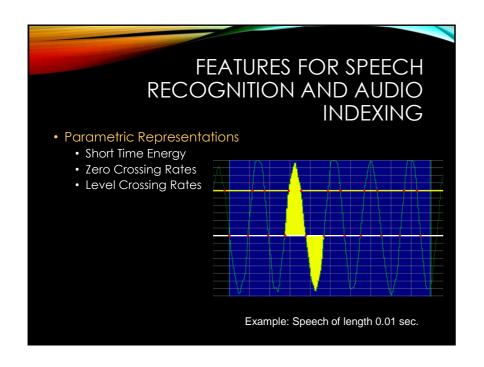
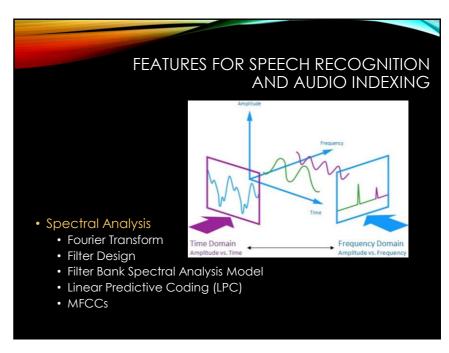
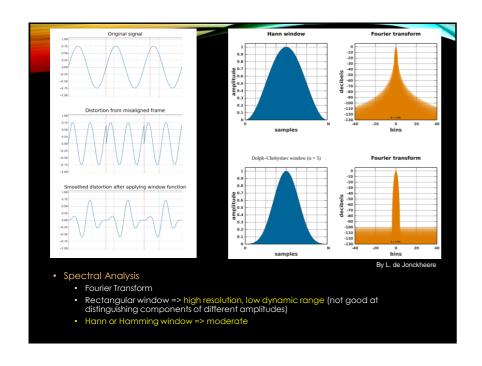


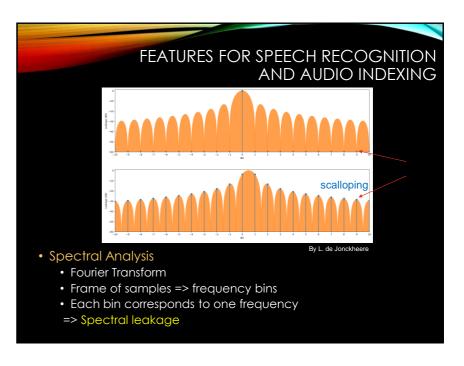
FEATURES FOR SPEECH RECOGNITION AND AUDIO INDEXING

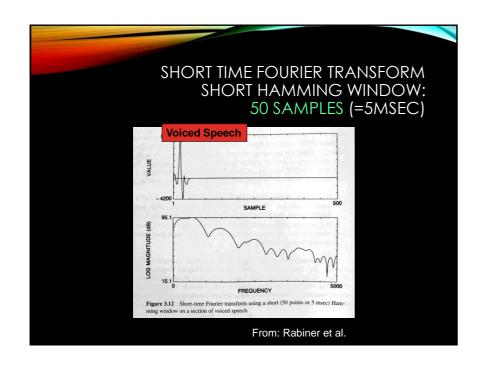
- Parametric Representations
 - Short Time Energy
 - Zero Crossing Rates
 - Level Crossing Rates
 - Short Time Spectral Envelope
- Spectral Analysis
 - Filter Design
 - Filter Bank Spectral Analysis Model
 - Linear Predictive Coding (LPC)
 - MFCCs

