AUDIO FEATURES & MACHINE LEARNING

1

E.M. Bakker

API2022

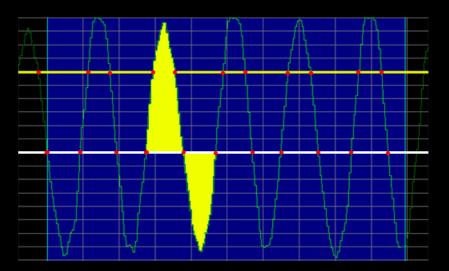
FEATURES FOR SPEECH RECOGNITION AND AUDIO INDEXING

- Parametric Representations
 - Short Time Energy
 - Zero Crossing Rates
 - Level Crossing Rates
 - Short Time Spectral Envelope
- Spectral Analysis
 - Filter Design
 - Filter Bank Spectral Analysis Model
 - Linear Predictive Coding (LPC)
 - MFCCs

FEATURES FOR SPEECH RECOGNITION AND AUDIO INDEXING

• Parametric Representations

- Short Time Energy
- Zero Crossing Rates
- Level Crossing Rates

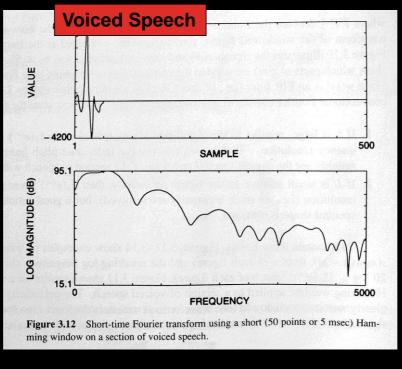


Example: Speech of length 0.01 sec.

FEATURES FOR SPEECH RECOGNITION AND AUDIO INDEXING

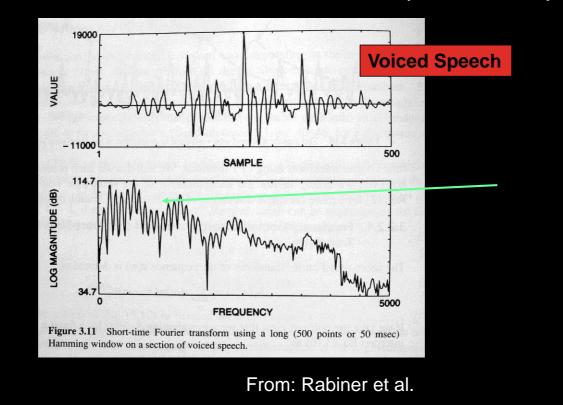
- Spectral Analysis
 - Fourier Transform
 - Filter Design
 - Filter Bank Spectral Analysis Model
 - Linear Predictive Coding (LPC)
 - MFCCs

SHORT TIME FOURIER TRANSFORM SHORT HAMMING WINDOW: 50 SAMPLES (=5MSEC)

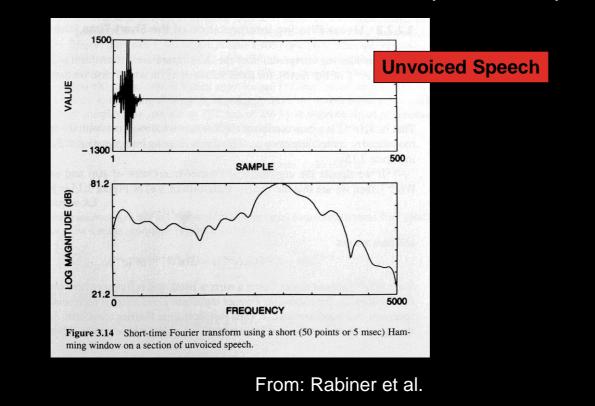


From: Rabiner et al.

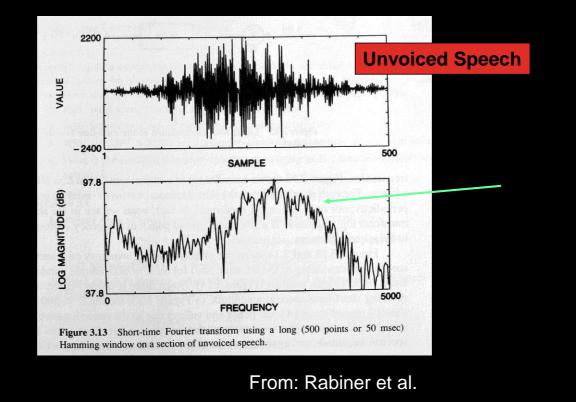
SHORT TIME FOURIER TRANSFORM LONG HAMMING WINDOW: 500 SAMPLES (=50MSEC)

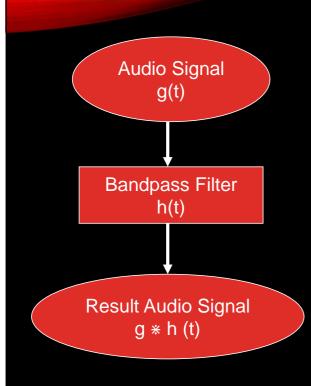


SHORT TIME FOURIER TRANSFORM SHORT HAMMING WINDOW: 50 SAMPLES (=5MSEC)



SHORT TIME FOURIER TRANSFORM LONG HAMMING WINDOW: 500 SAMPLES (=50MSEC)



