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FEATURES FOR SPEECH 
RECOGNITION AND AUDIO 

INDEXING
• Parametric Representations

• Short Time Energy

• Zero Crossing Rates

• Level Crossing Rates

• Short Time Spectral Envelope

• Spectral Analysis

• Filter Design

• Filter Bank Spectral Analysis Model

• Linear Predictive Coding (LPC)

• MFCCs
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FEATURES FOR SPEECH 
RECOGNITION AND AUDIO 

INDEXING
• Parametric Representations

• Short Time Energy

• Zero Crossing Rates

• Level Crossing Rates

Example: Speech of length 0.01 sec.
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FEATURES FOR SPEECH 
RECOGNITION AND AUDIO 

INDEXING
• Spectral Analysis

• Fourier Transform

• Filter Design

• Filter Bank Spectral Analysis Model

• Linear Predictive Coding (LPC)

• MFCCs
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SHORT TIME FOURIER TRANSFORM
SHORT HAMMING WINDOW: 

50 SAMPLES (=5MSEC)

Voiced Speech

From: Rabiner et al.
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SHORT TIME FOURIER TRANSFORM
LONG HAMMING WINDOW: 

500 SAMPLES (=50MSEC)

Voiced Speech

From: Rabiner et al.
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SHORT TIME FOURIER TRANSFORM
SHORT HAMMING WINDOW: 

50 SAMPLES (=5MSEC)

Unvoiced Speech

From: Rabiner et al.
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SHORT TIME FOURIER TRANSFORM
LONG HAMMING WINDOW: 

500 SAMPLES (=50MSEC)

Unvoiced Speech

From: Rabiner et al.
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BAND PASS FILTERAudio Signal

g(t)

Bandpass Filter

h(t)

Result Audio Signal

g ⋇ h (t)

Note that the band pass filter can be 

defined as: 

• a convolution with a filter response 

function h(t) in the time domain

• a multiplication with a filter response 

H(f) function in the frequency domain 

g ⋇ h (t) = −∞

∞
𝑔 𝜏 ℎ 𝑡 − 𝜏 𝑑𝜏 ↔ G(f)· H(f)
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BANK OF FILTERS 
ANALYSIS MODEL

Central Frequency
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MEL-CEPSTRUM [4]

Auditory characteristics

• Mel-scaled filter banks

De-correlating properties 

• by applying a discrete cosine transform (which is close to a 
Karhunen-Loeve transform) a de-correlation of the mel-scale 
filter log-energies results 

• => probabilistic modeling on these de-correlated coefficients 
will be more effective.

One of the most successful features for speech recognition, 
speaker recognition, and other speech related recognition 
tasks. 

[1, pp 712-717]
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MFCCS

Mel-Scale 

Filter Bank

MFCC’s

first 12 most 

Significant

coefficients

Log()

Speech

Audio, …
Preemphasis Windowing

Fast Fourier 

Transform

Discrete Cosine

Transform
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MACHINE LEARNING 
METHODS

• k Nearest Neighbors

• Random Forests (weighted neighborhoods scheme)

• Vector Quantization
• Finite code book of spectral shapes

• The code book codes for ‘typical’ spectral shape

• Method for all spectral representations (e.g. Filter Banks, 
LPC, ZCR, etc. …)

• Support Vector Machines

• Markov Models

• Hidden Markov Models

• Neural Networks Etc.
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VECTOR QUANTIZATION

• Data represented as feature vectors.

• Vector Quantization (VQ) Training set to 
determine a set of code words that constitute 
a code book.

• Code words are centroids using a similarity or 
distance measure d.

• Code words together with measure d divide 
the space into Voronoi regions.

• A query vector falls into a Voronoi region and 
will be represented by the respective code 
word.

[2, pp. 466 – 467]
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VECTOR QUANTIZATION

Distance measures d(x,y):

• Euclidean distance

• Taxi cab distance

• Hamming distance

• etc.
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VECTOR QUANTIZATION
Let a training set of L vectors be given for a certain class of objects.

Assume a codebook of M code words is wanted for this class.

Initialize:

• choose M arbitrary vectors of the L vectors of the training set. 

• This is the initial code book.

Nearest Neighbor Search:

• for each training vector v, find the code word w in the current code book that is 

closest and assign v to the corresponding cell of w.

Centroid Update:

• For each cell with code word w determine the centroid  c of the training vectors 

that are assigned to the cell of w. 

• Update the code word w with the new vector c. 