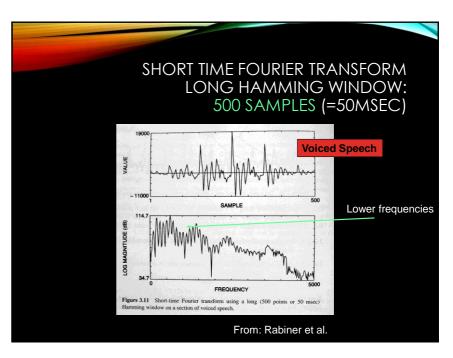


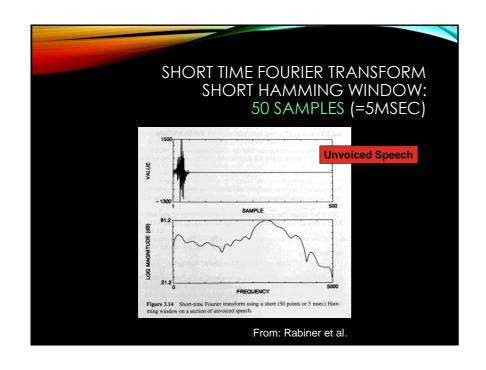


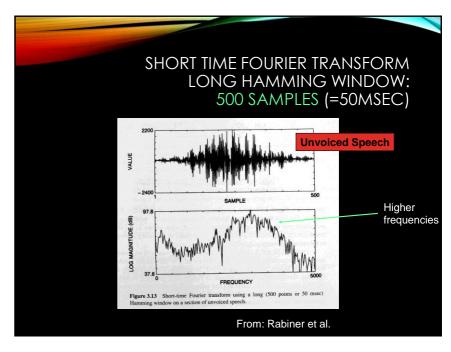


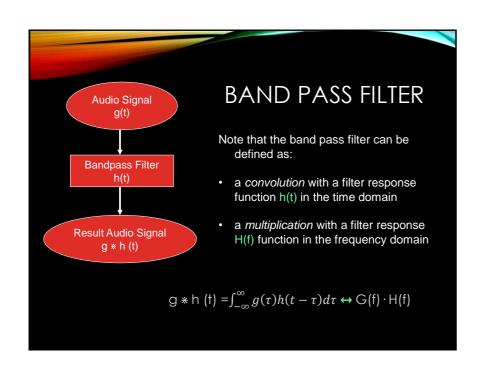


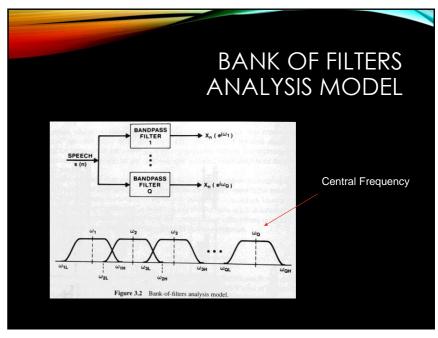












MEL-CEPSTRUM [4]

Auditory characteristics

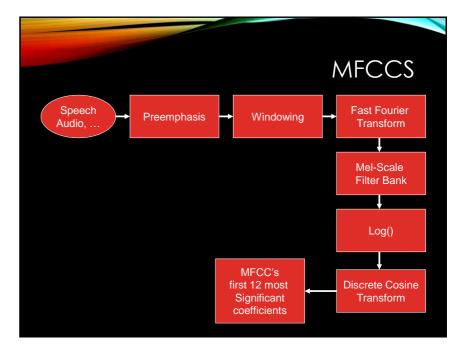
Mel-scaled filter banks

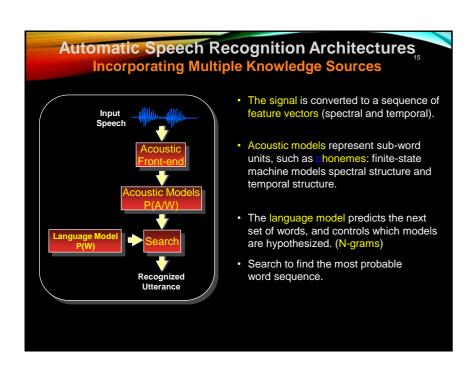
De-correlating properties

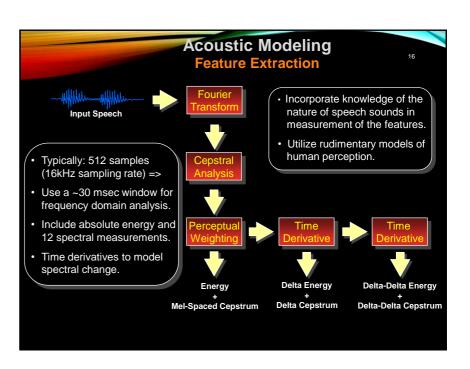
- by applying a discrete cosine transform (which is close to a Karhunen-Loeve transform) a de-correlation of the mel-scale filter log-energies results
- => probabilistic modeling on these de-correlated coefficients will be more effective.

One of the most successful features for speech recognition, speaker recognition, and other speech related recognition tasks.

