

SNR of idea	IADC
Substituting in (1) =>	$\overline{\text{SNR}}_{\text{ideal}} = 6.02 \cdot \text{N} + 1.76 \text{[dB]} $ ⁽²⁾
	One additional bit SNR increased by 6 dB
Real SNR lower b - Real signals have nois - Forcing input to full so - Real ADCs have addit	se. cale unwise. tional noise (aperture jitter, non-linearities etc).
<i>Actually</i> (2) needs correct & Nyquist freq. Processir	ction factor depending on ratio between sampling freq
	I M. Audio Processing and Indexing

$$\frac{Vector Space}{V is a vector space over K if the following is true:
- if $u, v \in V$, then $u + v \in V$ we should define
these operations
- if $u \in V$ and $A \in K$, then $A u \in V$ $u + v$ and
 $A u$
associative. $u, v, w \in V$, then $(u + v) + w = u + (v + w)$
21 $\exists 0 \in V$ such that $0 + u = u + 0 = u$ the V
31 given $u \in V$, $\exists - u \in V$ such that $u + (-u) = 0$
commutative. $\forall U, v \in V$: $u + v = v + u$
distributive $\leq V < c \in K$: $c(u + v) = cu + cV$ for all $u, v \in V$
 $\leq V < a, b \in K$: $(a + b)v = av + bv$ for all $v \in V$
 $\exists V < a, b \in K$: $(a + b)v = a(bv)$ for all $v \in V$
 $\exists V < u \in V$ $i \cdot u = u$ (where $i \in K$)
 $\exists V < u \in V$ $i \cdot u = u$ (where $i \in K$)
 $\exists V < u \in V$ $i \cdot u = u$ (where $i \in K$)$$

Other Examples of Functions of IR with are Vector Spaces:
-V the set of all functions of IR with IR
-V the set of all continuous functions of IR with IR
-V the set of all differentiable functions of IR with IR
-V the subspace generated by the functions
$$f(t) = e^t$$
 and
 $g(t) = e^{2t}$ (for all te IR.)
[Just checkthint] and B] hold. As IR is a field the claim
that V is vector space follows.].

Linearly Dependence
Ret V be a vector space over the field K.
Ret V, ..., Vn EV. V, ..., Vn are linearly dependent over K
If
$$\exists a_1, ..., a_n \in K$$
 not all equal 0 such that $a_1v_1 + ... + a_nv_n = 0$.
- If there do not exist such numbers, i.e., if $a_1, ..., a_n \in K$
such that $a_1v_1 + ... + a_nv_n = 0$, then $a_2 = 0$ $\forall i = 1, ..., n$.
then $v_{1T} - ... v_n$ are linearly independent.
Example: - Ret $V = \mathbb{R}^{h}$, then $E_1 = (0, 0, ..., 0)$ are
linearly independent. $E_n = (0, 0, ..., 1)$
- also e^{t}, e^{2t} are linearly independent.

Basis
If elements
$$V_1, \dots, V_n \in V$$
 generate V , and $V_{1,1}, \dots, V_n$ are
linearly independent. $\{V_1, \dots, V_n\}$ is called a basis of V .
- $V_1, \dots, V_n \in V$ generate V , that is every element of V can
be expressed as a linear combination of $V_{1,1}, \dots, V_n$.
- and indeed if $X_1V_1 + \dots + X_mV_n = X = V_nV_1 + \dots + V_nV_n$
with $X_{1,1} \dots - X_m SY_1, \dots, Y_n \in K$ and form a $X \in V$,
then $(X_1 - Y_1)V_1 + \dots + (X_n - Y_n)V_n = 0$
thus $X_1 = Y_{1,1}, \dots, X_n = Y_n$. => in a unique way

