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FEATURES FOR SPEECH
RECOGNITION AND AUDIO
INDEXING

« Spectral Analysis
» Fourier Transform
* Filter Design
* Filter Bank Spectral Analysis Model
 Linear Predictive Coding (LPC)
« MFCCs




SHORT TIME FOURIER TRANSFORM
SHORT HAMMING WINDOW:
50 SAMPLES (=5MSEC)

SAMPLE

~

15.1
0

LOG MAGNITUDE (dB)

5000
FREQUENCY

Figure 3.12  Short-time Fourier transform using a short (50 points or 5 msec) Ham-
ming window on a section of voiced speech.

From: Rabiner et al.




SHORT TIME FOURIER TRANSFORM
LONG HAMMING WINDOW:
500 SAMPLES (=50MSEC)
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Figure 3.11 Short-time Fourier transform using a long (500 points or 50 msec)
Hamming window on a section of voiced speech.

LOG MAGNITUDE (dB)

£
O\‘v

FREQUENCY

From: Rabiner et al.




SHORT TIME FOURIER TRANSFORM
SHORT HAMMING WINDOW:
50 SAMPLES (=5MSEC)
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Figure 3.14 Short-time Fourier transform using a short (50 points or 5 msec) Ham-
ming window on a section of unvoiced speech.

From: Rabiner et al.




SHORT TIME FOURIER TRANSFORM
LONG HAMMING WINDOW:
500 SAMPLES (=50MSEC)
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Figure 3.13 Short-time Fou! anformu ing a long (500 poin
Hamming window on a section of ced speech.

From: Rabiner et al.



e~

Audio Signal BAND PASS F”_TER

¢[(9)

Note that the band pass filter can be
defined as:

Bandpass Filter

h® a convolution with a filter response

function h(t) in the time domain

a multiplication with a filter response

Result Audio Signal H(f) function in the frequency domain

gxh ()

g*h (1) =" g(@h(t —1)dr & G(f) - H(f)
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Figure 3.2 Bank-of-filters analysis model.
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—
MEL-CEPSTRUM [4]

Auditory characteristics
« Mel-scaled filter banks
De-correlating properties

* by applying a discrete cosine tfransform (which is close to a
Karhunen-Loeve transform) a de-correlation of the mel-scale
filter log-energies results

=> probabilistic modeling on these de-correlated coefficients
will be more effective.

One of the most successful features for speech recognition,
spekaker recognition, and other speech related recognition
tasks.

[1, pp 712-717]
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MACHINE LEARNING
METHODS

« k Nearest Neighbors
« Random Forests (weighted neighborhoods scheme)

« Vector Quantization
» Finite code book of spectral shapes
« The code book codes for ‘typical’ spectral shape

« Method for all spectral representations (e.g. Filter Banks,
LPC, ZCR, etc. ...)

« Support Vector Machines
 Markov Models

« Hidden Markov Models

* Neural Networks Efc.




VECTOR QUANTIZATION

» Data represented as feature vectors.

« Vector Quantization (VQ) Training set to |
determine a set of code words that constitute
a code book.

« Code words are centroids using a similarity or
distance measure d.

« Code words together with measure d divide
the space into Voronoi regions.

* A query vector falls into a Voronoi region and
will kée represented by the respective code
word.

[2, pp. 466 — 467]




VECTOR QUANTIZATION

Distance measures d(x,y):

» Euclidean distance
« Taxi cab distance
« Homming distance
- etc.
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VECTOR QUANTIZATION

Let a training set of L vectors be given for a certain class of objects.
Assume a codebook of M code words is wanted for this class.

Initialize:

choose M arbitrary vectors of the L vectors of the training set.

This is the initial code book.

Nearest Neighbor Search:

for each training vector v, find the code word w in the current code book that is
closest and assign v to the corresponding cell of w.

Centroid Update:

For each cell with code word w determine the centroid ¢ of the training vectors
that are assigned to the cell of w.

Update the code word w with the new vector c.