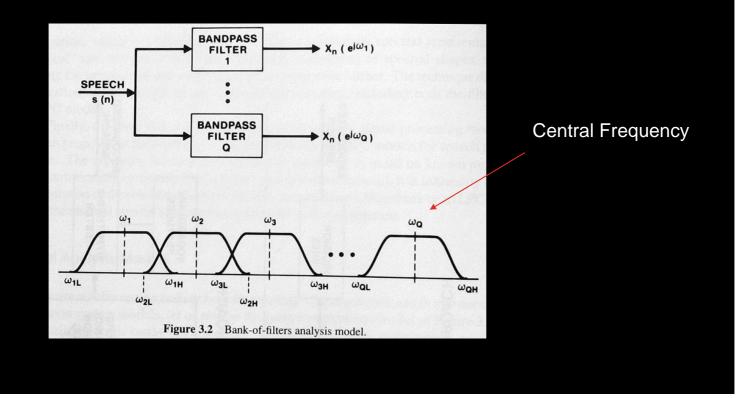


BAND PASS FILTER

- Note that the band pass filter can be defined as:
- a convolution with a filter response function h(t) in the time domain
- a *multiplication* with a filter response H(f) function in the frequency domain

$$g * h(t) = \int_{-\infty}^{\infty} g(\tau)h(t-\tau)d\tau \leftrightarrow G(f) \cdot H(f)$$

BANK OF FILTERS ANALYSIS MODEL



MEL-CEPSTRUM [4]

Auditory characteristics

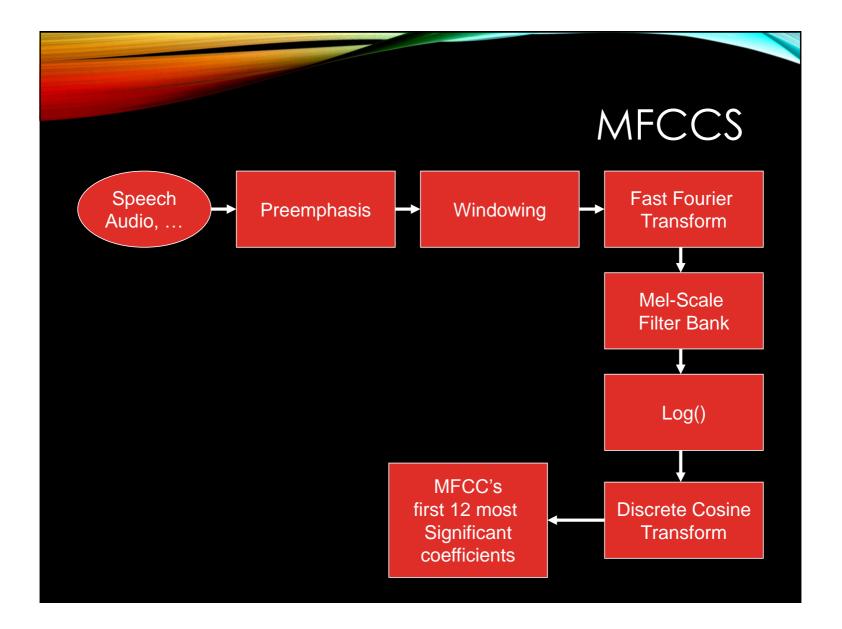
• Mel-scaled filter banks

De-correlating properties

- by applying a discrete cosine transform (which is close to a Karhunen-Loeve transform) a de-correlation of the mel-scale filter log-energies results
- => probabilistic modeling on these de-correlated coefficients will be more effective.

One of the most successful features for speech recognition, speaker recognition, and other speech related recognition tasks.

[1, pp 712-717]



MACHINE LEARNING METHODS

- k Nearest Neighbors
- Random Forests (weighted neighborhoods scheme)
- Vector Quantization
 - Finite code book of spectral shapes
 - The code book codes for 'typical' spectral shape
 - Method for all spectral representations (e.g. Filter Banks, LPC, ZCR, etc. ...)
- Support Vector Machines
- Markov Models
- Hidden Markov Models
- Neural Networks Etc.

VECTOR QUANTIZATION

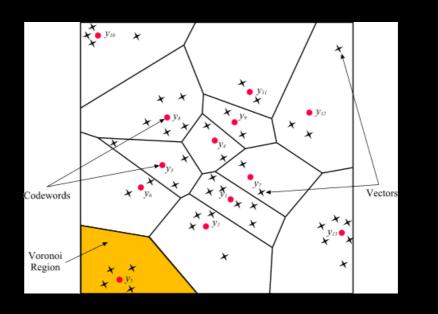
- Data represented as feature vectors.
- Vector Quantization (VQ) Training set to determine a set of code words that constitute a code book.
- Code words are centroids using a similarity or distance measure d.
- Code words together with measure d divide the space into Voronoi regions.
- A query vector falls into a Voronoi region and will be represented by the respective code word.

[2, pp. 466 – 467]

VECTOR QUANTIZATION

Distance measures d(x,y):

- Euclidean distance
- Taxi cab distance
- Hamming distance
- etc.



VECTOR QUANTIZATION

Let a training set of L vectors be given for a certain class of objects. Assume a codebook of M code words is wanted for this class.

Initialize:

- choose M arbitrary vectors of the L vectors of the training set.
- This is the initial code book.

Nearest Neighbor Search:

• for each training vector v, find the code word w in the current code book that is closest and assign v to the corresponding cell of w.

Centroid Update:

- For each cell with code word w determine the centroid **c** of the training vectors that are assigned to the cell of w.
- Update the code word w with the new vector c.

Iteration:

• repeat the steps **Nearest Neighbor Search** and **Centroid Update** until the average distance between the new and previous code words falls below a preset threshold.

VECTOR CLASSIFICATION

For an M-vector code book CB with codes $CB = \{y_i \mid 1 \le i \le M\},$

the index m^{*} of the best codebook entry for a given vector v is:

 $m^* = arg min d(v, y_i)$ $1 \le i \le M$

VQ FOR CLASSIFICATION

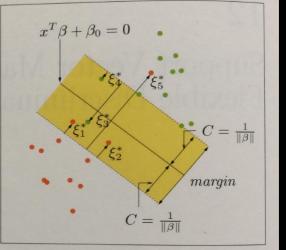
A code book $CB_k = \{y_i^k \mid 1 \le i \le M\}$, can be used to define a class C_k .

Example Audio Classification:

- Classes 'crowd', 'car', 'silence', 'scream', 'explosion', etc.
- Determine by using VQ code books CB_k for each of the respective classes C_k .
- VQ is very often used as a baseline method for classification problems.

