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FEATURES FOR SPEECH

RECOGNITION AND AUDIO
INDEXING

» Parametric Representations
+ Short Time Energy

» Zero Crossing Rates

» Level Crossing Rates

Example: Speech of length 0.01 sec.
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FEATURES FOR SPEECH RECOGNITION
AND AUDIO INDEXING

ectral Analysis
Fourier Transform

* Filter Design

« Filter Bank Spectral Analysis Model
+ Linear Predictive Coding (LPC)

* MFCCs




Hann window Fourier transform = - -
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FEATURES FOR SPEECH RECOGNITION
AND AUDIO INDEXING

amplitude
decibels

Distortion from misaligned frame

samples

Dolph-Chebyshev window (= 5) Fourier transform

o
Smoothed distortion after applying windaw function : : scalloping

|

decibels

By L. de Jonckheere

sampies ' + Spectral Analysis

By L. de Jonckheere

« Spectral Analysis * Fourier Transform
« Fourier Transform * Frame of samples => frequency bins

» Rectangular window => high resolution, low dynamic range (not good at R :
distinguishing components of different amplitudes) Selelgl elly corresponds to one frequency

+ Hann or Hamming window => moderate => Spectral leakage
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SHORT TIME FOURIER TRANSFORM SHORT TIME FOURIER TRANSFORM
SHORT HAMMING WINDOW: LONG HAMMING WINDOW:
50 SAMPLES (=5MSEC) 500 SAMPLES (=50MSEC)

Lower frequencies

LOG MAGNITUDE (d8)

FREQUENCY

Figure 3.11 Short-time Fourier transform using a long (500 points or 50 msec)
Hamming window on a section of voiced speech.

From: Rabiner et al. From: Rabiner et al.
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BANK OF FILTERS
Audio Signa BAND PASS FILTER ANALYSIS MODEL

Note that the band pass filter can be
defined as: BANDPASS

FILTER
1

Bandpass Filter

h(®) « aconvolution with a filter response e

function h(t) in the time domain BANDPASS i Central Frequency
Q

Lo « a multiplication with a filter response
Result Audio Signal f ion in the f d .
g%h () H(f) function in the frequency domain

gxh (1) =7 g@h(t — D)dr & G(f) - H(f)




MEL-CEPSTRUM [4]

Auditory characteristics
* Mel-scaled filter banks
De-correlating properties

* by applying a discrete cosine fransform (which is close to a
Karhunen-Loeve transform) a de-correlation of the mel-scale
filter log-energies results

=> probabilistic modeling on these de-correlated coefficients
will be more effective.

One of the most successful features for speech recognition,
?pekoker recognition, and other speech related recognition
asks.

[1, pp 712-717]

MFCC'’s
first 12 most
Significant
coefficients

Discrete Cosine
Transform




Automratie™SPeech Recognition Architectures,

Incorporating Multiple Knowledge Sources

Input
Speech

Recognized
Utterance

The signal is converted to a sequence of
feature vectors (spectral and temporal).

Acoustic models represent sub-word
units, such as honemes: finite-state
machine models spectral structure and
temporal structure.

The language model predicts the next
set of words, and controls which models
are hypothesized. (N-grams)

Search to find the most probable
word sequence.

s A Coustic Modeling <

Feature Extraction

Input Speech

Typically: 512 samples
(16kHz sampling rate) =>

Use a ~30 msec window for

frequency domain analysis.

Include absolute energy and

12 spectral measurements.

Time derivatives to model
spectral change.

Energy
+

Mel-Spaced Cepstrum

- Incorporate knowledge of the
nature of speech sounds in
measurement of the features.

« Utilize rudimentary models of
human perception.

+
Delta Cepstrum Delta-Delta Cepstrum

Delta Energy Delta-Delta Energy
+




S AEG Ustic Modeling — ic MOTeling g

Hidden Markov Models Parameter Estimation 18

THREE TWO FIVE EIGHT Word level transcription

Acoustic models: temporal ' oAy Initialization Supervises a closed-loop data-driven
evolution of the features ‘ ; modeling
(spectrum). . Single Initial parameter estimation

. . T Gaussian . T
Gaussian mixture distributions ; : Estimation The expectation/maximization (EM)

for variations in speaker, accent, algorithm is used to improve our
and pronunciation. 2-Way Split parameter estimates.