[1, pp 712-717]

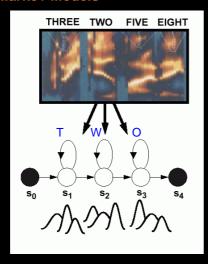






Acoustic Modeling Hidden Markov Models

- · Acoustic models: temporal evolution of the features (spectrum).
- · Gaussian mixture distributions for variations in speaker, accent, and pronunciation.
- Phonetic model topologies are simple left-to-right structures.
- Skip states (time-warping) and multiple paths (alternate pronunciations).
- Sharing model parameters to reduce complexity.



Acoustic Modeling Parameter Estimation Initialization Single Gaussian Estimation · 2-Way Split Mixture Distribution Reestimation 4-Way Split Reestimation

- Word level transcriptionSupervises a closed-loop data-driven modeling
- Initial parameter estimation
- The expectation/maximization (EM) algorithm is used to improve our parameter estimates.
- · Computationally efficient training algorithms (Forward-Backward) are crucial.
- Batch mode parameter updates are typically preferred.
- · Decision trees and the use of additional linguistic knowledge are used to optimize parameter-sharing, and system complexity,.

MACHINE LEARNING METHODS

- k Nearest Neighbors
- Decision Trees
- Random Forests (weighted neighborhoods scheme)
- Gradient Boosting Machines (e.g. boosting of prediction model ensembles)
- Vector Quantization
 - Finite code book of spectral shapes
 - The code book codes for 'typical' spectral shape
 - Method for all spectral representations (e.g. Filter Banks, LPC, ZCR, etc. ...)
- Support Vector Machines
- Markov Models
- Hidden Markov Models
- Neural Networks Etc.

VECTOR QUANTIZATION

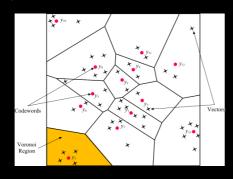
- Data represented as feature vectors.
- Vector Quantization (VQ) Training set => determine a set of code words that constitute a code book.
- Code words are centroids using a similarity or distance measure d.
- Code words together with measure d divide the space into Voronoi regions.
- A query vector falls into a Voronoi region and will be represented by the respective code word.

[2, pp. 466 – 467]

VECTOR QUANTIZATION

Distance measures d(x,y):

- Euclidean distance
- Taxi cab distance
- Hamming distance
- etc.



VECTOR QUANTIZATION

Let a training set of L vectors be given for a certain class of objects.

Assume a codebook of M code words is wanted for this class.

Initialize:

- choose M arbitrary vectors of the L vectors of the training set.
- · This is the initial code book.

Nearest Neighbor Search:

• for each training vector v, find the code word w in the current code book that is closest and assign v to the corresponding cell of w.

Centroid Update:

- For each cell with code word w determine the centroid c of the training vectors that are assigned to the cell of w.
- Update the code word w with the new vector c.

Iteration:

 repeat the steps Nearest Neighbor Search and Centroid Update until the average distance between the new and previous code words falls below a preset threshold.

VECTOR CLASSIFICATION

For an M-vector code book CB with codes $CB = \{y_i \mid 1 \le i \le M\}$,

the index m* of the best codebook entry for a given vector v is:

$$m^* = arg min d(v, y_i)$$

 $1 \le i \le M$

VQ FOR CLASSIFICATION

A code book $CB_k = \{y_i^k \mid 1 \le i \le M\}$, can be used to define a class C_k .

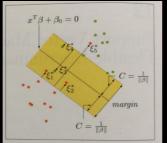
Example Audio Classification:

- Classes 'crowd', 'car', 'silence', 'scream', 'explosion', etc.
- Determine by using VQ code books CB_k for each of the respective classes C_k.
- VQ is very often used as a baseline method for classification problems.

SUPPORT VECTOR MACHINES

- A generalization of linear decision boundaries for classification.
- Necessary when classes overlap when using linear decision boundaries (non separable classes).

Find hyper plane P: $\mathbf{x}^{\mathsf{T}}\boldsymbol{\beta} + \boldsymbol{\beta}_0 = 0$, such that $\|\boldsymbol{\beta}\|$ is minimized over $\begin{cases} y_i(x_i^T\boldsymbol{\beta} + \boldsymbol{\beta}_0) \geq 1 - \varepsilon_i \ \forall i \\ \varepsilon_i \geq 0, \ \ \sum \varepsilon_i \leq constant \end{cases}$



From: [2

Where $(x_1,y_1),\,\,\ldots\,(x_N,y_N)$ are our training pairs, with $x_i\in\mathbb{R}^p$ and $y_i{\in}\{\text{-1,1}\}$,

 $\boldsymbol{\epsilon} = (\epsilon_1 \;,\, \epsilon_2 \;,\, \ldots,\, \epsilon_N \;)$ are the slack variables, i.e.,

 ϵ_i = the amount that x_i is on the wrong side of the margin $C = \frac{1}{\|\beta\|}$ from the hyper plane P.

i.e. C is maximized.

