

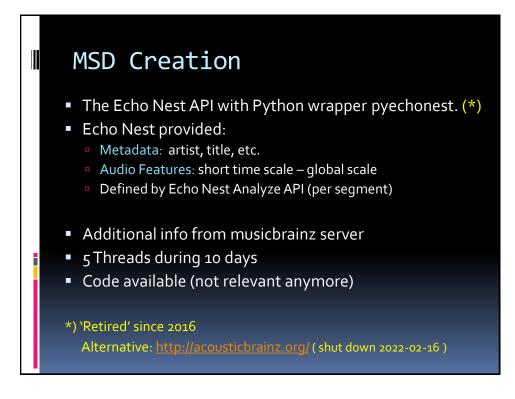
The Million Song Dataset

"There is no data like more data" Bob Mercer of IBM (1985).

T. Bertin-Mahieux, D.P.W. Ellis, B. Whitman, P. Lamere, **The Million Song Dataset**, In Proceedings of the 12th International Society for Music Information Retrieval Conference (ISMIR 2011), 2011.



MIR [Datasets Cr	ritical Re	equirements
	orithms shoul Ilistically sized		
Mu	dataset RWC CAL500 GZTAN genre USPOP Swat10K Magnatagatune OMRAS2 MusiCLEF MSD	# songs / samples 465 502 1,000 8,752 10,870 25,863 50,000? 200,000 1,000,000 w.cp.jku.at/dataset	audio Yes No Yes No Yes No S/musiclef/index.html



MSD Content

- 280 GB of data
- 1,000,000 songs/files
- 44,745 unique artists
- 7,643 unique terms (Echo Nest tags)
- 2,321 unique musicbrainz tags
- 43,943 artists with at least one term
- 2, 201, 916 asymmetric similarity relationships
- 515, 576 dated tracks starting from 1922

MSD Content

- HDF5 format
- 55 fields per song
- Audio Features
 - Timbre
 - Pitches
 - Loudness max
 - Beats
 - Bars (~3 4 beats)
 - Note onsets/tatum

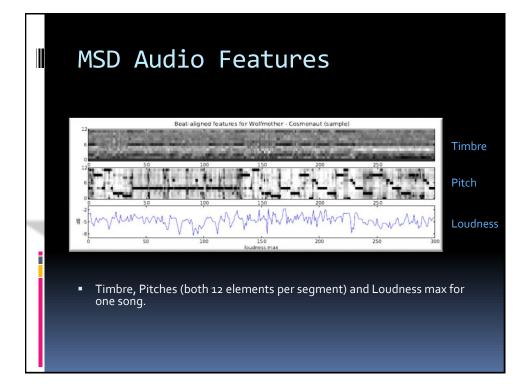
artist_familiarity artist_id artist_location artist_mbid artist_mbtags_count artist_playmeid artist_terms_freq audio_md5 bars_start beats_start duration energy key_confidence mode num_songs release_7digitalid sections_start segments_loudness_max segments_loudness_start segments_start similar_artists song_id tatums_confidence tempo time_signature_confidence track_7digitalid year

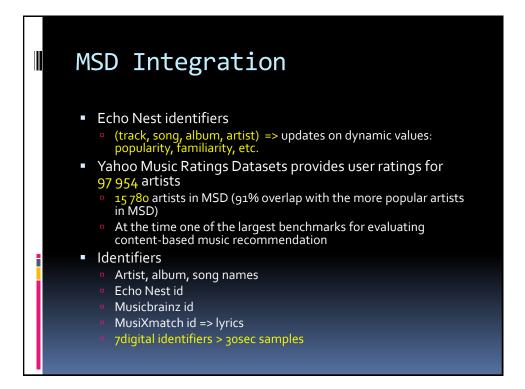
analysis_sample_rate

artist_7digitalid artist_hotttnesss artist_latitude artist_longitude artist_mbtags artist_mame artist_terms artist_terms artist_terms_weight bars_confidence beats_confidence danceability