- A generalization of linear decision boundaries for classification.
- Necessary when classes overlap when using linear decision boundaries (non separable classes).

Find hyper plane P: $x^{T}\beta + \beta_{0} = 0$, such that $\|\beta\|$ is minimized over $\begin{cases} y_{i}(x_{i}^{T}\beta + \beta_{0}) \geq 1 - \varepsilon_{i} & \forall i \\ \varepsilon_{i} \geq 0, & \sum \varepsilon_{i} \leq constant \end{cases}$

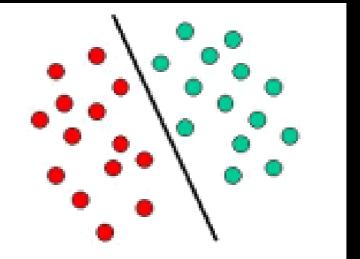


Where $(x_1, y_1), \dots, (x_N, y_N)$ are our training pairs, with $x_i \in \mathbb{R}^p$ and $y_i \in \{-1, 1\}$, $\varepsilon = (\varepsilon_1, \varepsilon_2, \dots, \varepsilon_N)$ are the slack variables, i.e., $\varepsilon_i =$ the amount that x_i is on the wrong side of the margin $C = \frac{1}{\|\beta\|}$ from the hyper plane P. i.e. C is maximized.

=> Problem is quadratic with linear inequalities constraint. [2, pp 377-389]

In this method so called support vectors define decision boundaries for classification and regression.

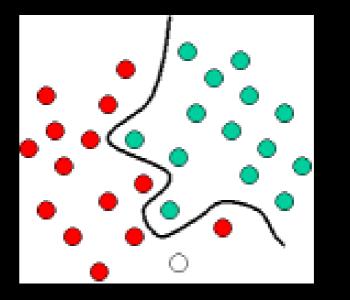
An example where a straight line separates the two Classes: a linear classifier



Images from: www.statsoft.com.

In general classification is not that simple. SVM is a method that can handle the more complex cases where the decision boundary requires a curve.

SVM uses a set of mapping functions (kernels) to map the feature space into a transformed space so that hyperplanes can be used for the classification.

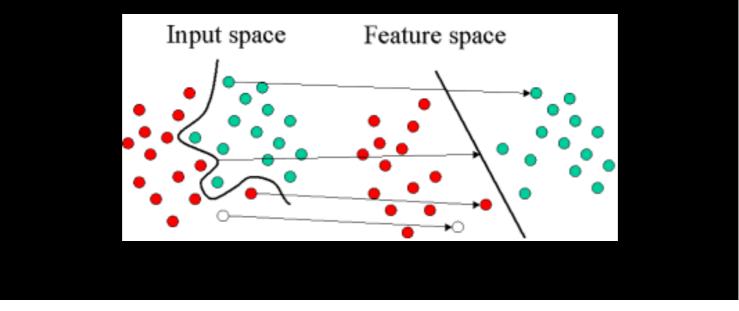


SVM uses a set of mapping functions (kernels) to map the feature space into a transformed space so that hyperplanes can be used for the classification.



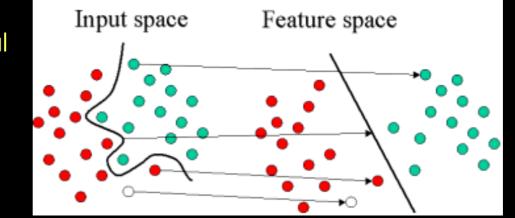
Training of an SVM is an iterative process:

- optimize the mapping function while minimizing an error function
- The error function should capture the penalties for misclassified, i.e., non separable data points.



SVM uses kernels that define the mapping function used in the method. Kernels can be:

- Linear
- Polynomial
- RBF
- Sigmoid
- Etc.



- RBF (radial basis function) is the most popular kernel, again with different possible base functions.
- The final choice depends on characteristics of the classification task.

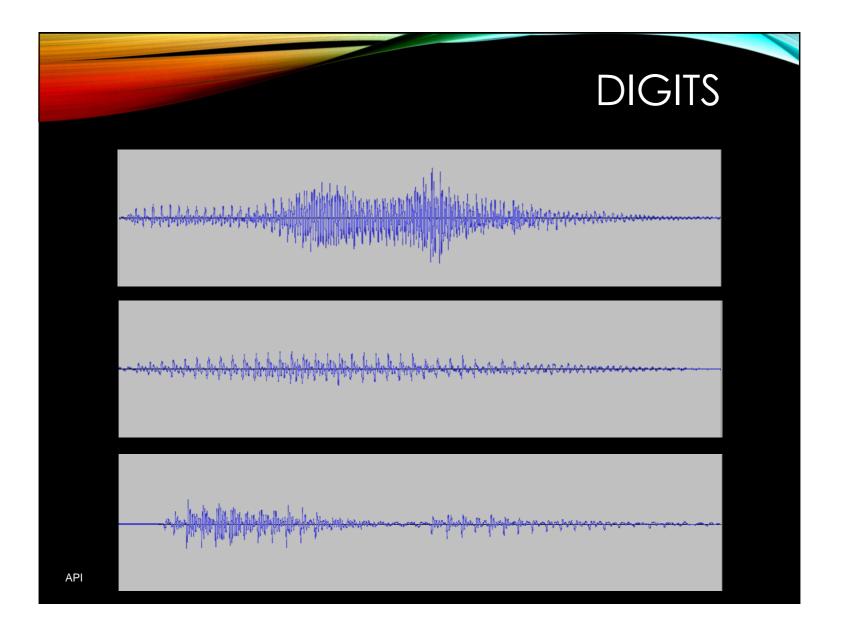
AUDIO CLASSIFICATION USING NEURAL NETWORKS