Iteration:

• repeat the steps Nearest Neighbor Search and Centroid Update until the average 

distance between the new and previous code words falls below a preset threshold. 
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VECTOR CLASSIFICATION

For an M-vector code book CB with codes

CB = {yi | 1 ≤ i ≤ M} ,

the index m* of the best codebook entry for a given 
vector v is:

m* =     arg min       d(v, yi)

1 ≤ i ≤ M
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VQ FOR CLASSIFICATION

A code book CBk = {yk
i | 1 ≤ i ≤ M}, can be used 

to define a class Ck.

Example Audio Classification:

• Classes ‘crowd’, ‘car’, ‘silence’, ‘scream’, 
‘explosion’, etc.

• Determine by using VQ code books CBk for 
each of the respective classes Ck.

• VQ is very often used as a baseline method for 
classification problems.
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SUPPORT VECTOR MACHINES

• A generalization of linear 

decision boundaries for classification.

• Necessary when classes overlap 

when using linear decision boundaries

(non separable classes).

Find hyper plane P: xTβ + β0 = 0, such that 

𝛽 is minimized over  
𝑦𝑖 𝑥𝑖

𝑇𝛽 + 𝛽0 ≥ 1 − 𝜀𝑖 ∀𝑖

𝜀𝑖 ≥ 0,  𝜀𝑖 ≤ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

Where (x1,y1), … (xN,yN) are our training pairs, with xi ∈ ℝp and yi∈{-1,1} , 

ε = (ε1 , ε2 , …, εN ) are the slack variables, i.e., 

εi = the amount that xi is on the wrong side of the margin C = 
1

𝛽
from the hyper plane 

P.

i.e. C is maximized.

=> Problem is quadratic with linear inequalities constraint. [2, pp 377-389]

From: [2]
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SUPPORT VECTOR MACHINE (SVM)

In this method so called support vectors define 
decision boundaries for classification and 
regression.

An example where

a straight line

separates the two

Classes: a linear

classifier

Images from: www.statsoft.com.
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SUPPORT VECTOR MACHINE (SVM)

In general classification is not that simple. 

SVM is a method that can handle the more complex 
cases where the decision boundary requires a curve.

SVM uses a set of mapping

functions (kernels) to map

the feature space into

a transformed space so

that hyperplanes can be

used for the classification.
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SUPPORT VECTOR MACHINE (SVM)

SVM uses a set of mapping functions (kernels)
to map the feature space into a transformed 
space so that hyperplanes can be used for 
the classification.
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SUPPORT VECTOR MACHINE (SVM)

Training of an SVM is an iterative process: 
• optimize the mapping function while minimizing an 

error function

• The error function should capture the penalties for 
misclassified, i.e., non separable data points. 
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SUPPORT VECTOR MACHINE (SVM)

SVM uses kernels that define the mapping 
function used in the method. Kernels can be:

• Linear

• Polynomial

• RBF

• Sigmoid

• Etc.

• RBF (radial basis function) is the most popular kernel, again 
with different possible base functions.

• The final choice depends on characteristics of the 
classification task.
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AUDIO CLASSIFICATION 
USING NEURAL NETWORKS

An example by Rishi Sidhu: 

https://medium.com/x8-the-ai-community/audio-
classification-using-cnn-coding-example-f9cbd272269e

Using data from the Spoken Digit Dataset by Zohar Jackson:

Https://github.com/Jakobovski/free-spoken-digit-dataset

Using Convolutional Neural Networks on Spectograms.

API

https://medium.com/x8-the-ai-community/audio-classification-using-cnn-coding-example-f9cbd272269e
https://github.com/Jakobovski/free-spoken-digit-dataset
https://github.com/Jakobovski/free-spoken-digit-dataset
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DIGITS

API
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API
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API

Query
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API

Query
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Some Neural Networks

Feed Forward Neural Network Recurrent Neural Network
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DNN: AlexNet, VGG16, ResNet, etc.

Krizhevsky, Alex; Sutskever, Ilya; Hinton, Geoffrey E. "ImageNet classification with deep 
convolutional neural networks" Communications of the ACM. 60 (6): 84–90.
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AlexNet Visualization
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Cats and Dogs

Kaggle Dataset ( https://www.kaggle.com/c/dogs-vs-cats/data )

• 2000 images of cats

• 2000 images of dogs

• Given an image: is it a cat or a dog?

Divide into:

• Training set (2000 images)

• Validation set (1000 images)

• Test set (1000 images)

https://www.kaggle.com/c/dogs-vs-cats/data
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Cats and Dogs

Convolutional Neural Network

• Without any regularization: ~71% accuracy

• With data augmentation: ~82% accuracy

• Feature extraction using a pre-trained NN: ~90% accuracy

• Fine tuning a pre-trained NN: ~95% accuracy

These are examples of Deep Learning with Small Datasets.
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Cats and Dogs

Convolutional Neural Network

• Without any regularization: ~71% accuracy

• With data augmentation: ~82% accuracy

• Feature extraction using a pre-trained NN: ~90% accuracy

• Fine tuning a pre-trained NN: ~95% accuracy

These are examples of Deep Learning with Small Datasets.

