
1

AUDIO FEATURES &
MACHINE LEARNING
E.M. Bakker

API2022

2

FEATURES FOR SPEECH
RECOGNITION AND AUDIO

INDEXING
• Parametric Representations

• Short Time Energy

• Zero Crossing Rates

• Level Crossing Rates

• Short Time Spectral Envelope

• Spectral Analysis

• Filter Design

• Filter Bank Spectral Analysis Model

• Linear Predictive Coding (LPC)

• MFCCs

3

FEATURES FOR SPEECH
RECOGNITION AND AUDIO

INDEXING
• Parametric Representations

• Short Time Energy

• Zero Crossing Rates

• Level Crossing Rates

Example: Speech of length 0.01 sec.

4

FEATURES FOR SPEECH
RECOGNITION AND AUDIO

INDEXING
• Spectral Analysis

• Fourier Transform

• Filter Design

• Filter Bank Spectral Analysis Model

• Linear Predictive Coding (LPC)

• MFCCs

5

SHORT TIME FOURIER TRANSFORM
SHORT HAMMING WINDOW:

50 SAMPLES (=5MSEC)

Voiced Speech

From: Rabiner et al.

6

SHORT TIME FOURIER TRANSFORM
LONG HAMMING WINDOW:

500 SAMPLES (=50MSEC)

Voiced Speech

From: Rabiner et al.

7

SHORT TIME FOURIER TRANSFORM
SHORT HAMMING WINDOW:

50 SAMPLES (=5MSEC)

Unvoiced Speech

From: Rabiner et al.

8

SHORT TIME FOURIER TRANSFORM
LONG HAMMING WINDOW:

500 SAMPLES (=50MSEC)

Unvoiced Speech

From: Rabiner et al.

9

BAND PASS FILTERAudio Signal

g(t)

Bandpass Filter

h(t)

Result Audio Signal

g ⋇ h (t)

Note that the band pass filter can be

defined as:

• a convolution with a filter response

function h(t) in the time domain

• a multiplication with a filter response

H(f) function in the frequency domain

g ⋇ h (t) = −∞

∞
𝑔 𝜏 ℎ 𝑡 − 𝜏 𝑑𝜏 ↔ G(f)· H(f)

10

BANK OF FILTERS
ANALYSIS MODEL

Central Frequency

11

MEL-CEPSTRUM [4]

Auditory characteristics

• Mel-scaled filter banks

De-correlating properties

• by applying a discrete cosine transform (which is close to a
Karhunen-Loeve transform) a de-correlation of the mel-scale
filter log-energies results

• => probabilistic modeling on these de-correlated coefficients
will be more effective.

One of the most successful features for speech recognition,
speaker recognition, and other speech related recognition
tasks.

[1, pp 712-717]

12

MFCCS

Mel-Scale

Filter Bank

MFCC’s

first 12 most

Significant

coefficients

Log()

Speech

Audio, …
Preemphasis Windowing

Fast Fourier

Transform

Discrete Cosine

Transform

13

MACHINE LEARNING
METHODS

• k Nearest Neighbors

• Random Forests (weighted neighborhoods scheme)

• Vector Quantization
• Finite code book of spectral shapes

• The code book codes for ‘typical’ spectral shape

• Method for all spectral representations (e.g. Filter Banks,
LPC, ZCR, etc. …)

• Support Vector Machines

• Markov Models

• Hidden Markov Models

• Neural Networks Etc.

14

VECTOR QUANTIZATION

• Data represented as feature vectors.

• Vector Quantization (VQ) Training set to
determine a set of code words that constitute
a code book.

• Code words are centroids using a similarity or
distance measure d.

• Code words together with measure d divide
the space into Voronoi regions.

• A query vector falls into a Voronoi region and
will be represented by the respective code
word.

[2, pp. 466 – 467]

15

VECTOR QUANTIZATION

Distance measures d(x,y):

• Euclidean distance

• Taxi cab distance

• Hamming distance

• etc.

16

VECTOR QUANTIZATION
Let a training set of L vectors be given for a certain class of objects.

Assume a codebook of M code words is wanted for this class.

Initialize:

• choose M arbitrary vectors of the L vectors of the training set.

• This is the initial code book.

Nearest Neighbor Search:

• for each training vector v, find the code word w in the current code book that is

closest and assign v to the corresponding cell of w.

Centroid Update:

• For each cell with code word w determine the centroid c of the training vectors

that are assigned to the cell of w.

• Update the code word w with the new vector c.

Iteration:

• repeat the steps Nearest Neighbor Search and Centroid Update until the average

distance between the new and previous code words falls below a preset threshold.

17

VECTOR CLASSIFICATION

For an M-vector code book CB with codes

CB = {yi | 1 ≤ i ≤ M} ,

the index m* of the best codebook entry for a given
vector v is:

m* = arg min d(v, yi)

1 ≤ i ≤ M

18

VQ FOR CLASSIFICATION

A code book CBk = {yk
i | 1 ≤ i ≤ M}, can be used

to define a class Ck.

Example Audio Classification:

• Classes ‘crowd’, ‘car’, ‘silence’, ‘scream’,
‘explosion’, etc.