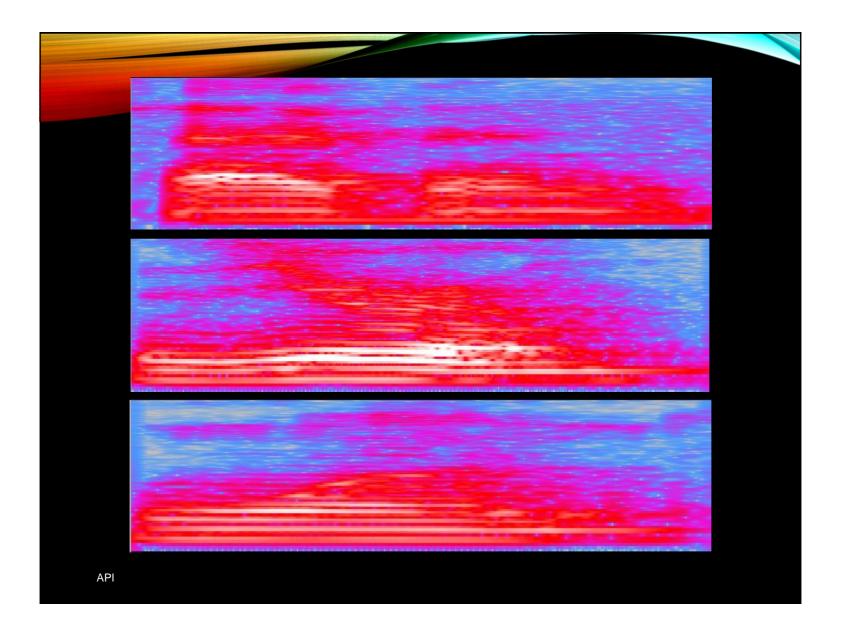
An example by Rishi Sidhu:

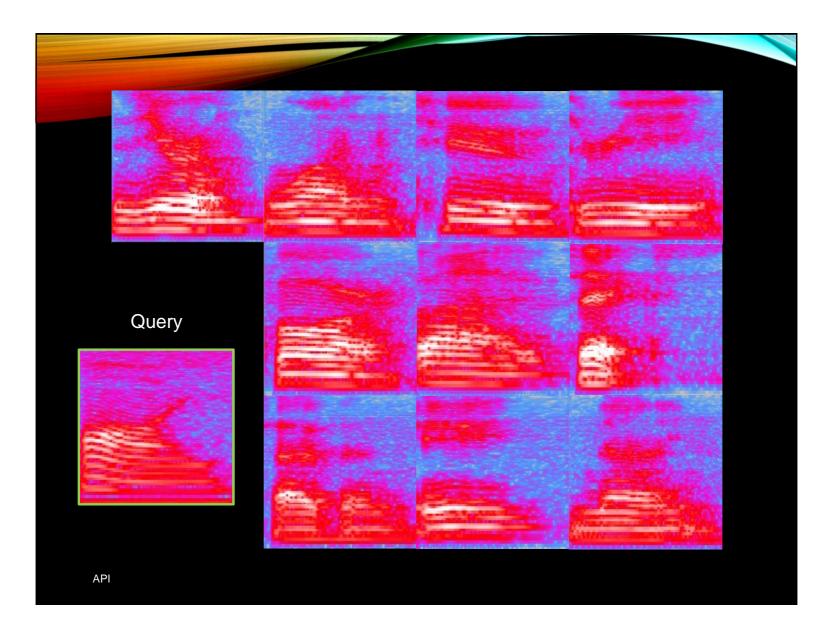
https://medium.com/x8-the-ai-community/audioclassification-using-cnn-coding-example-f9cbd272269e

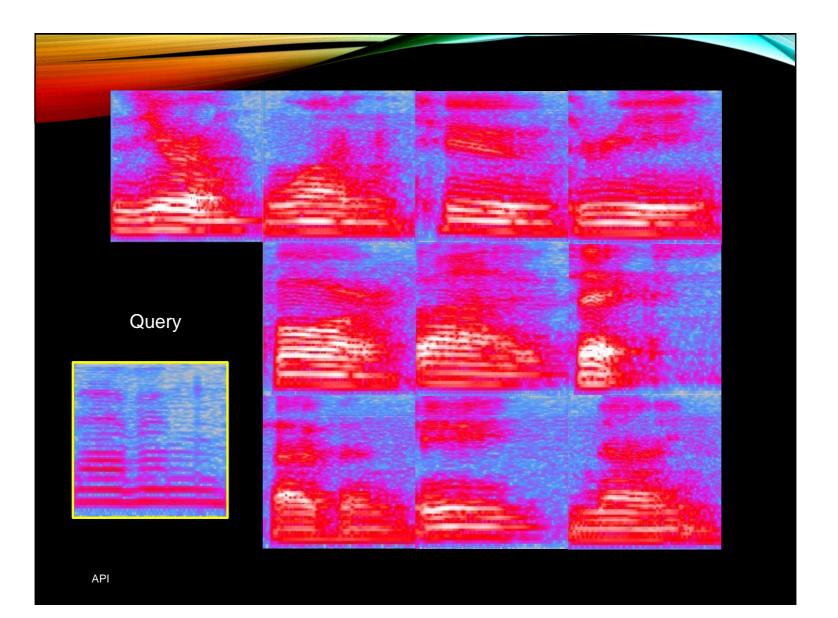
Using data from the <u>Spoken Digit Dataset</u> by Zohar Jackson: <u>Https://github.com/Jakobovski/free-spoken-digit-dataset</u>