Iteration:

repeat the steps Nearest Neighbor Search and Centroid Update until the average
distance between the new and previous code words falls below a preset threshold.



VECTOR CLASSIFICATION

For an M-vector code book CB with codes
CB={y, | 1<i<M},

the index m™ of the best codebook entry for a given
vector v is:

"= arg min d(v, v
1<isM




VQ FOR CLASSIFICATION

A code book CB, = {y% | 1 <i<M}, can be used
to define a class C,.

Example Audio Classification:

- Classes ‘crowd’, ‘car’, ‘sience’, 'scream’,
explosion’, etc.

« Determine by using VQ code books CB, for
each of the respective classes C,.

* VQ is very often used as a baseline method for
classification problems.




« A generalization of linear
decision boundaries for classification.
* Necessary when classes overlap
when using linear decision boundaries
(hon separable classes).

Find hyper plane P: X'B + B, = 0, such that
vil(xlB+ Bo) =1—¢ Vi
g =0, Ye¢& <constant

|3]] is minimized over

Where (X,Y,), ... (X,Yy) are our training pairs, with x; € Rp and y;e{-1,1},
e=(g;,&, ..., g ) arethe slack variables, i.e.,

g; = the amount that x; is on the wrong side of the margin C = ﬁ from the hyper plane
P.

i.e. C is maximized.
=> Problem is quadratic with linear inequalities constraint. [2, pp 377-389]
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SUPPORT VECTOR MACHINE (SVM)

In this method so called support vectors define
decision boundaries for classification and
regression.

An example where
a straight line
separates the two
Classes: a linear
classifier

Images from: www.statsoft.com.
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SUPAPORT VECTOR MACHINE (SVM)

In general classification is not that simple.
SVM is a method that can handle the more complex

cases where the decision boundary requires a curve.

SVM uses a set of mapping
functions (kernels) to map
the feature space info

a transformed space so
that hyperplanes can be
used for the classification.

21



SUP-PORT VECTOR MACHINE (SVM)

SVM uses a set of mapping functions (kernels)
to map the feature space into a transformed
space so that hyperplanes can be used for
the classification.

Input space Feature space
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Training of an SVM is an iterative process:

« optimize the mapping function while minimizing an
Slife]@iVigleiife]g

* The error function should capture the penalties for
misclassified, i.e., non separable data points.

Input space Feature space
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“SUPPORT VECTOR MACHINE (SVM)

SVM uses kernels that define the mapping
function used in the method. Kernels can be:

* Linear . Input space Feature space
« Polynomial

N
» Sigmoid
 Efc.

« RBF (radial basis function) is the most popular kernel, again
with different possible base functions.

* The final choice depends on characteristics of the
classification task.
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AUDIO CLASSIFICATION
USING NEURAL NETWORKS

An example by Rishi Sidhu:

Using data from the by Zohar Jackson:

Using Convolutional Neural Networks on Spectograms.



https://medium.com/x8-the-ai-community/audio-classification-using-cnn-coding-example-f9cbd272269e
https://github.com/Jakobovski/free-spoken-digit-dataset
https://github.com/Jakobovski/free-spoken-digit-dataset
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Some Neural Networks
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Recurrent Neural Network

Feed Forward Neural Network
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DNN: AlexNet, VGG16, ResNet, etc.

Input Image
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440-186,624-64,896-64,896-43,264—
4096-4096-1000.

Krizhevsky, Alex; Sutskever, llya; Hinton, Geoffrey E. "ImageNet classification with deep

convolutional neural networks" Communications of the ACM. 60 (6): 84-90.
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Deep Visualization Toolbox

yosinski.com/deepvis

#deepvis

3 B :
i ‘ 7/ A: Z;

Jason Yosinski Jeff Clune Anh Nguyen Thomas Fuchs Hod Lipson

UNIVERSITY
3 ot WYOMING

Jet Propulsion Laboratory
California Institute of Technology

[} Cornell University
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Cats and Dogs

Kaggle Dataset ( https://www.kaggle.com/c/dogs-vs-cats/data )

* 2000 images of cats
* 2000 images of dogs

* Given an image: is it a cat or a dog?