• Determine by using VQ code books CBk for
each of the respective classes Ck.

• VQ is very often used as a baseline method for
classification problems.

19

SUPPORT VECTOR MACHINES

• A generalization of linear

decision boundaries for classification.

• Necessary when classes overlap

when using linear decision boundaries

(non separable classes).

Find hyper plane P: xTβ + β0 = 0, such that

𝛽 is minimized over
𝑦𝑖 𝑥𝑖

𝑇𝛽 + 𝛽0 ≥ 1 − 𝜀𝑖 ∀𝑖

𝜀𝑖 ≥ 0, 𝜀𝑖 ≤ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

Where (x1,y1), … (xN,yN) are our training pairs, with xi ∈ ℝp and yi∈{-1,1} ,

ε = (ε1 , ε2 , …, εN) are the slack variables, i.e.,

εi = the amount that xi is on the wrong side of the margin C =
1

𝛽
from the hyper plane

P.

i.e. C is maximized.

=> Problem is quadratic with linear inequalities constraint. [2, pp 377-389]

From: [2]

20

SUPPORT VECTOR MACHINE (SVM)

In this method so called support vectors define
decision boundaries for classification and
regression.

An example where

a straight line

separates the two

Classes: a linear

classifier

Images from: www.statsoft.com.

21

SUPPORT VECTOR MACHINE (SVM)

In general classification is not that simple.

SVM is a method that can handle the more complex
cases where the decision boundary requires a curve.

SVM uses a set of mapping

functions (kernels) to map

the feature space into

a transformed space so

that hyperplanes can be

used for the classification.

22

SUPPORT VECTOR MACHINE (SVM)

SVM uses a set of mapping functions (kernels)
to map the feature space into a transformed
space so that hyperplanes can be used for
the classification.

23

SUPPORT VECTOR MACHINE (SVM)

Training of an SVM is an iterative process:
• optimize the mapping function while minimizing an

error function

• The error function should capture the penalties for
misclassified, i.e., non separable data points.

24

SUPPORT VECTOR MACHINE (SVM)

SVM uses kernels that define the mapping
function used in the method. Kernels can be:

• Linear

• Polynomial

• RBF

• Sigmoid

• Etc.

• RBF (radial basis function) is the most popular kernel, again
with different possible base functions.

• The final choice depends on characteristics of the
classification task.

25

AUDIO CLASSIFICATION
USING NEURAL NETWORKS

An example by Rishi Sidhu:

https://medium.com/x8-the-ai-community/audio-
classification-using-cnn-coding-example-f9cbd272269e

Using data from the Spoken Digit Dataset by Zohar Jackson:

Https://github.com/Jakobovski/free-spoken-digit-dataset

Using Convolutional Neural Networks on Spectograms.

API

https://medium.com/x8-the-ai-community/audio-classification-using-cnn-coding-example-f9cbd272269e
https://github.com/Jakobovski/free-spoken-digit-dataset
https://github.com/Jakobovski/free-spoken-digit-dataset

26

DIGITS

API

27

API

28

API

Query

29

API

Query

30

Some Neural Networks

Feed Forward Neural Network Recurrent Neural Network

31

DNN: AlexNet, VGG16, ResNet, etc.

Krizhevsky, Alex; Sutskever, Ilya; Hinton, Geoffrey E. "ImageNet classification with deep
convolutional neural networks" Communications of the ACM. 60 (6): 84–90.

32

AlexNet Visualization

33

Cats and Dogs

Kaggle Dataset (https://www.kaggle.com/c/dogs-vs-cats/data)

• 2000 images of cats

• 2000 images of dogs

• Given an image: is it a cat or a dog?

Divide into:

• Training set (2000 images)

• Validation set (1000 images)

• Test set (1000 images)

https://www.kaggle.com/c/dogs-vs-cats/data

34

Cats and Dogs

Convolutional Neural Network

• Without any regularization: ~71% accuracy

• With data augmentation: ~82% accuracy

• Feature extraction using a pre-trained NN: ~90% accuracy

• Fine tuning a pre-trained NN: ~95% accuracy

These are examples of Deep Learning with Small Datasets.

35

Cats and Dogs

Convolutional Neural Network

• Without any regularization: ~71% accuracy

• With data augmentation: ~82% accuracy

• Feature extraction using a pre-trained NN: ~90% accuracy

• Fine tuning a pre-trained NN: ~95% accuracy

These are examples of Deep Learning with Small Datasets.

VGG16 (pre packed with Keras)

36

VGG16
Feature Extraction

37

VGG16
Feature Extraction +
Data Augmentation

38

Cats and Dogs

Convolutional Neural Network

• Without any regularization: ~71% accuracy

• With data augmentation: ~82% accuracy

• Feature extraction using a pre-trained NN: ~90% accuracy

• Fine tuning a pre-trained NN: ~95% accuracy

These are examples of Deep Learning with Small Datasets.

VGG16 (pre packed with Keras)

39

CNN’S FOR AUDIO CLASSIFICATION

• Both images can be used to recognize the spoken digit.

• The spectrogram yields better accuracy for the tests.