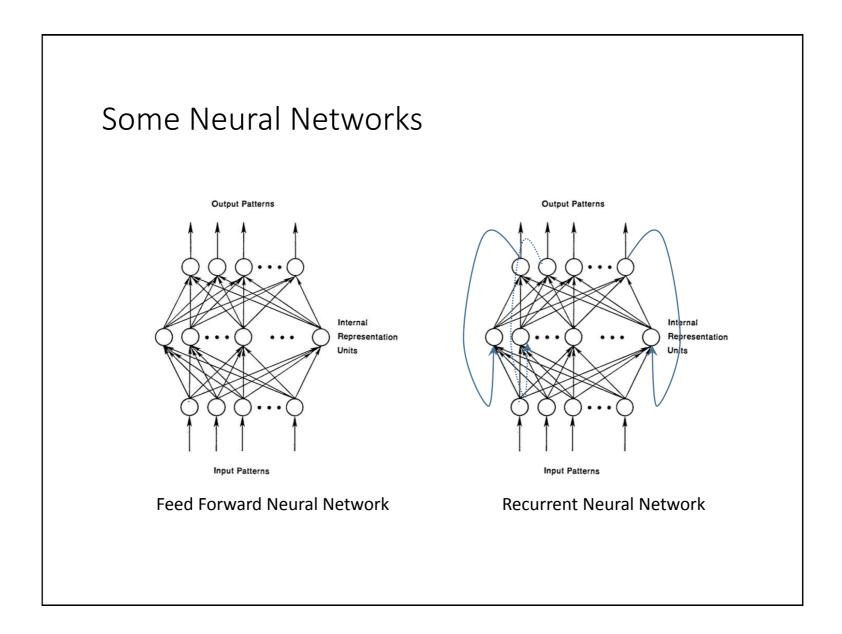
Using Convolutional Neural Networks on Spectograms.

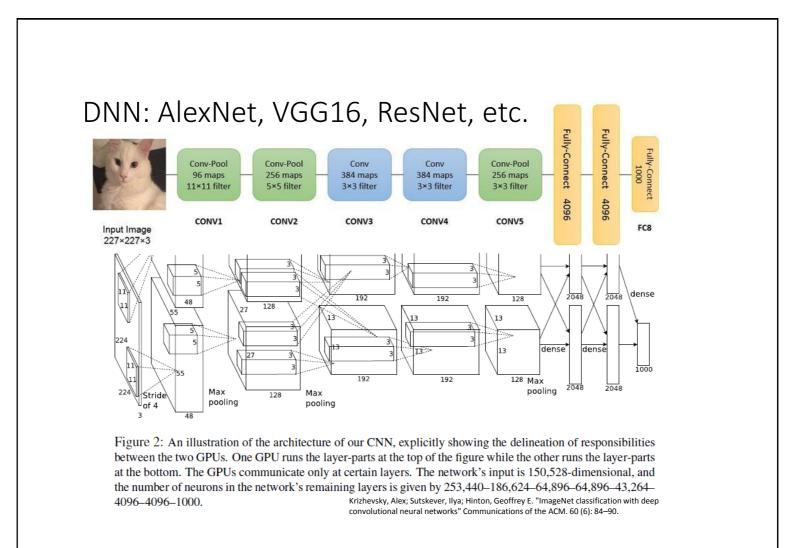


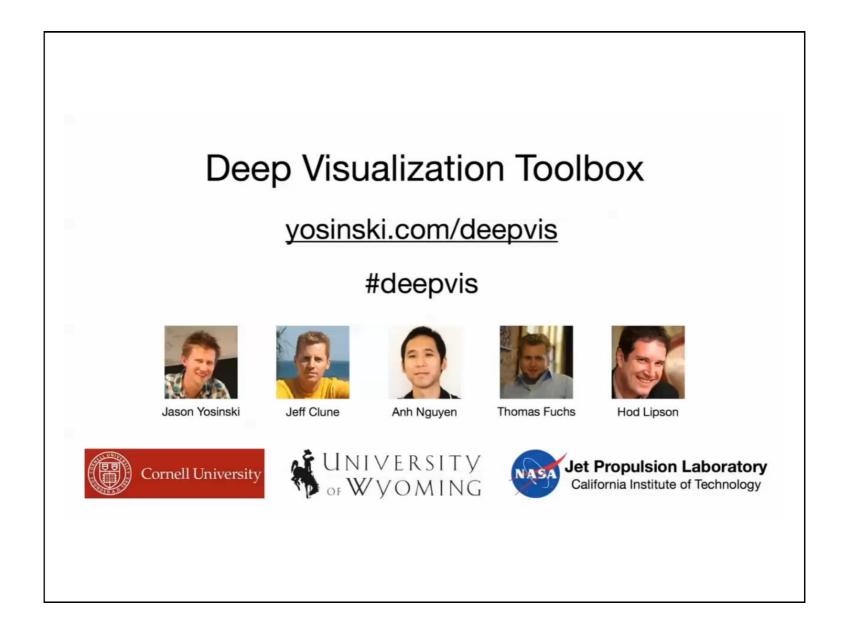












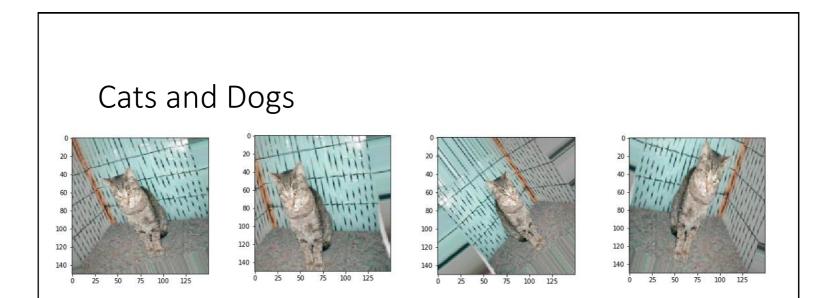
Cats and Dogs

Kaggle Dataset (https://www.kaggle.com/c/dogs-vs-cats/data)

- 2000 images of cats
- 2000 images of dogs
- Given an image: is it a cat or a dog?

