resnet50 at least 10GB of gRAM needs to be available, hence we
do recommend to utilize modern GPUs whenever possible. Ama-
zon AWS can offers an alternative for people without the required
hardware.

3.2 Music generation

In order to generate a cover song in a style that is more like the
music which a user enjoys, we have made use of music translation.
The goal of this task is to take an input audio file and create an
output audio file which contains the same music, but sounds as if
from another domain (e.g. another musical style or genre). SOTA
works on music translation make use of neural networks to perform
the translations. We have experimented with two such networks.

Zhttps://www.fast.ai/
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3.2.1 End-to-end music translation. The first network which we
tried to use was proposed by Mor et al. from the Facebook Al
Research group in [15]. It is an end-to-end network that can take
songs from any arbitrary input domain and translate them into
domains on which it was trained.

For this, the network makes use of WaveNets [22] to function
as the encoders and decoders of an autoencoder-like network. The
network is trained to denoise audio segments, and each decoder is
trained on only the audio segments from a certain domain. This
essentially makes the decoders learn to recreate the noises that are
associated with their domain.

Just a single, universal encoder is used. This is achieved using
an additional network that is trained to identify the domain of the
input song based on the latent space from the encoder. The encoder
is then trained to optimize the performance of the decoders and
to confuse this domain classification network at the same time. As
both networks keep getting better, the domain specific information
becomes more and more obfuscated by the encoder, whilst also
improving the overall quality of the outputs. And thus, the encoder
becomes universal. Now with this, we can use the network to pro-
cess songs from domains unseen during training (though they can
only be translated into the domains seen during training).

We have attempted to train a new decoder on a pretrained model
of this network, so that we could translate songs to the domain of
this decoder. However, after considerable effort we were unable to
reproduce the results of the original paper. We found that the new
decoder could not be trained well enough to learn the sounds of
its domain, and instead simply learned the identify function. One
possible reason for this failure is that we did not have access to
enough data for our desired output domain.

3.2.2  Multi-step pipeline. Because our first network did not pro-
vide us with satisfactory results, we came up with a multi-step
procedure for music generation. Here we combine two audio pro-
cessing techniques to together create covers of a song.

Source separation. The first step is to apply source separation
to the input song. As the name implies, with this technique the
different audio sources are separated into their own separate tracks.
This allows us to apply different transformations on the instruments
to make our song sound more like a different genre. It is also needed
as the timbre transfer network which we discuss later can only work
with single-source inputs.

For source separation, we make use of Demucs [5], which is a
waveform-to-waveform model for source separation. This network
has an autoencoder structure that directly creates the output wave-
forms, where each output is corresponds to a different instrument.
It was shown to beat SOTA models and create natural sounding
outputs.

As is also mentioned in the original paper, the network does
suffer from bleeding between the “vocal” and “other” tracks. The
extend to which this occurs differs greatly between songs. After
listening to some examples, we deemed the quality of Demucs
sufficient for our purpose. Another limitation of Demucs is that
it only separates four different tracks: vocals, drums, bass, and
everything else. However, most songs have at least some of these
elements, and therefore we believe that it can be used well in the
majority of cases.

Timbre transfer. After obtaining the different instruments as
different tracks, we can make the tune played by these instruments
sound as if played by another instrument. For that we apply timbre
transfer, making use of Differentiable Digital Signal Processing [6].
This method uses a neural network to extract complex digital signal
processing features from the input. These features can be tuned and
used to perform various interesting tasks, but in our case we use
it to perform timbre transfer. We namely alter the characteristics
of the sound to be more similar to the characteristics from desired
instruments. Meanwhile, other features such as the loudness and
frequency are left unchanged. As a result we get exactly what we
wanted: the same tune as played in the input, but now sounding as
if played by another instrument.

In our pipeline, we pick and choose the tracks from specific
instruments and transfer them into specific others. Which tracks
and which translations we choose depends on the genre of the
input song and the desired genre of the cover. For example, in rock
music, guitars are found in most songs, so when we want to create
a rock cover, it would make sense to translate one on the original
instruments to sound like a guitar. We have currently tuned the
pipeline for translations from pop to jazz, but different translations
can be easily added.