Phonetic model topologies are Computationally efficient training

simple left-to-right structures. Mixture algorithms (Forward-Backward) are
Distribution crucial

Skip states (time-warping) and Reestimation
multiple paths (alternate Batch mode parameter updates are

pronunciations). typically preferred.

Sharing model parameters to Decision trees and the use of

reduce complexity. additional linguistic knowledge are
used to optimize parameter-sharing,
and system complexity,.




MACHINE LEARNING
METHODS

» k Nearest Neighbors

» Decision Trees

» Random Forests (weighted neighborhoods scheme)

» Gradient Boosting Machines (e.g. boosting of prediction model
ensembles)

* Vector Quantization

+ Finite code book of spectral shapes
» The code book codes for ‘typical’ spectral shape
+ Method for all spectral representations (e.g. Filter Banks, LPC, ZCR, efc. ...)

» Support Vector Machines
* Markov Models

» Hidden Markov Models

* Neural Networks Etc.

——

VECTOR QUANTIZATION

» Data represented as feature vectors.
» Vector Quantization (VQ) Training set =>

determine a set of code words that constitute
a code book.

» Code words are centroids using a similarity or
distance measure d.

» Code words together with measure d divide
the space into Voronoi regions.

* A guery vector falls intfo a Voronoi region and
will kée represented by the respective code
word.

[2, pp. 466 — 467]
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VECTOR QUANTIZATION

Distance measures d(x,y):

Euclidean distance
Taxi cab distance
Hamming distance
etc.

Region

VECTOR QUANTIZATION

Let a training set of L vectors be given for a certain class of objects.
Assume a codebook of M code words is wanted for this class.

Initialize:
+ choose M arbitrary vectors of the L vectors of the training set.
» Thisis the initial code book.

Nearest Neighbor Search:

+ foreach training vector v, find the code word w in the current code book that is
closest and assign v to the corresponding cell of w.

Centroid Update:

»  Foreach cell with code word w determine the centroid c of the training vectors
that are assigned to the cell of w.

« Update the code word w with the new vector c.
Iteration:

+ repeat the steps Nearest Neighbor Search and Centroid Update until the average

distance between the new and previous code words falls below a preset threshold.

——
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VECTOR CLASSIFICATION

For an M-vector code book CB with codes
CB={y, | 1<i<M},

the index m* of the best codebook entry for a given
vector v is:

= arg min d(v, v
1<isM

—— \

VQ FOR CLASSIFICATION

A code book CB, = {y% | 1<i< M}, can be used
to define a class C,.

Example Audio Classification:

« Classes ‘crowd’, ‘car’, ‘silence’, ‘scream’,
explosion’, etc.

» Determine by using VQ code books CB, for
each of the respective classes C,.

* VQ is very often used as a baseline method for
classification problemes.

12
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SUPPORT VECTOR MACHINES

. . . z'B+Po=0
+ A generalization of linear ‘

decision boundaries for classification.

* Necessary when classes overlap
when using linear decision boundaries
(non separable classes).

/ margin
Find hyper plane P: X'g + B, = 0, such that 7
Yl(YIT.B + ,Bo) >1—¢g Vi B IE]]

g =0, Y¢& <constant From: [2]

[|B1l is minimized over

Where (X3,Y;), .. (Xy,Yy) @re our training pairs, with x; € Rrand y;e{-1,1},
e=(g, 8, ..., ey ) are the slack variables, i.e.,

¢; = the amount that x; is on the wrong side of the margin C = WIH from the hyper plane
P.

i.e. C is maximized.
=> Problem is quadratic with linear inequalities constraint. [2, pp 377-389]

4 ‘
SUPPORT VECTOR MACHINE (SVM)

In this method so called support vectors define
decision boundaries for classification and
regression.