Divide into:

- Training set (2000 images)
- Validation set (1000 images)
- Test set (1000 images)

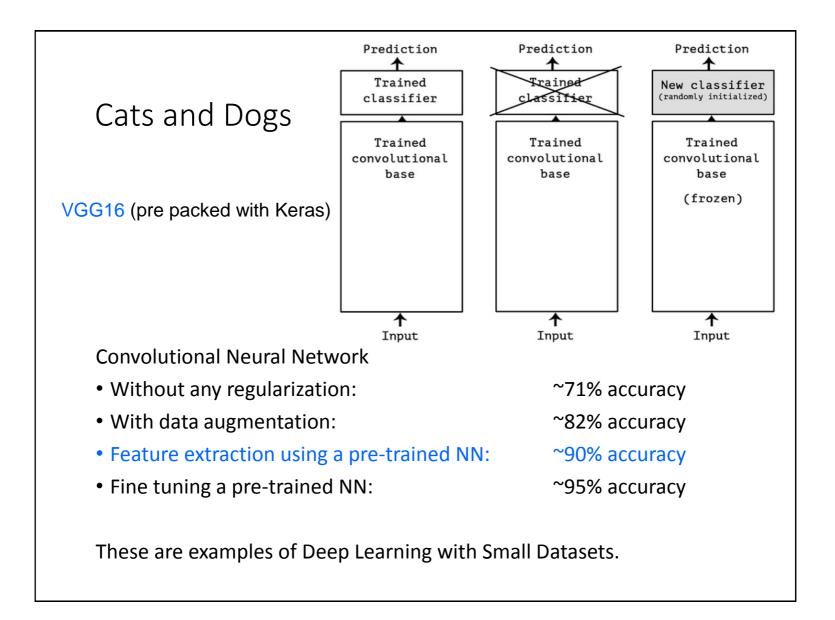


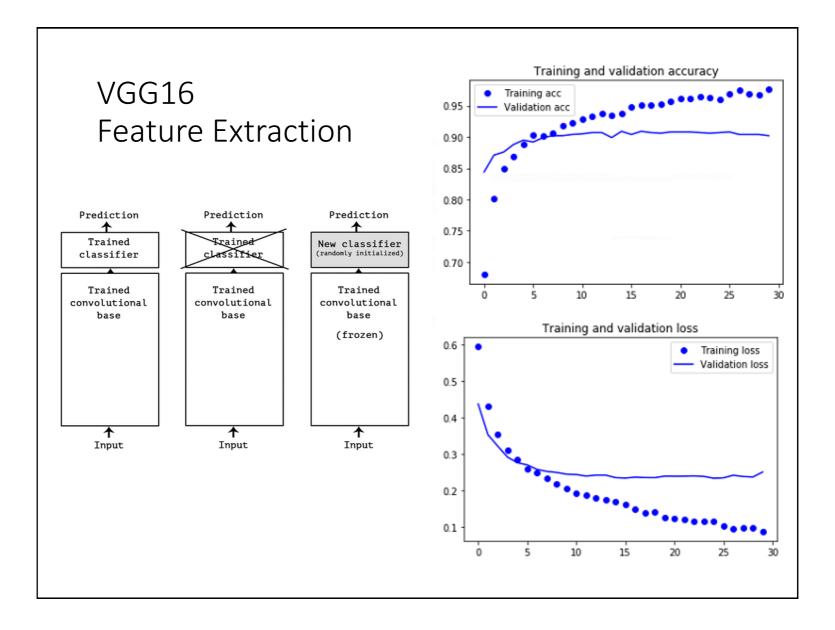
Convolutional Neural Network

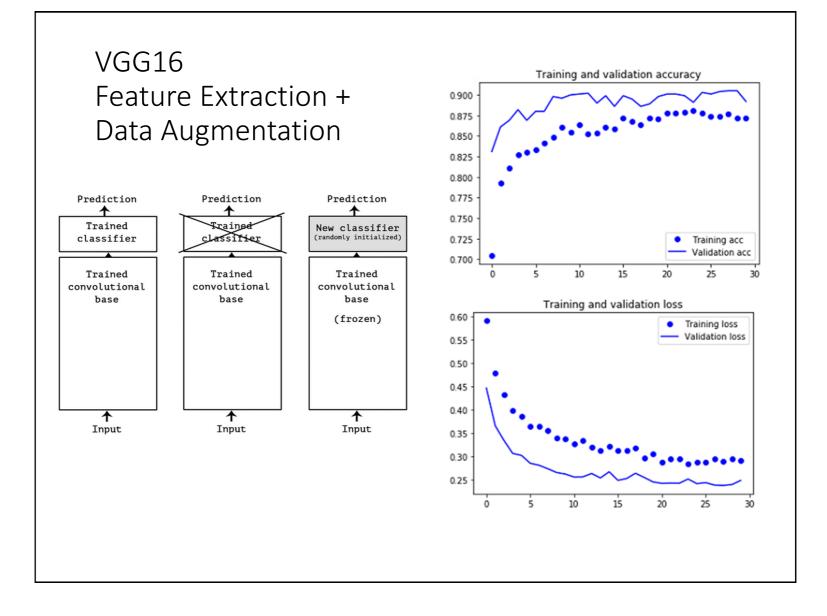
- Without any regularization:
- With data augmentation:
- Feature extraction using a pre-trained NN:
- Fine tuning a pre-trained NN:

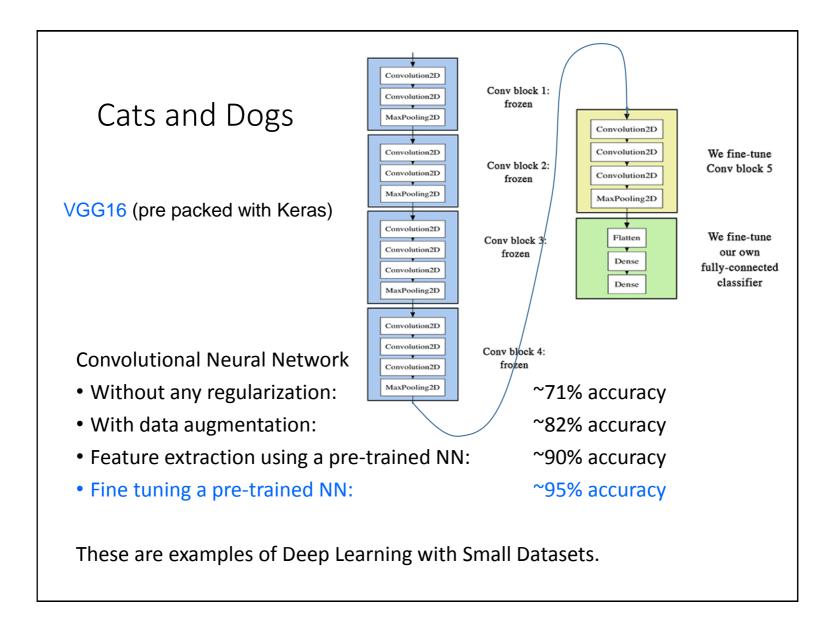
~71% accuracy ~82% accuracy ~90% accuracy ~95% accuracy

These are examples of Deep Learning with Small Datasets.