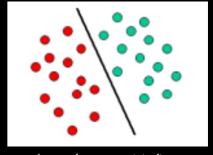
=> Problem is quadratic with linear inequalities constraint.

[2, pp 377-389]

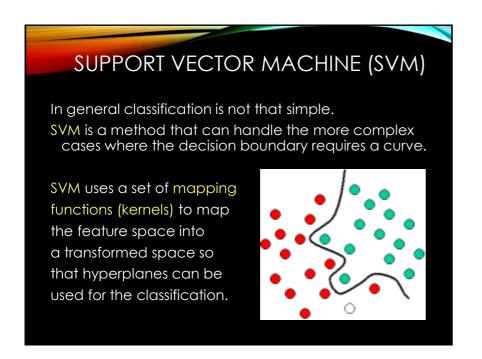
SUPPORT VECTOR MACHINE (SVM)

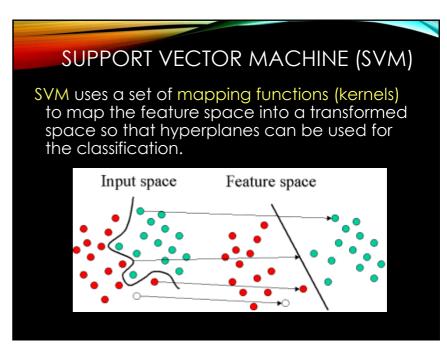
In this method so called support vectors define decision boundaries for classification and regression.

An example where a straight line separates the two Classes: a linear classifier

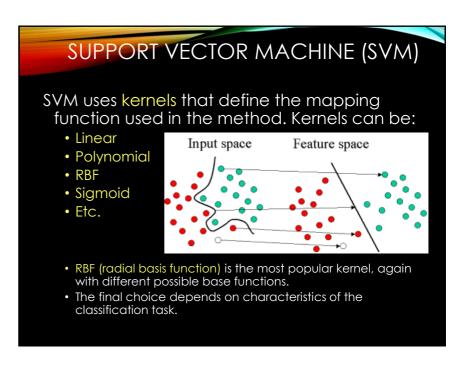


Images from: www.statsoft.com.

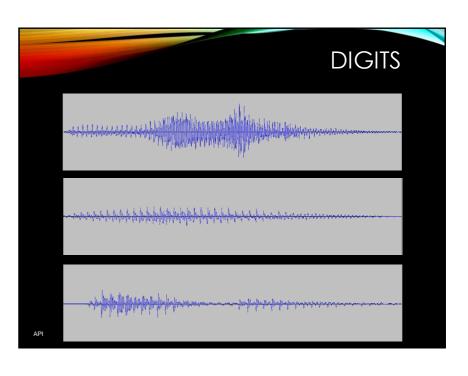


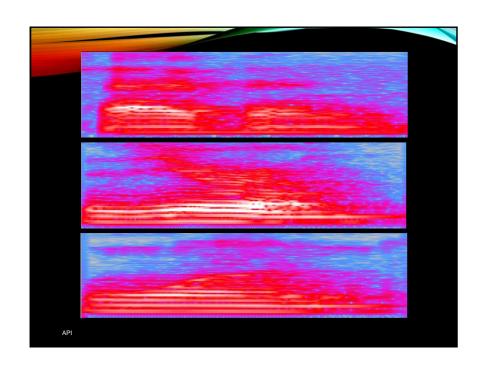


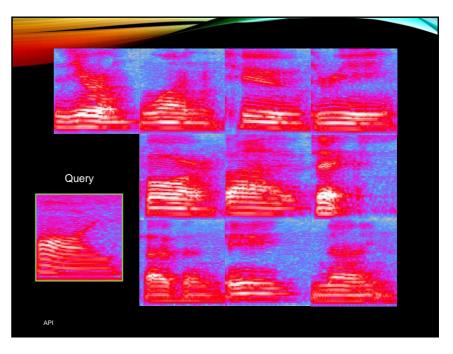
SUPPORT VECTOR MACHINE (SVM) Training of an SVM is an iterative process: optimize the mapping function while minimizing an error function The error function should capture the penalties for misclassified, i.e., non separable data points. Input space Feature space