As with Demucs, here we are again bound to limitations of
the network. In this case, we can only make translations towards
instruments on which the network has been trained. It is partly
for this reason that we chose translations to jazz, as most of the
available instruments are jazz instruments. However, it is possible to
train the network on new instruments and this has the nice benefit
that it does not require a lot of data; the available instruments were
trained on less than 13 minutes of audio. Because of this, training
for new instruments could greatly help make our pipeline more
varied and flexible.

3.2.3  Automatic mixing. After we have separated the different
tracks and turned (some of) them into other instruments, we com-
bine the different tracks into the final cover song. This is done
based on heuristics that depend on the genre of the input song and
the desired genre of the cover, as does the choice of which tracks
and instrument translations to use. For example in our pop-to-jazz
translation, the original drum track is kept but the volume is set to
be much lower. This makes sense because in pop music the drum
beat is often very prominent whereas it is more in the background
with jazz music. Another example is that we decrease the tempo of
the song by 15 BPM, as that is the difference between the average
BPM of pop and jazz music.

These are the main effects that we apply, volume adjustments
and tempo changes. The latter can be automated when the average
tempo of the genres are known. However, finding a good set of
instructions for volume adjustments has to be done manually. As
with our example, some logic can be used to determine what instru-
ments to adjust in which way, but all songs are different so finding
settings that work well for most songs from the input genre does
require some effort. Another thing to keep in mind with volume
adjustments is that the timbre transfer makes certain instruments
sound more quiet than others.



These adjustments are all done using Audacity 3, which is free,
open-source audio software. The benefit of this software is that
every action can be automated using scripts. This makes it easy to
do the mixing with the heuristic-based settings.

3.3 Cover Song Detection

We implement cover song detection to create an objective measure
of song similarity with cover songs from the music generation task.
Validation via a downstream task approach (such as the one we
have outlinesd) is often used in modern deep learning applications
in particular natural language processing [9] and computer vision
[23] but also has application in music generation [8, 14, 18].

Cover Detection is a difficult task that has been attempted many
times over in literature. In the paper [20], there are several ex-
periments in cover song detection that address the question of
feature selection, analysis in both the time and frequency domain,
and different model implementation. For simplicity, we will be im-
plementing a method from [20] that was distinguished as a high
scoring model. In addition, we use the SecondHandSong dataset
(18.196 tracks, 4.128 covers) consisting of metadata on songs[1].
Our analysis uses the tracks’ ‘chromas’, ‘beat tracking” and ‘seg-
ment analysis’ metafeatures. The chroma vectors are processed to
achieve beat-alignment by using the beat and segment feature vari-
ables. The beat-aligned chroma are then windowed into chroma
patches (each patch consisting of 75 consecutive chroma). The
chroma patches then undergo a 2D Fourier Transform. The median
of the fft-transformed matrix is taken and used as input to a K-nn
clustering model. A detailed outline of the model is given in section
4.2.

4 EXPERIMENTS

4.1 Genre classification

We use the the Random Forest and Support Vector machine algo-
rithms as well as the ResNet34, ResNet50 and Squeeznet models to
classify between the 10 distinct extracted genres for the GTZAN
and MSD dataset.

For the feature based algorithms we use the following setup:
For the GTZAN audio data we follow the outline of Olteanu et al.
[17] and first translate the raw audio into meaningful audio fea-
tures including: "length’, ’chroma_stft_mean’, 'chroma_stft_mean’,
’zero_crossing_rate_mean’, harmony_mean’, ‘tempo’, > mean of
mel_frequency cepstrum for various song segments’,.. (a full list
may be found in Appendix 4). In total 60 features are presented.