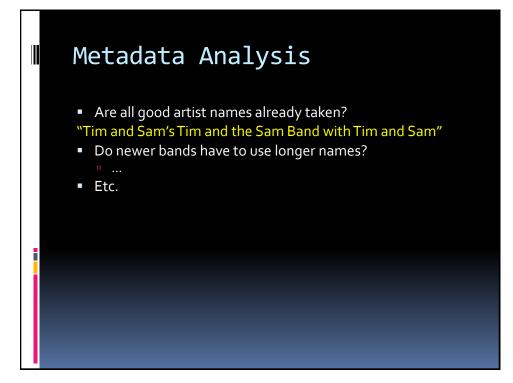
end_of_fade_in key loudness mode_confidence release sections_confidence segments_confidence segments_loudness_max_time segments_pitches

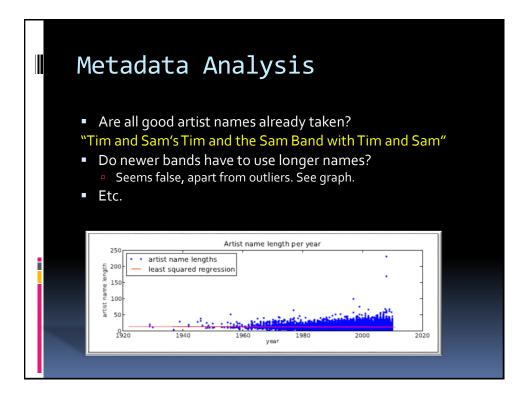
segments_timbre song_hottnesss start_of_fade_out tatums_start time_signature title track_id

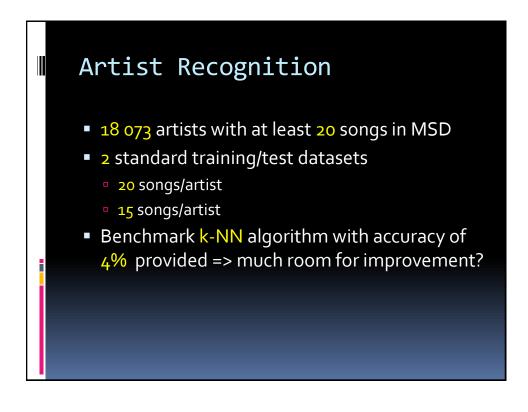




MSD Usage Metadata Analysis Artist Recognition Automatic Music Tagging Recommendation Cover Song Recognition SecondHandSong Dataset 18 196 covers of 5 854 songs Most methods based on chroma features Lyrics Mood prediction Year Prediction





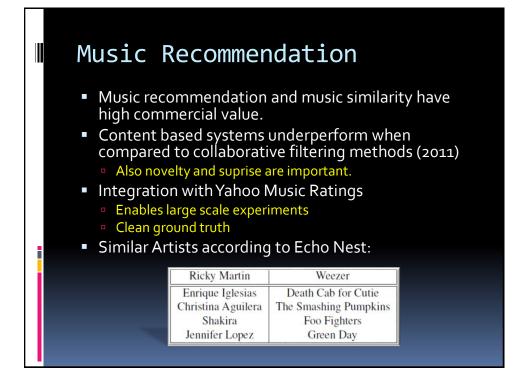


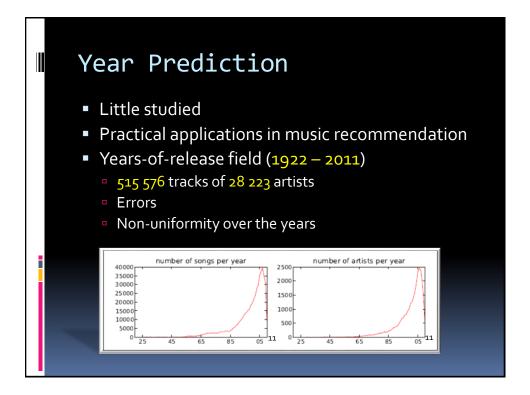
Automatic Music Tagging

Core of MIR research for many years

- 300 most popular terms in The Echo Nest
- Split all artists in training/test sets according to terms
- Correlations between artist names and genre, or year and genre etc.