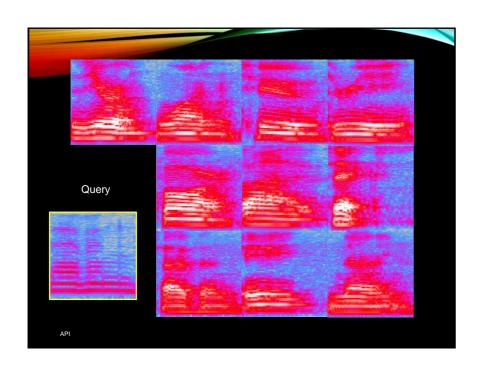


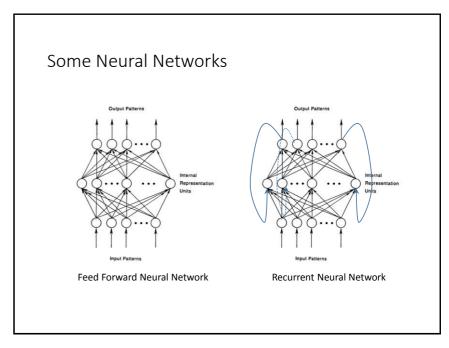
AUDIO CLASSIFICATION USING NEURAL NETWORKS An example by Rishi Sidhu: https://medium.com/x8-the-ai-community/audio-classification-using-cnn-coding-example-f9cbd272269e Using data from the Spoken Digit Dataset by Zohar Jackson: https://github.com/Jakobovski/free-spoken-digit-dataset Using Convolutional Neural Networks on Spectograms.

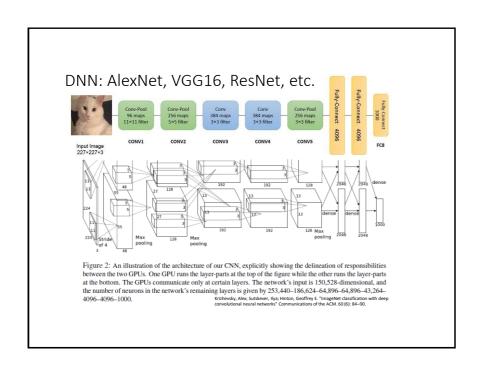


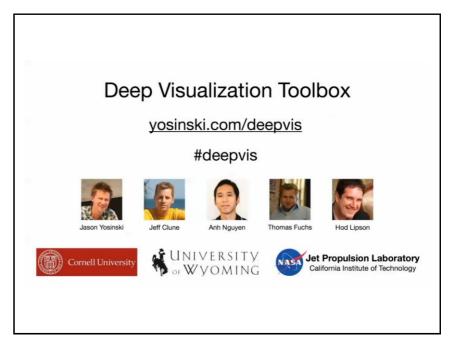












Cats and Dogs

Kaggle Dataset (https://www.kaggle.com/c/dogs-vs-cats/data)

- 2000 images of cats
- 2000 images of dogs

• Given an image: is it a cat or a dog?

Divide into:

Training set (2000 images)Validation set (1000 images)

• Test set (1000 images)

Cats and Dogs

Convolutional Neural Network

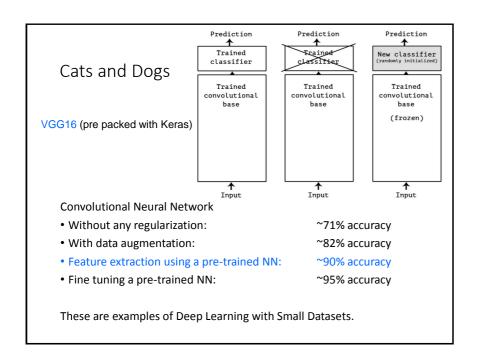
• Without any regularization: ~71% accuracy