For the MSD we use the features provided by Bertin-Mahieux et
al. [1]. Those include: ’danceability’, *familiarity’, hotness’, dura-
tion’, loudness’, year’, ‘tempo’, ‘analysis_rate’, ’key’, ’key_confidence’,

‘mode’, 'mode_confidence’, 'time_signature’ and 'time_signature_conf’(a

full list in Appendix 5). In total 15 numerical features are presented.
As, due to copyright considerations, there is no access of the under-
lying audio files of the MSD no new features other than the ones
provided can be computed.* We apply a 10-fold cross-validated

Shttps://www.audacityteam.org/

4The original features were compute according to the methodology of the echonest
APIT (https://github.com/echonest) which is a discontinued projected however was
recently acquired by spotify and integrated in the spotify API which provides similar
functionality and feature extraction for the entire music catalog of spotify.com.

grid search in sklearn® to determine optimal hyperparamers for the
respective algorithm.

For the CNN based approaches we transform the pitch and timbre
information into images of dimension 12x256, cropping overflow-
ing length of tracks and we use the MFCC scaled to a 256x256
image as provided by [17]. We use the fast-ai learning rate finder
to determine optimal learning rates for the models respectively
for each dataset and otherwise leave the hyperparameters as set
by the original implementations. The pretrained models were first
trained 5 epochs with all forzen layers on each dataset to determine
respective learning rate and then fine tuned with unfrozen layers
for another 5 epochs in the case of ResNet and 50 epochs for the
squeeznet (as the model has many fewer parameters this still ends
in less computation time, however more tuning turned out to be
not beneficial to generalization).

A 80-20 train test split is used for validation. We investigate vary-
ing performance of the algorithms providing confusion matrices
and F1-score.

4.2 Cover Song detection and classification

We carry out two main experiments on cover song detection and
binary cover song classification.

Model 1 : Cover Song Prediction. For the first case the model
is a K-nn clustering model that uses a euclidean distance metric
as outlined in [20] and 25 neighbors with uniform distance, as
determined by a random hyperparameter search. All other model
parameters are the default implementation as found in the scikit-
learn toolbox [21]. Due to the fact that there are many songs in the
SecondHandSong Dataset with few covers, only songs with more
than 15 covers are used in this analysis. This resulted in 441 tracks
and 29 covers. This method aims to cluster cover songs together
and to predict cover clusters of song candidates based on existing
cover songs in the K-nn model.

Model 2: Binary Cover Song Classification. In the second case, we
implement a binary interpretation of the K-nn clustering model
outlined in Model 1. The processing of tracks and the model is
identical, differing only in the model input. The model contains
all covers of the generated song candidate as well as all covers
of a randomly selected song in the database. Therefore the model
training input will consist of approximately 30 samples. The model
then predicts whether the generated cover song is a cover song of
the correct song.

4.3 Automated personalized music generation

For the automated personalized music generation we randomly
selected several pop song examples from the MSD and let them
run through our pipeline. We applied our multi-step pipeline to
first separate the track into 4 source components (“vocal”, “bass”,
“drums”, “other”) and then carried out a timber transfer using a
selection of pretrained DDSP models that are fitting to the genre.
Finally we used our Audacity automation script to mix and fine
tune the tracks. Results and source files can be listened to on our
project webpage ©.

Shttps://scikit-learn.org/stable/index.html
®https://liacs.leidenuniv.nl/~s2030098/index.html
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5 RESULTS

5.1 Genre classification for GTZAN

For the GTZAN we find that the traditional feature based algo-
rithms as well as the image based deep learning methods achieve
remarkable results. The ResNet dominates the field but the random
forest model follows up close. Figure 3 illustrates the high predic-
tion quality on the case by outlining the confusion tables for the
three different benchmarked CNN architectures.

5.2 Genre classification for MSD

For the MSD we observe that all algorithms perform significantly
worse. We hypothesis this to be a consequence of the heavily im-
balanced data property distribution of this dataset. The ResNet50
achieves the best performance however looking at the confusion
tables (which can be found in the appendix figure 7) we find that
it is still heavily driven by the majority classes and greatly under
predicting the appearances of marginal classes. None of the algo-
rithms is really able to properly label all minority classes correctly
to a high degree.