artist	EN terms	musicbrainz tags
Bon Jovi	adult contemporary arena rock	hard rock glam metal
Britney Spears	80s teen pop soft rock female	american pop american dance



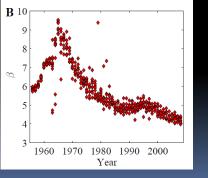


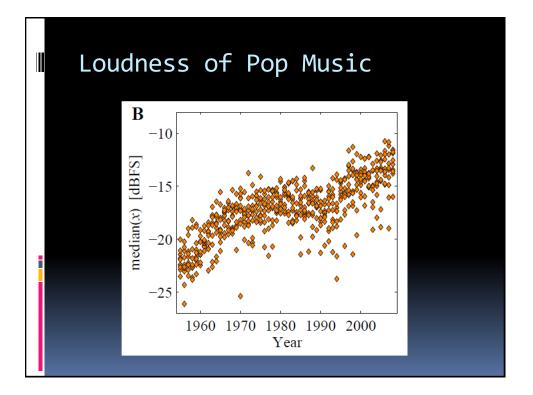
Vear P	redictic	on		
 Vowpal & W of the feature application of Table shows average al the square year. Benchmark 	redicted year is the a abbit (VW): regressio res using gradient des of T on the features o posolute difference betwe proot of the average squa average release year as this baseline.	on by learn scent => p of the song en predicte ared differen	ning a linear f predicted yea) d and actual ye nce between pi	transformation T or is equal to the par redicted and actual
1	method	diff	sq. diff	
	constant pred.	8.13	10.80	
	1-NN	9.81	13.99	
	50-NN	7.58	10.20	
	VW	6.14	8.76	

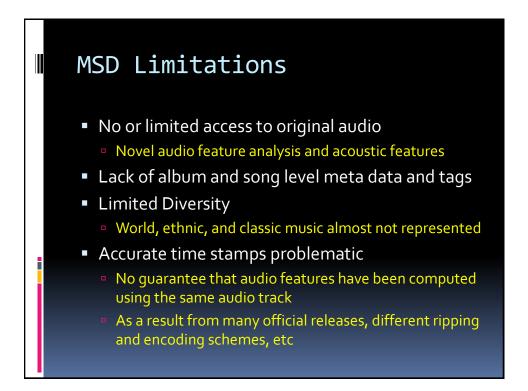
Evolution of Pop Music

Measuring the evolution of contemporary western popular music, J. Serra, A. Corral, M. Boguna, M. Haro and J.L. Arcos, *2012*

- The distributions of timbre codewords are fitted to a power-law distribution with parameter β.
- Lower β indicates less timbre variety, i.e., frequent code words become more frequent and infrequent ones less frequent.
- More homogeneity in timbre







the Million Song Dataset Challenge

B. McFee, et al., WWW 2012 Companion, April 16-20 2012, Lyon, France.

Personalized music recommendation challenge.

Goal:

 predict the songs that a user will listen to, given the user's listening history and full information (including meta-data and content analysis) for all songs.

the Million Song Dataset Challenge

http://www.kaggle.com/c/msdchallenge

"What is the task in a few words? You have:

- 1) the full listening history for 1M users,
- 2) half of the listening history for 110K users (10K validation set, 100K test set), and
- 3) you must predict the missing half. .."