An example where
a straight line
separates the two
Classes: a linear
classifier

Images from: www.statsoft.com.
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SUPPORT VECTOR MACHINE (SVM)

In general classification is not that simple.
SVM is a method that can handle the more complex

cases where the decision boundary requires a curve.

SVM uses a set of mapping
functions (kernels) to map
the feature space into

a transformed space so
that hyperplanes can be
used for the classification.

SUPPORT VECTOR MACHINE (SVM)

SVM uses a set of mapping functions (kernels)
to map the feature space into a transformed
space so that hyperplanes can be used for
the classification.

Input space Feature space

14
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SUPPORT VECTOR MACHINE (SVM)

Training of an SVM is an iterative process:
« optimize the mapping function while minimizing an
error function
 The error function should capture the penalties for
misclassified, i.e., non separable data points.

Input space Feature space

SVM uses kernels that define the mapping
function used in the method. Kernels can be:
e Linear
* Polynomial
* RBF
* Sigmoid

Input space Feature space

» RBF (radial basis function) is the most popular kernel, again
with different possible base functions.

» The final choice depends on characteristics of the
classification task.

o

SUPPORT VECTOR MACHINE (SVM)

15



AUDIO CLASSIFICATION
USING NEURAL NETWORKS

An example by Rishi Sidhu:

Using data from the by Zohar Jackson:

Using Convolutional Neural Networks on Spectograms.

—
DIGITS

16


https://medium.com/x8-the-ai-community/audio-classification-using-cnn-coding-example-f9cbd272269e
https://github.com/Jakobovski/free-spoken-digit-dataset
https://github.com/Jakobovski/free-spoken-digit-dataset
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Some Neural Networks

Output Patterns

Output Patterns

DX
s, N,
SORROZZ0

R

Representation
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Input Patterns

Input Patterns

Recurrent Neural Network

Feed Forward Neural Network
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DNN: AlexNet, VGG16, ResNet, etc.

o Conv-Pool | Conv-Pool Conv Conv | Conv-Pool

960% 399uu0d-Alng
|
9607 8uu0d-A|Ing
0001
1au03-AlIn3

96maps — 256maps — 384maps — 384maps — 256maps —
1xaifiter | 5xSfiter ‘ 3x3 filter 3x3 filter J | 3x3fiter |
L ) ) § J 1§ )
CONV1 CONV2 CONV3 CONV4 CONVS
Input Image FC8

227%227x3

\
Ty \dense

T
pooling pooling

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delincation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at s. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers ven by 253.440-186,624-64 896-64,896-43.264—

4096-4096-1000. Krizhevsky, Alex; Sutskever, llya; Hinton, Geoffrey E. "ImageNet classification with deep
convolutional neural networks" Communications of the ACM. 60 (6): 84-90.

Deep Visualization Toolbox

yosinski.com/deepvis

#deepvis
¥

Jason Yosinski Jeff Clune Anh Nguyen Thomas Fuchs Hod Lipson

UNIVERSITY Jet Propulsion Laboratory
oF W v () M | N C: California Institute of Technology
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Cats and Dogs

Kaggle Dataset ( https://www.kaggle.com/c/dogs-vs-cats/data )

¢ 2000 images of cats
* 2000 images of dogs

* Given an image: is it a cat or a dog?

Divide into:

* Training set (2000 images)
* Validation set (1000 images)
* Test set (1000 images)

Cats and Dogs

Convolutional Neural Network

* Without any regularization: ~71% accuracy
* With data augmentation: ~82% accuracy
* Feature extraction using a pre-trained NN: ~90% accuracy
* Fine tuning a pre-trained NN: ~95% accuracy

These are examples of Deep Learning with Small Datasets.

20


https://www.kaggle.com/c/dogs-vs-cats/data

Cats and Dogs

VGGL16 (pre packed with Keras)

VGG16
Feature Extraction

Prediction Prediction Prediction
Trained ai New classifier
classifier classirs (randonly initialized)
r re ry
Trained Trained Trained
convolutional convolutional convolutional
base base base
(frozen)
Input Input Input

Convolutional Neural Network

* Without any regularization:

* With data augmentation:
* Feature extraction using a pre-trained NN:

* Fine tuning a pre-trained NN:

These are examples of Deep Learning with Small Datasets.