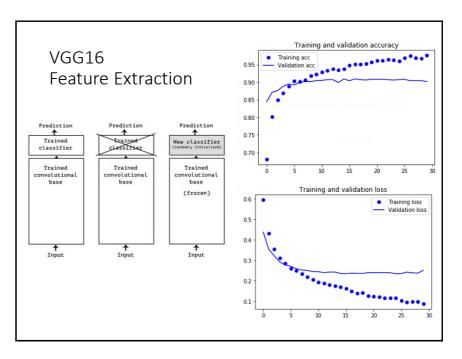
• With data augmentation: ~82% accuracy

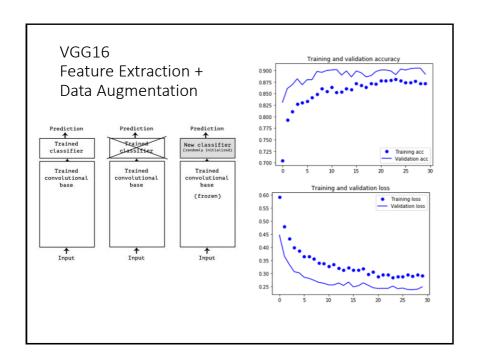
• Feature extraction using a pre-trained NN: ~90% accuracy

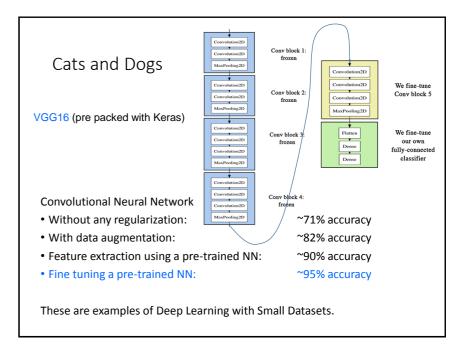
• Fine tuning a pre-trained NN: ~95% accuracy

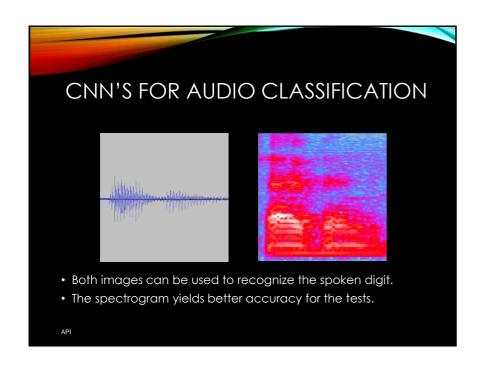
These are examples of Deep Learning with Small Datasets.

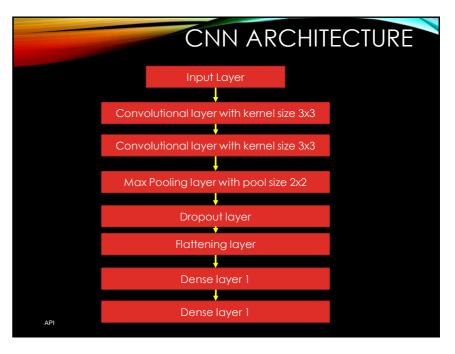












CNN DEFINED IN TF.KERAS

#Define Model

model = Sequential()

model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape))

model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Dropout(0.25))

model.add(Flatten())

model.add(Dense(128, activation='relu'))

model.add(Dropout(0.5))

model.add(Dense(num_classes, activation='softmax'))

#Compile

model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.adam(), metrics=['accuracy'])

print(model.summary())

#Train and Test The Model

 $model.fit (x_train, y_train, batch_size=4, epochs=10, verbose=1, validation_data=(x_test, y_test))$

AP

TRAINING, TEST AND VALIDATION DATASETS

Training Data

- 1800 Images of Spectrograms: 34x50 pixels
- Each image is labeled with the correct digit

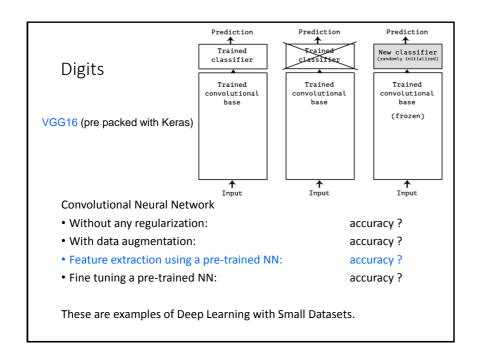
Validation Data

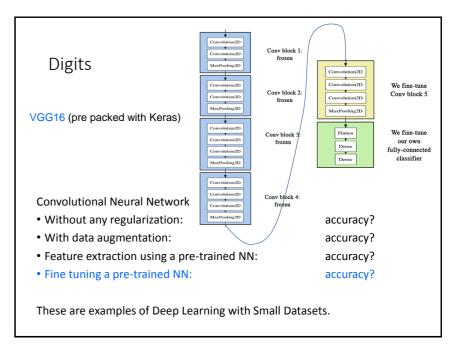
- 200 Images of Spectrograms: 34x50 pixels
- Each image is labeled with the correct digit
- Exclusive speaker(s)