Winner: *aio* with a MAP@k score of 0.17910 (MAP@k = Mean average precision over k queries)

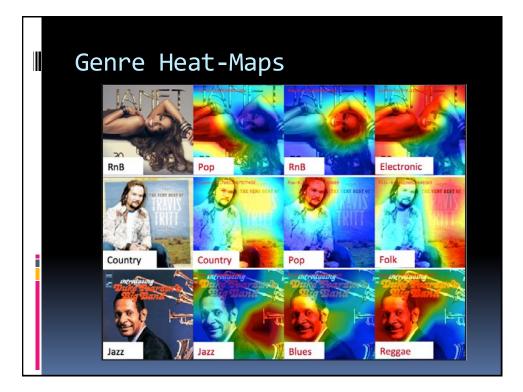
Future (of 2012)

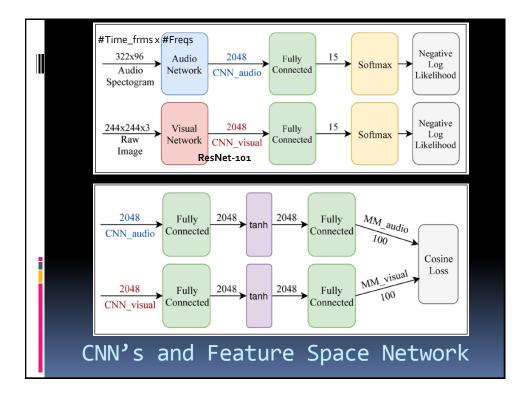
- Success? Time will tell.
- Hopefully used as one of the default benchmarks
- Depends on efforts of research community
- Preserving commonality and comparability
- Important for visibility of MIR research
- Subsets on UCI Machine Learning Repository

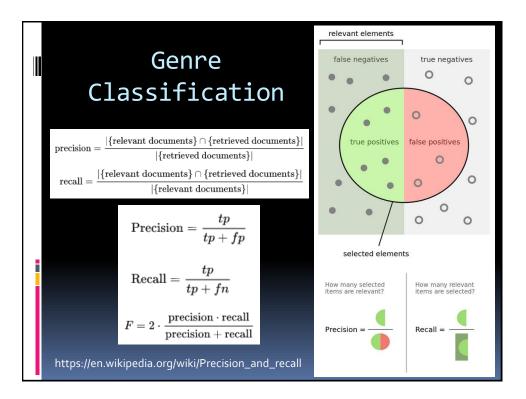
2021: Number of citations 1211. 2022: Number of citations 1378 Recent citations in work on recommender systems, etc. <u>Example: https://zenodo.org/record/1240485#.W78ZtPloSUk</u> MSD-I: Million Song Dataset with Images for Multimodal Genre Classification

Multimodal Deep Learning for Music Genre Classification. Transactions of the International Society for Music Information Retrieval Oramas, S., et al. (2018)

- learn and combine multimodal data representations for music genre classification
- deep neural networks are trained with:
 - audio tracks
 - text reviews
 - cover art images
- single label genre classification (only A + V)
 - using Million Songs Data set (MSD-I)
- multi label genre classification (A + V + T)
 - using their MuMu (combines Amazon Review dataset)