~71% accuracy

~82% accuracy

~90% accuracy

~95% accuracy

Prediction Prediction Prediction
Trained I ai New classifier
classifier s (randosly initialized)
< = =
Trained Trained Trained
convolutional convolutional convolutional
base base base
(frozen)
Input Input Input

095

0.90

0.80

0rs
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05

04

03

02

01

Training and validation accuracy

® Tiaining acc »%0,e”
sate gy
— Validation acc v’ .®
et e
D
.
.
L]
0 5 10 15 20 5
Training and validation loss
. ® Training loss
—— Walidation loss
L]
.
.
L ]
LT .
.
e e
L L) ™ '.'

0 5 0 15 20 = 0
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VGG16
Feature Extraction +
Data Augmentation

Prediction Prediction Prediction
Trained I ai New classifier
classifier 3 (randosly initialized)
= = =
Trained Trained Trained
convolutional convolutional convolutional
base base base
(frozen)
£ +
Input Input Input

Training and validation accuracy

LLL AL PO N

L Ty
.
. .y ®
o ee
1
.
.
® Training acc
= Validation acc
5 10 15 20 = 0
Training and validation loss
® Training loss
— Validation loss
.
'..--
.
.
LML T LN
e atere
5 10 15 20 B 0

Cats and Dogs

VGG16 (pre packed with Keras)

Convolutional Neural Network

* Without any regularization:
* With data augmentation:

* Feature extraction using a pre-trained NN:

* Fine tuning a pre-trained NN:

MaxPooling2D>

Convolution2D

Convolution2D

Convolution2D

MaxPooling2D>

Convolution2D
Convolution2D

Con 21

MaxPooling2D

Conv block 1:

frozen
Conv block 2:
o
MaxPooling 2D
T
frozen
Dense
Dense

Conv block 4:

~71% accuracy
~82% accuracy
~90% accuracy
~95% accuracy

These are examples of Deep Learning with Small Datasets.

We fine-tune
Conv block 5

We fine-tune
our own
fully-connected
classifier

22
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» Both images can be used to recognize the spoken digit.

» The spectrogram yields better accuracy for the tests.

AP|

S NN ARCHITECTURE &

Input Layer

Convolutional layer with kernel size 3x3
{

Convolutional layer with kernel size 3x3

|

Max Pooling layer with pool size 2x2

|

Dropout layer
v

Flattening layer

Y

Dense layer 1

.4

Dense layer 1
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CNN DEFINED IN TF.KERAS

#Define Model

model = Sequential()

model.add(Conv2D(32, kernel_size=(3, 3), activation="relu’, input_shape=input_shape))
model.add(Conv2D(64, kernel_size=(3, 3), activation="relu’))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))

model.add(Flatten())

model.add(Dense (128, activation="relu'))
model.add(Dropout(0.5))

model.add(Dense(num_classes, activation='soffmax’))
#Compile

model.compile(loss=keras.losses.categorical_crossentropy,
opftimizer=keras.optimizers.adam(), metrics=['‘accuracy'])

print(model.summary())
#Train and Test The Model

model fit(x_train, y_train, batch_size=4, epochs=10, verbose=1, validation_data=(x_test,
y_test))

——

TRAINING, TEST AND
VALIDATION DATASETS

Training Data
+ 1800 Images of Spectrograms: 34x50 pixels
« Eachimage is labeled with the correct digit

Validation Data

» 200 Images of Spectrograms: 34x50 pixels

« Eachimage is labeled with the correct digit
» Exclusive speaker(s)

Test Data

» 200 Images of Spectrograms: 34x50 pixels

« Eachimage is labeled with the correct digit
» Exclusive speaker(s)

API

24



Digits

VGGL16 (pre packed with Keras)

Convolutional Neural Network

* Without any regularization:

* With data augmentation:
* Feature extraction using a pre-trained NN:

Prediction Prediction Prediction
Trained ai New classifier
classifier Sifs (randonly initialized)
A A A
Trained Trained Trained
convolutional convolutional convolutional
base base base
(frozen)
F T T
Input Input Input
accuracy ?
accuracy ?
accuracy ?
accuracy ?