Divide into:

* Training set (2000 images)
* Validationset (1000 images)
* Test set (1000 images)

33


https://www.kaggle.com/c/dogs-vs-cats/data

Cats and Dogs

50 75 100 125 100 125

Convolutional Neural Network

* Without any regularization: ~71% accuracy
* With data augmentation: ~82% accuracy
 Feature extraction using a pre-trained NN: ~90% accuracy
* Fine tuning a pre-trained NN: ~95% accuracy

These are examples of Deep Learning with Small Datasets.
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Prediction Prediction Prediction

4 4 e 4
Trained ai New classifier
classifier s1Ts (randomly initialized)
Cats and Dogs x x x
Trained Trained Trained
convolutional convolutional convolutional
base base base
. (frozen)
VGG16 (pre packed with Keras)
4+ 4 4
Input Input Input
Convolutional Neural Network
e Without any regularization: ~71% accuracy
* With data augmentation: ~82% accuracy
 Feature extraction using a pre-trained NN: ~90% accuracy
* Fine tuning a pre-trained NN: ~95% accuracy

These are examples of Deep Learning with Small Datasets.
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VGG16

Feature Extraction
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VGG16

Training and validation accuracy

Feature Extraction +
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Conv block 1:
frozen

S

Convolution2ly

Cats and Dogs

Convelution2lD

Convolution2D

Conv block 2:
frozen

MaxPooling 213

VGG16 (pre packed with Keras)

Dense
Dense

Conv block 3¢
frozen

H Conv block 4:
Convolutional Neural Network

e Without any regularization: ~71% accuracy

* With data augmentation: ~82% accuracy
* Feature extraction using a pre-trained NN: ~90% accuracy

* Fine tuning a pre-trained NN: ~95% accuracy

These are examples of Deep Learning with Small Datasets.

We fine-tune
Conv block 5

We fine-tune
our own
fully-connected
classifier
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« Both images can be used to recognize the spoken digit.

» The spectrogram yields better accuracy for the tests.

API
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S NN ARCHITECTURE &

Input Layer

!

Convolutional layer with kernel size 3x3

v

Convolutional layer with kernel size 3x3

J

Max Pooling layer with pool size 2x2

v

Dropout layer
\4

Flattening layer

v

Dense layer 1

v

Dense layer 1




#Define Model

model = Sequential()

e~
CNN DEFINED IN TF.KERAS

model.add(Conv2D(32, kernel_size=(3, 3), activation='relu’, input_shape=input_shape))

model.add(Conv2D (64, kernel_size=(3, 3), activation="relu'))
model.add(MaxPooling2D (pool_size=(2, 2)))
model.add(Dropout(0.25))

model.add(Flatten())

model.add(Dense(128, activation="relu'))
model.add(Dropout(0.5))

model.add(Dense(num_classes, activation='soffmax’))
#Compile

model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.adam(), metrics=['accuracy'])

print(model.summary())

#Train and Test The Model

model.fit(x_train, y_frain, batch_size=4, epochs=10, verbose=1, validation_data=(x_test,

y_test))




TRAINING, TEST AND
VALIDATION DATASETS

ligellgliglelBle](e
« 1800 Images of Spectrograms: 34x50 pixels
« Each image is labeled with the correct digit

Validation Data

« 200 Images of Spectrograms: 34x50 pixels

« Each image is labeled with the correct digit
» Exclusive speaker(s)

Test Data

« 200 Images of Spectrograms: 34x50 pixels

« Each image is labeled with the correct digit
» Exclusive speaker(s)

API




Prediction Prediction Prediction
4 4 = 4
Trained ai New classifier
. . classifier s1Ts (randomly initialized)
Digits = = =
Trained Trained Trained
convolutional convolutional convolutional
base base base
. (frozen)
VGG16 (pre packed with Keras)
4+ 4 4
Input Input Input
Convolutional Neural Network
* Without any regularization: accuracy ?
* With data augmentation: accuracy ?
* Feature extraction using a pre-trained NN: accuracy ?
* Fine tuning a pre-trained NN: accuracy ?