Test Data

- 200 Images of Spectrograms: 34x50 pixels
- Each image is labeled with the correct digit
- Exclusive speaker(s)

API





W. Chunyang et al. Transformer-based Acoustic Modeling for Streaming Speech Synthesis, INTERSPEECH 2021

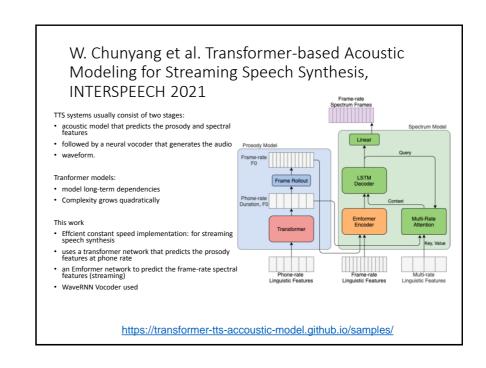
https://transformer-tts-accoustic-model.github.io/samples/

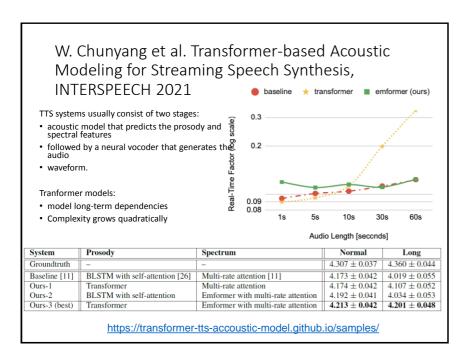
Tacotron2 uses Bi-directional Long Short-term Memory (BLSTM) recurrent networks.

- cannot effectively model long-term dependencies
- a poor quality on long speech.

FastSpeech state-of-the-art

- in modeling speech prosody and spectral features, but
- computation is parallel over the full utterance context.





REFERENCES

- T.F. Quatieri, Discrete-Time Speech Signal Processing, Principles and Practice, Prentice-Hall, Inc. 2002.
- 2. T. Hastc, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, Data Mining, Inference, and Prediction, Springer, 2001.
- 3. W.H. Press, S.A.Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipies in C++, The Art of Scientific Computing, 2nd Edition, Cambridge University Press, 2002.
- S.B. Davies, P. Mermelstein, Comparison of Parametric Representations for Monosyllabic Word Recognition in Continuously Spoken Sentences, IEEE Trans. Acoustics, Speech, and Signal Processing, vol. ASSP-28, no.4, pp. 357-366, Aug. 1980.

API

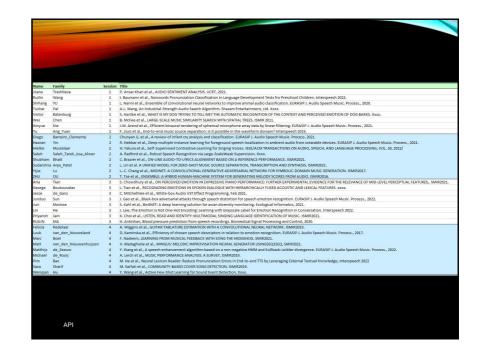
REFERENCES

5. P. Kenny, "Joint Factor Analysis of Speaker and Session Variability: Theory and Algorithms, Tech. Report CRIM-06/08-13," 2005.

Available: http://www.crim.ca/perso/patrick.kenny

- 6. N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, "Frontend factor analysis for speaker verification," IEEE Trans. Audio, Speech, Lang. Process., vol. 19, no. 4, pp. 788–798, May 2011.
- 7. François Chollet, Deep Learning with Python, Manning Publications, November 2017.