* Fine tuning a pre-trained NN:

These are examples of Deep Learning with Small Datasets.

Digits

VGG16 (pre packed with Keras)

Convolutional Neural Network

* Without any regularization:
* With data augmentation:

* Feature extraction using a pre-trained NN:

* Fine tuning a pre-trained NN:

!
Convolution2D

Convolution2D

MaxPooling2D>

Convolution2D
Convolution2D
o

120

MaxPooling2D

Conv block 1:
frozen

Conv block 2:
frozen

Conv block 3.
frozen

Conv block 4:

Convelution2D

Convolution2D.

ES

accuracy?
accuracy?
accuracy?

accuracy?

These are examples of Deep Learning with Small Datasets.

We fine-tune
Conv block 5

We fine-tune
our own
fully-connected
classifier
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W. Chunyang et al. Transformer-based Acoustic
Modeling for Streaming Speech Synthesis,
INTERSPEECH 2021

https://transformer-tts-accoustic-model.github.io/samples/

Tacotron2 uses Bi-directional Long Short-term Memory (BLSTM)
recurrent networks.

* cannot effectively model long-term dependencies

* a poor quality on long speech.

FastSpeech state-of-the-art
* in modeling speech prosody and spectral features, but
* computation is parallel over the full utterance context.

W. Chunyang et al. Transformer-based Acoustic
Modeling for Streaming Speech Synthesis,

INTERSPEECH 2021

TTS systems usually consist of two stages:

+ acoustic model that predicts the prosody and spectral
features

+ followed by a neural vocoder that generates the audio
* waveform.

Tranformer models:
+ model long-term dependencies

* Complexity grows quadratically

This work

* Effcient constant speed implementation: for streaming

speech synthesis

* uses a transformer network that predicts the prosody
features at phone rate

* an Emformer ne'gwo)rk to predict the frame-rate spectral

features (streaming
* WaveRNN Vocoder used

Frame-rate
Spectrum Frames

Spectrum Model

Prosody Model

Frame-rate
Fo

Phone-rate
Duration, FO

Multi-Rate

Attention

=
Sl

Phane-rae Frame-rae Multi-rate
Linquistic Features Linguistic Features Linguistic Features

https://transformer-tts-accoustic-model.github.io/samples/
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https://transformer-tts-accoustic-model.github.io/samples/
https://transformer-tts-accoustic-model.github.io/samples/

W. Chunyang et al. Transformer-based Acoustic
Modeling for Streaming Speech Synthesis,

INTERSPEECH 2021

@ baseline transformer emformer (ours)
TTS systems usually consist of two stages: —~ 03
. . ) -
* acoustic model that predicts the prosody and g
spectral features @
o
« followed by a neural vocoder that generates th&€ 0.2
audio 5
B f F
waveform. 8
[+ »
E — @
Tranformer models: iy o - TETT >
) T 0.09
* model long-term dependencies € 008
« Complexity grows quadratically 1s 5s 10s 30s 60s
Audio Length [seconds]

[ System [ Prosody | Spectrum [ Normal | Long |
[ Groundtruth ]| - - [[4.307 £0.037 | 4360 £ 0.044 ]
Baseline [11] BLSTM with self-attention [26] | Multi-rate attention [11] 4.173 £ 0.042 | 4.019 +0.055
Ours-1 Transformer Multi-rate attention 4.174 £ 0.042 | 4.107 £ 0.052
Ours-2 BLSTM with self-attention Emformer with multi-rate attention || 4.192 = 0.041 | 4.034 £ 0.053
Ours-3 (best) Transformer Emformer with multi-rate attention || 4.213 = 0.042 | 4.201 £ 0.048

https://transformer-tts-accoustic-model.github.io/samples/

——
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