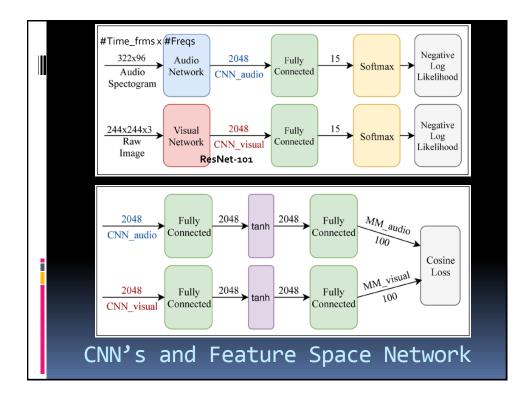






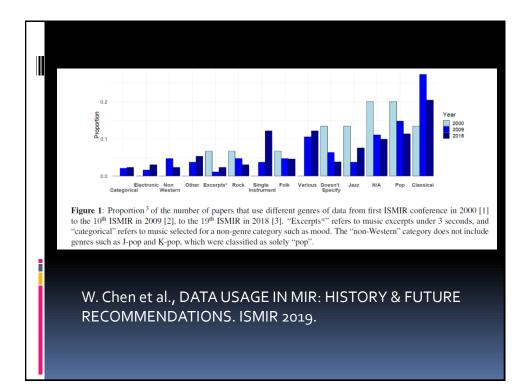
Genre Classification

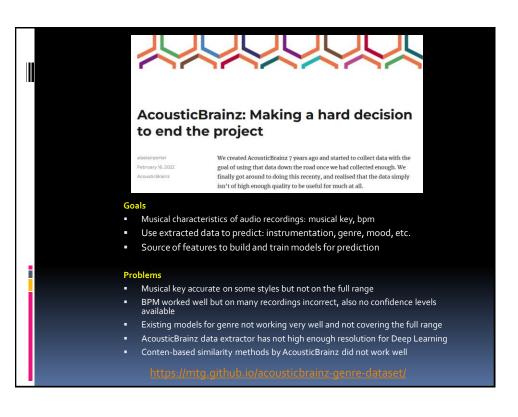
Input	Model	Precision	Recall	F1
Audio	CNN_Audio	0.385 ± 0.006	0.341 ± 0.001	0.336 ± 0.002
	MM_Audio	0.406 ± 0.001	0.342 ± 0.003	0.334 ± 0.003
	CNN_Audio + MM_Audio	0.389 ± 0.005	0.350 ± 0.002	0.346 ± 0.002
Video	CNN_VISUAL	0.291 ± 0.016	0.260 ± 0.006	0.255 ± 0.003
	MM_VISUAL	0.264 ± 0.005	0.241 ± 0.002	0.239 ± 0.002
	CNN_VISUAL + MM_VISUAL	0.271 ± 0.001	0.248 ± 0.003	0.245 ± 0.003
$\mathbf{A} + \mathbf{V}$	CNN_AUDIO + CNN_VISUAL	0.485 ± 0.005	0.413 ± 0.005	0.425 ± 0.005
	MM_AUDIO + MM_VISUAL	0.467 ± 0.007	0.393 ± 0.003	0.400 ± 0.004
	ALL	0.477 ± 0.010	0.413 ± 0.002	0.427 ± 0.000

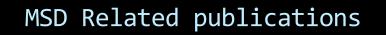


Genre	Human Annotator			Human Annotator Neural Model			
	Audio	Visual	$\mathbf{A} + \mathbf{V}$	Audio	Visual	$\mathbf{A} + \mathbf{V}$	
Blues	0	0.50	0.67	0.05	0.36	0.42	
Country	0.40	0.60	0.31	0.37	0.21	0.40	
Electronic	0.62	0.44	0.67	0.64	0.44	0.68	
Folk	0	0.33	0	0.13	0.23	0.28	
Jazz	0.62	0.38	0.67	0.47	0.27	0.49	
Latin	0.33	0.33	0.40	0.17	0.08	0.13	
Metal	0.80	0.43	0.71	0.69	0.49	0.73	
New Age	0	0	0	0	0.12	0.10	
Рор	0.43	0.46	0.42	0.39	0.43	0.49	
Punk	0.44	0.29	0.46	0.04	0	0.30	
Rap	0.74	0.29	0.88	0.73	0.39	0.73	
Reggae	0.67	0	0.80	0.51	0.34	0.55	
RnB	0.55	0	0.46	0.45	0.31	0.51	
Rock	0.58	0.40	0.40	0.54	0.20	0.58	
World	0	0.33	0	0	0	0.03	
Average	0.41	0.32	0.46	0.35	0.25	0.43	









https://www.researchgate.net/publication/220723656 __The__Million__Song__Dataset

Some examples:

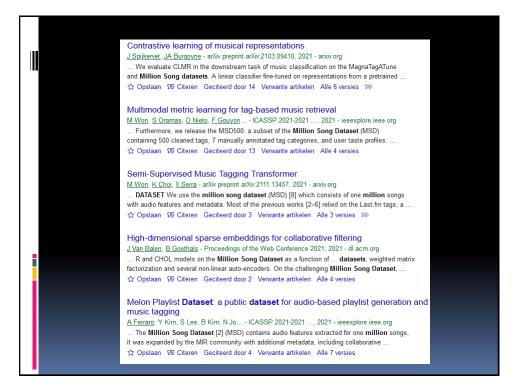
H. Eghbal-Zadeh, M. Dorfer, G. Widmer, A Cosine-Distance based Neural Network for Music Artist Recognition using Raw I-vector Features, Proceedings of the 19th International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5–9, 2016

K. Choi, G. Fazekas, M. Sandler, K. Cho, Convolutional Recurrent Neural Networks for Music Classification, arXiv:1609.04243v1 [cs.NE] 14 Sep 2016

Oramas S., Nieto O., Sordo M., & Serra X. (2017) A Deep Multimodal Approach for Cold-start Music Recommendation. https://arxiv.org/abs/1706.09739 J. Kim, J. Urbano, C.C.S. Liem, A. Hanjalic, One deep music representation to rule them all? A comparative analysis of different representation learning strategies, Neural Computing and Applications, Vol. 32, pp 1067 - 1093, 2020 https://link.springer.com/article/10.1007/s00521-019-04076-1

Uses MSD

- how effective are various deep representation learning strategies for multitask learning
- desired properties of a deep representation learning
- pre-trained music representation networks for multiple semantic learning sources.



Next Week's ToDo's

API Paper Selection

 For next time select a research paper on some audio related subject, that you would like to present and send the complete reference by email to <u>erwin@liacs.nl</u>

Audio Features Workshop

https://www.ismir.net/conferences/ismir2021.html

- S. Showdhury, G. Widmer, ON PERCEIVED EMOTION IN EXPRESSIVE PIANO PERFORMANCE: FURTHER EXPERIMENTAL EVIDENCE FOR THE RELEVANCE OF MID-LEVEL PERCEPTUAL FEATURES, ISMIR 2021, pp128 – pp134
- B. Cornelissen, W. Zuidema, J.A. Burgoyne, COSINE CONTOURS: A MULTI PURPOSE REPRESENTATION FOR MELODIES, ISMIR 2021, pp135 – pp142.

Data Sets

- D. Foster, S. Dixon, FILOSAX: A DATASET OF ANNOTATED JAZZ SAXOPHONE RECORDINGS, ISMIR 2021, pp205 – pp212.
- M. Zehren, M. Alunno, P. Bientinesi, ADTOF: A Large Dataset of Nonsynthetic Music for Automatic Drum Transcription, ISMIR2021, pp818 – pp824.

Some Links for Finding Research Papers

- <u>https://www.isca-</u> <u>speech.org/iscaweb/index.php/online-archive</u>
- https://dblp.org/search?q=interspeech
- https://dblp.org/db/conf/ismir/index.html

See also:

https://liacs.leidenuniv.nl/~bakkerem2/api/

http://www.music-ir.org/mirex/wiki/MIREX HOME

August 30th 2020

- = 2020:Audio Fingerprinting <TC: Chung-Che Wang>
- 2020:Audio Classification (Train/Test) Tasks <TC: Yun Hao (IMIRSEL)>, including
 - Audio US Pop Genre Classification
 - Audio Latin Genre Classification
 - Audio Lutin Osine Classification
 Audio Music Mood Classification
 - Audio Classical Composer Identification
- 2020:Audio K-POP Mood Classification <TC: Yun Hao (IMIRSEL)>
- = 2020:Audio K-POP Genre Classification <TC: Yun Hao (IMIRSEL)>
- = 2020:Audio Tag Classification <TC: Emre Demir>