VGG16 (pre packed with Keras)



36

VGG16 
Feature Extraction
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VGG16 
Feature Extraction +
Data Augmentation
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Cats and Dogs

Convolutional Neural Network

• Without any regularization: ~71% accuracy

• With data augmentation: ~82% accuracy

• Feature extraction using a pre-trained NN: ~90% accuracy

• Fine tuning a pre-trained NN: ~95% accuracy

These are examples of Deep Learning with Small Datasets.

VGG16 (pre packed with Keras)
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CNN’S FOR AUDIO CLASSIFICATION

• Both images can be used to recognize the spoken digit.

• The spectrogram yields better accuracy for the tests.

API
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CNN ARCHITECTURE

API

Input Layer

Convolutional layer with kernel size 3x3

Convolutional layer with kernel size 3x3

Max Pooling layer with pool size 2x2

Dropout layer

Flattening layer

Dense layer 1

Dense layer 1
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CNN DEFINED IN TF.KERAS
#Define Model

model = Sequential()

model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape))

model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Dropout(0.25))

model.add(Flatten())

model.add(Dense(128, activation='relu'))

model.add(Dropout(0.5))

model.add(Dense(num_classes, activation='softmax'))

#Compile

model.compile(loss=keras.losses.categorical_crossentropy, 

optimizer=keras.optimizers.adam(), metrics=['accuracy'])

print(model.summary())

#Train and Test The Model

model.fit(x_train, y_train, batch_size=4, epochs=10, verbose=1, validation_data=(x_test, 
y_test))

API
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TRAINING, TEST AND 
VALIDATION DATASETS

Training Data 

• 1800 Images of Spectrograms: 34x50 pixels

• Each image is labeled with the correct digit

Validation Data

• 200 Images of Spectrograms: 34x50 pixels

• Each image is labeled with the correct digit

• Exclusive speaker(s)

Test Data

• 200 Images of Spectrograms: 34x50 pixels

• Each image is labeled with the correct digit

• Exclusive speaker(s)

API
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Digits

Convolutional Neural Network

• Without any regularization: accuracy ?

• With data augmentation: accuracy ?

• Feature extraction using a pre-trained NN: accuracy ?

• Fine tuning a pre-trained NN: accuracy ?

These are examples of Deep Learning with Small Datasets.

VGG16 (pre packed with Keras)
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Digits

Convolutional Neural Network

• Without any regularization: accuracy?

• With data augmentation: accuracy?

• Feature extraction using a pre-trained NN: accuracy?

• Fine tuning a pre-trained NN: accuracy?

These are examples of Deep Learning with Small Datasets.

VGG16 (pre packed with Keras)



45

W. Chunyang et al. Transformer-based Acoustic 
Modeling for Streaming Speech Synthesis, 
INTERSPEECH 2021

https://transformer-tts-accoustic-model.github.io/samples/

Tacotron2 uses Bi-directional Long Short-term Memory (BLSTM) 
recurrent networks. 

• cannot effectively model long-term dependencies

• a poor quality on long speech. 

FastSpeech state-of-the-art

• in modeling speech prosody and spectral features, but

• computation is parallel over the full utterance context.

https://transformer-tts-accoustic-model.github.io/samples/
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W. Chunyang et al. Transformer-based Acoustic 
Modeling for Streaming Speech Synthesis, 
INTERSPEECH 2021

TTS systems usually consist of two stages:

• acoustic model that predicts the prosody and spectral 
features

• followed by a neural vocoder that generates the audio

• waveform.

Tranformer models: 

• model long-term dependencies

• Complexity grows quadratically

This work

• Effcient constant speed implementation: for streaming 
speech synthesis

• uses a transformer network that predicts the prosody 
features at phone rate 

• an Emformer network to predict the frame-rate spectral 
features (streaming)

• WaveRNN Vocoder used

https://transformer-tts-accoustic-model.github.io/samples/

https://transformer-tts-accoustic-model.github.io/samples/
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W. Chunyang et al. Transformer-based Acoustic 
Modeling for Streaming Speech Synthesis, 
INTERSPEECH 2021

TTS systems usually consist of two stages:

• acoustic model that predicts the prosody and 
spectral features

• followed by a neural vocoder that generates the 
audio

• waveform.

Tranformer models: 

• model long-term dependencies

• Complexity grows quadratically

https://transformer-tts-accoustic-model.github.io/samples/

https://transformer-tts-accoustic-model.github.io/samples/
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