These are examples of Deep Learning with Small Datasets.
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Digits

VGG16 (pre packed with Keras)

Convolutional Neural Network

* Without any regularization:

* With data augmentation:
* Feature extraction using a pre-trained NN:

 Fine tuning a pre-trained NN:

Conv block 1:
frozen

Conv block 2:
frozen

Conv block 3¢
frozen

Conv block 4:

Convolution2ly

Convolution2l

Convolution2D

MaxPooling 213

Dense
Dense

accuracy?
accuracy?
accuracy?

accuracy?

These are examples of Deep Learning with Small Datasets.

We fine-tune
Conv block 5

We fine-tune
our own
fully-connected
classifier
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W. Chunyang et al. Transformer-based Acoustic
Modeling for Streaming Speech Synthesis,
INTERSPEECH 2021

https://transformer-tts-accoustic-model.github.io/samples/

Tacotron2 uses Bi-directional Long Short-term Memory (BLSTM)
recurrent networks.

* cannot effectively model long-term dependencies
* a poor quality on long speech.

FastSpeech state-of-the-art
* in modeling speech prosody and spectral features, but
* computation is parallel over the full utterance context.
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https://transformer-tts-accoustic-model.github.io/samples/

W. Chunyang et al. Transformer-based Acoustic
Modeling for Streaming Speech Synthesis,

INTERSPEECH 2021

TTS systems usually consist of two stages:

¢ acoustic model that predicts the prosody and spectral
features

» followed by a neural vocoder that generates the audio  prosody Model

e waveform.

Tranformer models:
* model long-term dependencies
e Complexity grows quadratically

This work

* Effcient constant speed implementation: for streaming
speech synthesis

* uses a transformer network that predicts the prosody
features at phone rate

¢ an Emformer network to predict the frame-rate spectral
features (streaming)

* WaveRNN Vocoder used

Frame-rate
Spectrum Frames

Frame-rate
FO

Phone-rate
Duration, FO

iy

Frame Rollout

/—Tﬁ

Transformer

Phone-rate
Linguistic Features

T Spectrum Model
[ uraw )
A
Query
Y
LST™M
Decoder
—
A
l Context
s )
Emformer Multi-Rate
Encoder Attention
L S
(Y
I I Key, Value |
"~ Frame-rate Multi-rate
Linguistic Features Linguistic Features

https://transformer-tts-accoustic-model.qithub.io/samples/
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https://transformer-tts-accoustic-model.github.io/samples/

W. Chunyang et al. Transformer-based Acoustic
Modeling for Streaming Speech Synthesis,

INTERSPEECH 2021

TTS systems usually consist of two stages:

@ baseline transformer

W emformer (ours)

— 0.3
. . 2
* acoustic model that predicts the prosody and g
spectral features @
o)
+ followed by a neural vocoder that generates th& 0.2
audio 5
* waveform. E
)
Tranformer models: i — e
. 8 o009 ¥
* model long-term dependencies ® 008
« Complexity grows quadratically 1s o8 10s 30s 60s
Audio Length [seconds]
| System | Prosody | Spectrum |  Normal | Long |
| Groundtruth || — | - || 4307 £ 0.037 | 4.360 & 0.044 |
Baseline [11] || BLSTM with self-attention [26] | Multi-rate attention [11] 4173 +£0.042 | 4.019 = 0.055
Ours-1 Transformer Multi-rate attention 4.174 £0.042 | 4.107 £ 0.052
Ours-2 BLSTM with self-attention Emformer with multi-rate attention || 4.192 4 0.041 | 4.034 £ 0.053
Ours-3 (best) Transformer Emformer with multi-rate attention || 4.213 £+ 0.042 | 4.201 = 0.048

https://transformer-tts-accoustic-model.qithub.io/samples/
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https://transformer-tts-accoustic-model.github.io/samples/
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