September 6th 2020

- = 2020:Audio Chord Estimation <TC: Johan Pauwels>
- = 2020:Audio Cover Song Identification <TC: Yun Hao (IMIRSEL)>
- = 2020:Audio Downbeat Estimation <TC: Mickaël Zehren>
- = 2020:Audio Key Detection <TC: Johan Pauwels>
- = 2020:Audio Melody Extraction <TC: An-Qi Huang>
- = 2020:Patterns for Prediction (offshoot of 2017:Discovery of Repeated Themes & Sections) <TC: Berit Janssen, Iris Ren, and Tom Collins>
- 2020:Query by Singing/Humming <TC: Makarand Velankar>
- 2020:Multiple Fundamental Frequency Estimation & Tracking <TC: Yun Hao (IMIRSEL)>
- September 13th 2020
 - NEW! 2020:Singing_Transcription_from_Polyphonic_Music <TC: Jun-You Wang>
- = 2020:Lyrics Transcription (former: Automatic Lyrics-to-Audio Alignment) <TC: Georgi Dzhambazov, Daniel Stoller, Chitralekha Gupta>

	IREX 2021 Challenges	Dage
<u> </u>	. (ps.//www.music-in.org/minex/wiki/2021.Main_	rage
	MIREX 2021 Possible Evaluation Tasks	
	2021:Audio Beat Tracking	
	= 2021:Audio Chord Estimation	
	2021:Audio Cover Song Identification	
	2021:Audio Downbeat Estimation	
	2021:Audio Fingerprinting	
	= 2021:Audio Key Detection	
	= 2021:Audio Melody Extraction	
	= 2021:Audio Onset Detection	
	= 2021:Audio Tag Classification	
	= 2021:Audio Tempo Estimation	
	= 2021:Automatic Lyrics Transcription	
	= 2021:Drum Transcription	
	= 2021:Multiple Fundamental Frequency Estimation & Tracking	
	= 2021:Music Detection	
	= 2021:Patterns for Prediction (offshoot of 2017:Discovery of Repeated Themes & Sections)	
	= 2021:Query by Singing/Humming	
	= 2021:Query by Tapping	
	2021:Real-time Audio to Score Alignment (a.k.a Score Following)	
	2021:Set List Identification	
	= 2021:Structural Segmentation	

ISMIR 2016

https://wp.nyu.edu/ismir2016/event/proceedings/

MIREX 2016 Possible Evaluation Tasks

Grand Challenge on User Experience (J-DISC) Grand Challenge on User Experience

Audio Classification:

Audio US Pop Genre Classification Audio Latin Genre Classification Audio Music Mood Classification Audio Classical Composer Identification 2016: Audio K-POP Mood Classification 2016: Audio K-POP Genre Classification

Audio Cover Song Identification Audio Tag Classification Audio Music Similarity and Retrieval Symbolic Melodic Similarity Audio Onset Detection Audio Key Detection Real-time Audio to Score Alignment (a.k.a Score Following)

Query by Singing/Humming

Audio Melody Extraction Multiple Fundamental Frequency Estimation & Tracking Audio Chord Estimation **Query by Tapping** Audio Beat Tracking Structural Segmentation **Audio Tempo Estimation** Discovery of Repeated Themes & Sections Audio Downbeat Estimation Audio Fingerprinting **Singing Voice Separation** Set List Identification Audio Offset Detection

ISMIR 2016

https://wp.nyu.edu/ismir2016/event/proceedings/

Some Examples (random, many more):

- Music Recommendation
- Composer Recognition
- Cover Song Identification
- Deep Learning: Chord Estimation, Medoly Extraction, Automatic Tagging
- Symbolic: Extraction ground-truth from MIDI-files, etc.
- Rhythm: beat tracking with Recurrent Neural Networks
- Brain Beats: Tempo Extraction from EEG Data

ISMIR 2018 Proceedings

https://dblp.org/db/conf/ismir/ismir2018

- Deep Learning !
- Music Transcription
- Chord Recognition
- Music Generation
- Playlist generation
- Singing Voice detection
- Etc. etc.