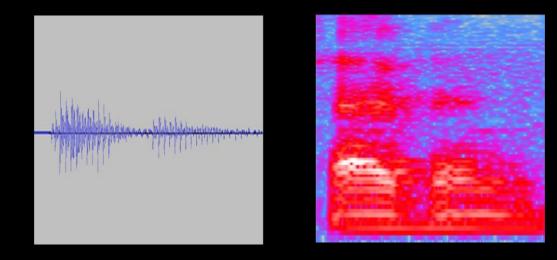




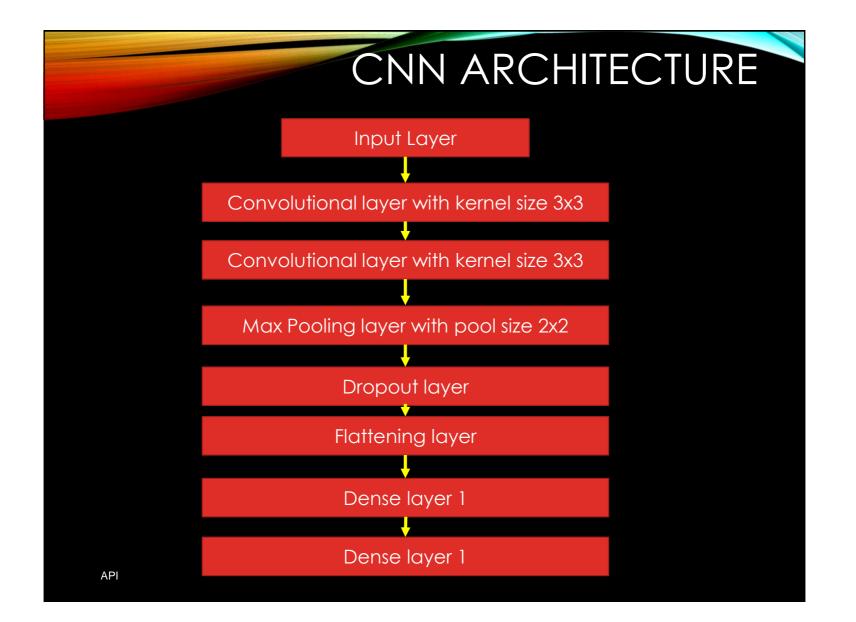




CNN'S FOR AUDIO CLASSIFICATION



- Both images can be used to recognize the spoken digit.
- The spectrogram yields better accuracy for the tests.



CNN DEFINED IN TF.KERAS

#Define Model

model = Sequential()

model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape))

model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Dropout(0.25))

model.add(Flatten())

model.add(Dense(128, activation='relu'))

model.add(Dropout(0.5))

model.add(Dense(num_classes, activation='softmax'))

#Compile

model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.adam(), metrics=['accuracy'])

print(model.summary())

#Train and Test The Model

model.fit(x_train, y_train, batch_size=4, epochs=10, verbose=1, validation_data=(x_test, y_test))

TRAINING, TEST AND VALIDATION DATASETS

Training Data

- 1800 Images of Spectrograms: 34x50 pixels
- Each image is labeled with the correct digit