Fl-score | RF | SVM | ResNet34 | ResNet50 | Squeeznet
GTZAN | 0.77 | 0.32 | 0.73 0.79 0.74
MSD 0.47 | 0.37 | 0.41 0.49 0.47

Table 1: F-1 score for the outlined algorithms on GTZAN and
MSD.

Figure 3: Comparison of the three CNN models fine tuned
on the mfcc image representation of the GTZAN audio
files. Top left: Resnet34, Top right: Resnet50, Bottom:
Squeeznetl_0. We observe that the larger Resnet archi-
tectures marginally outperforms the parameter reduced
squeeznet. We do not observe a significant difference be-
tween the larger and the smaller resnet model here.

5.3 Cover Song Recognition for MSD

Model 1. The kNN clustering model of all tracks in the Second-
HandDataset with sufficient covers(>15 tracks per cover) was able
to achieve a clustering accuracy of 0.289 with a train-test split of
90%-10%. This is lower than the metric reported in [20],0.602.

Model 2. The binary clustering classification method is designed
as a tool for a quick objective measure in the music translation
pipeline for our own use. The accuracy of the binary clustering
method cannot be reported on robustly for a variety of reasons. First,
we are limited in the sample size of our tests. There are only 29 cover
songs with a sufficient number of covers in the SecondHandSongs,
of which due to very long translation processing times we were
only able to translate 7 covers so far. Second, our music generation
pipeline is designed for the translation of genres pop to jazz, where
most of the 29 covers in the subset are not pop tracks. As a result we
do not believe our results to be robust in all instances, however we
have chosen to report the accuracy here as an interesting indication
of construction quality. We were able to achieve an accuracy of 1.00
when using a binary cover classification on 7 generated covers.

5.4 Generated Covers and Their Quality

In this work we have outlined a pipeline for automatic cover song
generation, which we have implemented for covers for pop songs
to jazz songs. We have applied our methodology to a number of
pop songs and the resulting covers can be listened to on our project
webpage 7.

In addition to an objective measure of cover-song similarity, we
must also report upon other measures of audio quality, namely
audio coherence. This, unfortunately, cannot be objectively mea-
sured yet and as a result we must rely on our observations and
experiences when listening to the generated cover songs. Overall
we find that the quality of the covers has a lot of creative range.
Some are rather convincing whereas others sound unnatural and
awkward. Most of them, however, are clearly recognizable as covers
of the original while still entertaining the qualities of the target
genre. Thus, we consider our goal to be achieved on this domain.

As mentioned earlier, in the music generation pipeline we were
bound to the pretrained models from two networks. This limited
the creativity and realism of the covers substantially. However we
created a script to extract different instruments from any given
song in a determined musical collection and then create a dataset
out of the separate tracks for each instrument, which then in turn
can be used to train new DDSP models. We also had to make the
pipeline universal to pop songs, which is difficult as even within a
single genre there can be ample variety. All things considered, we
find our results satisfactory and inspiring for future endeavours in
the direction of automated personalized music creation. Still, the
pipeline has to be taken as a prototype and many optimizations
could be made were it to be used in a production ready environment.

6 DISCUSSION

We find that genre classification and cover song detection can be
accomplished to a satisfying degree. However, although respectable
progress has recently been made in the field of music generation,

https://liacs.leidenuniv.nl/~s2030098/index.html
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creating coherent sound samples for a wider range of applications
still poses a huge challenge given the currently available tools.
Even SOTA networks often fail to deliver consistent quality and
performance.

For the Genre classification we observed that classification on
balanced dataset such as the GTZAN can be carried out to a remark-
able accuracy considering the inherent complexity and ambiguity
of the task. However there is some criticism to be made on the
GTZAN dataset which with its 100 songs per genre is clearly too
small to provide a representative sample of music in its entirety.
Observations have been made for example that roughly a quar-
ter (24%) of all pop songs within the dataset stem from a single
artist (Britney Spears). A similar observation can be made for the
reggae genre and Bob Marley (35% of the genre) [19]. Hence the
dataset is simply too small to be able to represent the richness of
the modern music industry. The MSD on the other hand, although
much closer to the real world, makes it incredibly hard to build
reliable models for all genres due to the a great data imbalance,
favouring accuracy on popular genres. Creation of more balanced
data, for example by artificially reducing or synthesizing, might
greatly boost performance of all models.