API



Name	Family	Session	Title
Joana	Trashlieva	1	P. Ansar Khan et al., AUDIO SENTIMENT ANALYSIS. IJCRT, 2021.
Ruilin	Wang	1	I. Baumann et al., Nonwords Pronunciation Classification in Language Development Tests fro Preschool Ch
Shihang	YU	1	L. Nanni et al., Ensemble of convolutional neural networks to improve animal audio classification. EURASI
Tushar	Pal	1	A.L. Wang, An Industrial-Strength Audio Search Algorithm. Shazam Entertainment, Ltd. Xxxx.
Victor	Batenburg	1	S. Hantke et al., WHAT IS MY DOG TRYING TO TELL ME? THE AUTOMATIC RECOGNITION OF THE CONTEXT AN
Wei	Chen	1	B. McFee et al., LARGE-SCALE MUSIC SIMILARITY SEARCH WITH SPATIAL TREES. ISMIR 2011.
Xinyue	Xie	1	J.M. Arend et al., Efficient binaural rendering of spherical microphone array data by linear filtering. EURAS
Yu	Ang_Yuan	1	F. Lluis et al., End-to-end music source separation: is it possible in the waveform domain? Interspeech 20.
Diego	Barreiro_Clemente	2	Chunyan Ji, et al., A review of infant cry analysis and classification. EURASIP J. Audio Speech Music. Proces
Haoran	Yin	2	R. Hebbar et al., Deep multiple instance learning for foreground speech localization in ambient audio from
Hielke	Muizelaar	2	H. Yakura et al., Self-Supervised Contrastive Learning for Singing Voices. IEEE/ACM TRANSACTIONS ON AU
Saleh	Saleh_Tarek_Issa_Alwer	2	A. Radford et al., Robust Speech Recognition via Large-ScaleWeak Supervision. Xxxx.
Shubham	Bhatt	2	C. Brazier et al., ON-LINE AUDIO-TO-LYRICS ALIGNMENT BASED ON A REFERENCE PERFORMANCE. ISMIR202
Sudarshna	Arya_Patel	2	L. Lin et al. A UNIFIED MODEL FOR ZERO-SHOT MUSIC SOURCE SEPARATION, TRANSCRIPTION AND SYNTHES
Yijie	Lu	2	LC. Chang et al., MIDINET: A CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORK FOR SYMBOLIC-DOM
ZHU	OU	2	T. Tse et al., ENSEMBLE: A HYBRID HUMAN-MACHINE SYSTEM FOR GENERATING MELODY SCORES FROM AU
Aria	Tian	3	S. Chowdhury et al., ON PERCEIVED EMOTION IN EXPRESSIVE PIANO PERFORMANCE: FURTHER EXPERIMEN
George	Boukouvalas	3	L. Tian et al., RECOGNIZING EMOTIONS IN SPOKEN DIALOGUE WITH HIERARCHICALLY FUSED ACOUSTIC AND
Jesse	de_Gans	3	C. Mitcheltree et al., White-box Audio VST Effect Programming, Feb 2021.
Junduo	Sun	3	J. Gao et al., Black-box adversarial attacks through speech distortion for speech emotion recognition. EUR.
Juri	Morisse	3	S. Kahl et al., BirdNET: A deep learning solution for avian diversity monitoring. Ecological Informatics, 202:
Lin	He	3	J. Lee, The Emotion is Not One-Hot Encoding: Learning with Grayscale Label for Emotion Recognition in Co
Priyansh	Jain	3	K. Choi et al., LISTEN, READ AND IDENTIFY: MULTIMODAL SINGING LANGUAGE IDENTIFICATION OF MUSIC. I
RUILIN	MA	3	H. Ankishan, Blood pressure prediction from speech recordings. Biomedical Signal Processing and Control
Felicia	Redelaar	4	A. Wiggins et al., GUITAR TABLATURE ESTIMATION WITH A CONVOLUTIONAL NEURAL NETWORK. ISMIR2019
Luuk	van_den_Nouweland	4	D. Kaminska et al., Efficiency of chosen speech descriptors in relation to emotion recognition. EURASIP J. A
Marc	Boel	4	F. Nadeem, LEARNING FROM MUSICAL FEEDBACK WITH SONG THE HEDGEHOG. SMIR2021.
Matt	van_den_Nieuwenhuijzen	4	V. Madaghiele et al., MINGUS: MELODIC IMPROVISATION NEURAL GENERATOR USINGSEQ2SEQ, SMIR2021.
Matthijs	de_Zeeuw	4	Y. Xiang et al., A speech enhancement algorithm based on a non-negative HMM and Kullback-Leibler dive
Michael	de_Rooij	4	A. Lerch et al., MUSIC PERFORMANCE ANALYSIS: A SURVEY, ISMIR2019.
Pim	Bax	4	M. He at al., Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging Externa
Sava	Sharif	4	M. Sarfati et al., COMMUNITY-BASED COVER SONG DETECTION. ISMIR2019.
Wengian	Hu	4	Y. Wang et al., Active Few-Shot Learning for Sound Event Detection, Xxxx.