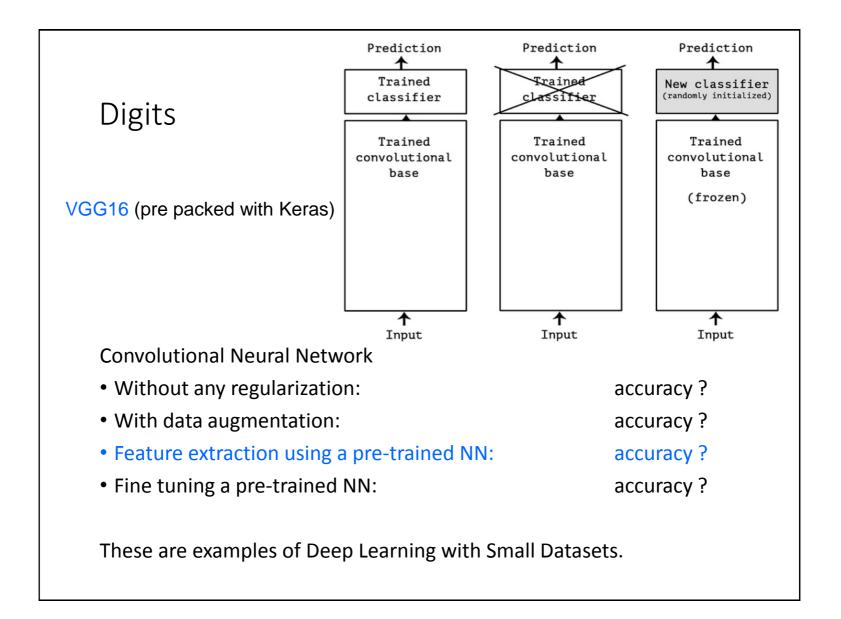
Validation Data

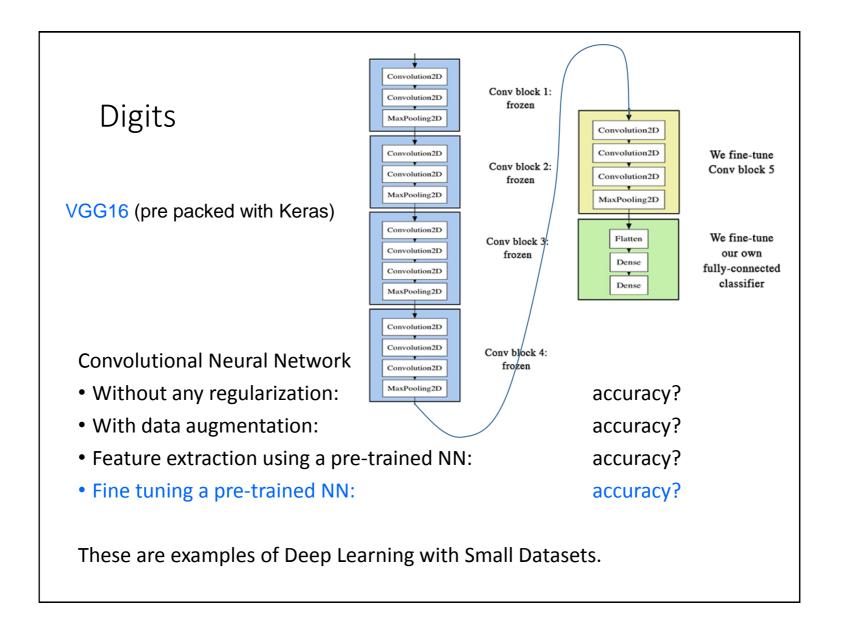
- 200 Images of Spectrograms: 34x50 pixels
- Each image is labeled with the correct digit
- Exclusive speaker(s)

Test Data

- 200 Images of Spectrograms: 34x50 pixels
- Each image is labeled with the correct digit
- Exclusive speaker(s)

API





W. Chunyang et al. Transformer-based Acoustic Modeling for Streaming Speech Synthesis, INTERSPEECH 2021

https://transformer-tts-accoustic-model.github.io/samples/

Tacotron2 uses Bi-directional Long Short-term Memory (BLSTM) recurrent networks.

- cannot effectively model long-term dependencies
- a poor quality on long speech.

FastSpeech state-of-the-art

- in modeling speech prosody and spectral features, but
- computation is parallel over the full utterance context.

W. Chunyang et al. Transformer-based Acoustic Modeling for Streaming Speech Synthesis, INTERSPEECH 2021

TTS systems usually consist of two stages:

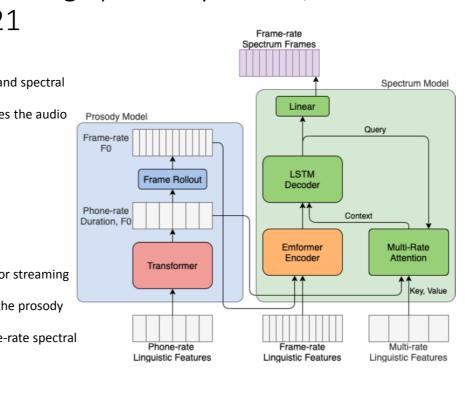
- acoustic model that predicts the prosody and spectral features
- followed by a neural vocoder that generates the audio
- waveform.

Tranformer models:

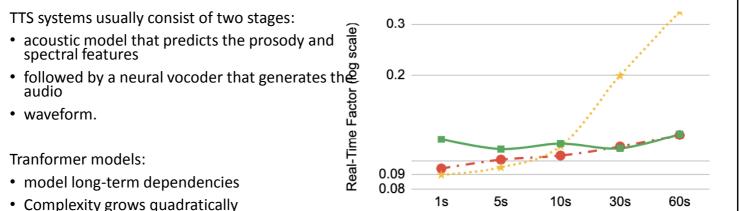
- · model long-term dependencies
- · Complexity grows quadratically

This work

- Effcient constant speed implementation: for streaming speech synthesis
- uses a transformer network that predicts the prosody features at phone rate
- an Emformer network to predict the frame-rate spectral features (streaming)
- WaveRNN Vocoder used



https://transformer-tts-accoustic-model.github.io/samples/



Audio Length [seconds]

System	Prosody	Spectrum	Normal	Long
Groundtruth	-	-	4.307 ± 0.037	4.360 ± 0.044
Baseline [11]	BLSTM with self-attention [26]	Multi-rate attention [11]	4.173 ± 0.042	4.019 ± 0.055
Ours-1	Transformer	Multi-rate attention	4.174 ± 0.042	4.107 ± 0.052
Ours-2	BLSTM with self-attention	Emformer with multi-rate attention	4.192 ± 0.041	4.034 ± 0.053
Ours-3 (best)	Transformer	Emformer with multi-rate attention	$\textbf{4.213} \pm \textbf{0.042}$	$\textbf{4.201} \pm \textbf{0.048}$

https://transformer-tts-accoustic-model.github.io/samples/

REFERENCES

- 1. T.F. Quatieri, Discrete-Time Speech Signal Processing, Principles and Practice, Prentice-Hall, Inc. 2002.
- 2. T. Hastc, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, Data Mining, Inference, and Prediction, Springer, 2001.
- 3. W.H. Press, S.A.Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipies in C++, The Art of Scientific Computing, 2nd Edition, Cambridge University Press, 2002.
- 4. S.B. Davies, P. Mermelstein, Comparison of Parametric Representations for Monosyllabic Word Recognition in Continuously Spoken Sentences, IEEE Trans. Acoustics, Speech, and Signal Processing, vol. ASSP-28, no.4, pp. 357-366, Aug. 1980.

REFERENCES

5. P. Kenny, "Joint Factor Analysis of Speaker and Session Variability: Theory and Algorithms, Tech. Report CRIM-06/08-13," 2005.

Available: http://www.crim.ca/perso/patrick.kenny

- 6. N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, "Frontend factor analysis for speaker verification," IEEE Trans. Audio, Speech, Lang. Process., vol. 19, no. 4, pp. 788–798, May 2011.
- 7. François Chollet, Deep Learning with Python, Manning Publications, November 2017.