There were several instances in which we faced difficulty in
reproducing reference paper results. Overall, we found there to be
vague wording in papers when describing methodology and a lack
of code transparency.

In the case of the Cover Song Classification found in [20], the
authors reported a clustering accuracy of 0.602 when using a kNN
clustering method on Fast Fourier Transformed patches using a
euclidean distance. We followed the methodology outlined but
were not able to reproduce such a high clustering accuracy. The
highest clustering accuracy we were able to achieve is 0.289. This
is a large margin of difference between the reported metric and
the reproduction metric. We believe there to be several reasons as
to why this may have been the case. As mentioned there is vague
wording and a lack of code-transparency. The authors mentioned
that they used beat-alignment but did not outline the methods they
used to achieve it. In addition, other than the distance metric, the
authors did not provide any hyperparameter information on the
kNN model. However, since the cover song classification was meant
to be a supplementary tool as an objective measure for our music
generation analysis, we do not believe this to have been a huge
roadblock. In addition, although it lacked robustness the binary
cover-song classification proved to be a useful “check” for our music
generation task nonetheless.

We also found that the output of [15] was not reproducible in our
experiments. We have already mentioned some of the issues that we
had with training a new decoder for the universal music translation
network found in [15]. For this work, source code was available, but
it had to be adapted heavily to be able to train new decoders. We
were unable to create any audio that has any of the domain specific
characteristics that would be expected. In our attempts to get the
network working, we tweaked several parameter settings, most
importantly the learning rate. As the loss of the network always
got stuck around the same point, we suspect that our only chance
of getting it to work would be with more training data. This was,
however, not possible to us due to the difficulty in getting music
datasets with actual audio.

We believe that this might illustrate a larger issue of the field
where full access to samples and/or code is rarely given. With this
paper we furthermore hope to encourage colleges to be as open
as possible about data and source code, and outline interesting
successes alongside failures of proposed models, so the field as a
whole can learn and adapt faster and steady.

In the future, we hope to extend the model to different musical
genres. In our experiments, we focused on the pop to jazz pipeline
and as it presented a stark contrast in two musical tastes and it made
for an enjoyable experiment for us as listeners to our generated
cover songs. In addition, this pipeline was convenient as there
were several jazz instruments available in the music translation
network. In the future, we hope to train more instruments (mainly
guitar and piano) in order to be able to translate to a wider range
of genres. With information about genre features, this will be a
straightforward task to replicate in a new musical genre.

7 CONCLUSION

In the past few decades, research in audio processing has seen
many great advancements in various different tasks. With the rise
of new platforms and analysis of user data, music fans have also
enjoyed an increasingly personalized listening experience. Given
that machine-made music is also a popular and successful research
area, it is perhaps surprising that personal music generation is such
an understudied problem.

We have proposed a first prototype pipeline that tackles this
problem through the generation of covers in the favorite genres
of a user. The pipeline starts out with genre classification. This is
used to process the users music library and find which genres they
enjoy listening to most.

We then take any random song and create a cover in one of the
user’s favorite genres. For that we use many different techniques,
namely source separation, timbre transfer, and heuristic-based au-
tomatic mixing. The music generation has been implemented for
translations from pop to jazz and can be extended for different
translations with reasonable effort. Further research may focus on
ways to make this process more universal.

Lastly for our own reference to evaluate the quality of our covers
quantitatively, we made use of cover song classification. A broader
qualitative approach such as a larger crowd sourcing survey to
establish a human quality perception score may further build trust
in the robustness of our method and should be an additional goal
of any future research.
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B GENRE CLASSIFICATION - ADDITIONAL
CONFUSION TABLE
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Figure 6: Confusion tables for the random forest algorithm
on the MSD dataset.

Figure 7: Confusion tables for the ResNet34,ResNet50 and
Squeeznetl_0 respectively on the MSD dataset.
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