API

40

CNN ARCHITECTURE

API

Input Layer

Convolutional layer with kernel size 3x3

Convolutional layer with kernel size 3x3

Max Pooling layer with pool size 2x2

Dropout layer

Flattening layer

Dense layer 1

Dense layer 1

41

CNN DEFINED IN TF.KERAS
#Define Model

model = Sequential()

model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape))

model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Dropout(0.25))

model.add(Flatten())

model.add(Dense(128, activation='relu'))

model.add(Dropout(0.5))

model.add(Dense(num_classes, activation='softmax'))

#Compile

model.compile(loss=keras.losses.categorical_crossentropy,

optimizer=keras.optimizers.adam(), metrics=['accuracy'])

print(model.summary())

#Train and Test The Model

model.fit(x_train, y_train, batch_size=4, epochs=10, verbose=1, validation_data=(x_test,
y_test))

API

42

TRAINING, TEST AND
VALIDATION DATASETS

Training Data

• 1800 Images of Spectrograms: 34x50 pixels

• Each image is labeled with the correct digit

Validation Data

• 200 Images of Spectrograms: 34x50 pixels

• Each image is labeled with the correct digit

• Exclusive speaker(s)

Test Data

• 200 Images of Spectrograms: 34x50 pixels

• Each image is labeled with the correct digit

• Exclusive speaker(s)

API

43

Digits

Convolutional Neural Network

• Without any regularization: accuracy ?

• With data augmentation: accuracy ?

• Feature extraction using a pre-trained NN: accuracy ?

• Fine tuning a pre-trained NN: accuracy ?

These are examples of Deep Learning with Small Datasets.

VGG16 (pre packed with Keras)

44

Digits

Convolutional Neural Network

• Without any regularization: accuracy?

• With data augmentation: accuracy?

• Feature extraction using a pre-trained NN: accuracy?

• Fine tuning a pre-trained NN: accuracy?

These are examples of Deep Learning with Small Datasets.

VGG16 (pre packed with Keras)

45

W. Chunyang et al. Transformer-based Acoustic
Modeling for Streaming Speech Synthesis,
INTERSPEECH 2021

https://transformer-tts-accoustic-model.github.io/samples/

Tacotron2 uses Bi-directional Long Short-term Memory (BLSTM)
recurrent networks.

• cannot effectively model long-term dependencies

• a poor quality on long speech.

FastSpeech state-of-the-art

• in modeling speech prosody and spectral features, but

• computation is parallel over the full utterance context.

https://transformer-tts-accoustic-model.github.io/samples/

46

W. Chunyang et al. Transformer-based Acoustic
Modeling for Streaming Speech Synthesis,
INTERSPEECH 2021

TTS systems usually consist of two stages:

• acoustic model that predicts the prosody and spectral
features

• followed by a neural vocoder that generates the audio

• waveform.

Tranformer models:

• model long-term dependencies

• Complexity grows quadratically

This work

• Effcient constant speed implementation: for streaming
speech synthesis

• uses a transformer network that predicts the prosody
features at phone rate

• an Emformer network to predict the frame-rate spectral
features (streaming)

• WaveRNN Vocoder used

https://transformer-tts-accoustic-model.github.io/samples/

https://transformer-tts-accoustic-model.github.io/samples/

47

W. Chunyang et al. Transformer-based Acoustic
Modeling for Streaming Speech Synthesis,
INTERSPEECH 2021

TTS systems usually consist of two stages:

• acoustic model that predicts the prosody and
spectral features

• followed by a neural vocoder that generates the
audio

• waveform.

Tranformer models:

• model long-term dependencies

• Complexity grows quadratically

https://transformer-tts-accoustic-model.github.io/samples/

https://transformer-tts-accoustic-model.github.io/samples/

48

REFERENCES
1. T.F. Quatieri, Discrete-Time Speech Signal Processing,

Principles and Practice, Prentice-Hall, Inc. 2002.

2. T. Hastc, R. Tibshirani, J. Friedman, The Elements of Statistical
Learning, Data Mining, Inference, and Prediction, Springer,
2001.

3. W.H. Press, S.A.Teukolsky, W.T. Vetterling, B.P. Flannery,
Numerical Recipies in C++, The Art of Scientific Computing,
2nd Edition, Cambridge University Press, 2002.

4. S.B. Davies, P. Mermelstein, Comparison of Parametric
Representations for Monosyllabic Word Recognition in
Continuously Spoken Sentences, IEEE Trans. Acoustics,
Speech, and Signal Processing, vol. ASSP-28, no.4, pp. 357-
366, Aug. 1980.

API

49

REFERENCES
5. P. Kenny, “Joint Factor Analysis of Speaker and

Session Variability: Theory and Algorithms, Tech.
Report CRIM-06/08-13,” 2005.

Available: http://www.crim.ca/perso/patrick.kenny

6. N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P.
Ouellet, “Frontend factor analysis for speaker
verification,” IEEE Trans. Audio, Speech, Lang.
Process., vol. 19, no. 4, pp. 788–798, May 2011.

7. François Chollet, Deep Learning with Python, Manning
Publications, November 2017.

API

http://www.crim.ca/perso/patrick.kenny