Scalar Roducts
het V a vector space over a field K. (red)
A scalar product on V is an association which to
any pair v,
$$v \in V$$
 associates a scalar $\langle v, v \rangle$ (dso v.v)
satisfying: If $\forall v_i v \in V = \langle v, v \rangle = \langle u, v \rangle$
21 het $u_i v_i v \in V$, then $\langle u_i v + v \rangle = \langle u_i v \rangle + \langle u_i v \rangle$
21 het $u_i v_i v \in V$, then $\langle u_i v \rangle = \langle u_i v \rangle$
21 het $u_i v_i v \in V$, then $\langle u_i v \rangle = \langle u_i v \rangle$
31 het $e \in K$, then $\langle u_i v \rangle = \langle u_i v \rangle$
and $\langle u_i \rangle = \langle \langle u_i v \rangle$
A scalar product is hon-degenerate, if also:
31 If $v \in V$ and $\langle v_i w \rangle = o$ for all $w \in V$, then $v = 0$.
Examples of Scalar Products.
- $V = K^n = \langle x_i y \rangle$: $x_i y \rightarrow x \cdot y = x_i y_i + x_i y_i + \dots + x_n y_n$
is a scalar product. Ether is the istimuted det-product:
- het V be the space of continuous real-values
functions on the view of $[o_i, i]$. If $f_i g \in V$.
 $\langle f_i g \rangle = \int_0^1 f(t) g(t) dt$.
Then $\langle f_i g \rangle$ is a scalar product. <= Homework I: Proof

Orthosonality
V, w & V are orthosonal: V I w if
$$\langle V, w \rangle = 0$$
.
Norm
= De norm of V & W can be defined by $||V|| = \sqrt{\langle V, V \rangle}$
Hischem that: $||CV|| = |C| ||V||$
- V & V in a monit vector if $||V|| = 1$
($\sqrt{||V||}$ is always a unit vector. if $|V \neq 0$),

$$\begin{split} \underbrace{\text{Some Theorems}}_{We have the following theorems}: \\ \underbrace{\text{The lf } V, w \in V \text{ and } V \pm W (i.e. \langle V, W \rangle = 0)_{-} \text{ then } (Pythagaas) \\ \|v + w\|^{2} = \|v\|^{2} + \|w\|^{2} \\ \underbrace{\text{Pred}}_{i}: \|v + w\|^{2} = \langle v + w, v + w \rangle = \langle v_{i}v \rangle + 2\langle v_{i}w \rangle + 4\omega_{i}w \gamma \\ &= \|v\|^{2} + \|w|^{2} \|w|^{2} \\ \underbrace{\text{Pred}}_{v \pm w} \\ \underbrace{\text{Predbyson law}}_{v \pm w}: \\ \frac{W_{i}w \in V \text{ we have } \|v + w\|^{2} + \|v - w\|^{2} = 2\|v\|^{2} + 2\|w\|^{2}. \\ \text{Homework II: Proof Parallelogram Law.} \end{split}$$

Example Fourier Coefficients.
Let V be the space of continuous functions on
$$[-\Pi,\Pi]$$
.
Let $f: x \to \sin Kx$, where $K \in \mathbb{Z}_{>0}$.
Then $\|\|f\| = \sqrt{cf_{1}f_{7}} = \left(\int_{-\pi}^{\Pi} \sin^{2} kx \, dx\right)^{\frac{1}{2}} = \sqrt{\Pi}$
In this case, if g is any continuous function on $[-\Pi,\Pi]$,
then the Fourier coefficient of g widh respect to f is
 $\frac{cq_{1}f_{7}}{cf_{1}f_{7}} = \frac{1}{\Pi} \int_{-\pi}^{\Pi} g(x) \sin kx \, dx$

The Complex (C) Case
feet V be a vector space oner the complex numbers.
A hermitian product on V is a vule < VIW>
satisfying. If < VIW> = for all VIWEV
2] UIVIWEV, then = +
3] if
$$\sigma \in C$$
, then = +
 = $\sigma < UIV>$
 >> of for all VEV and
 >> of for the former to be fore!
Also the former coefficient and the
Projection of V along W are as before.

Example
het V be the space of continuous complex-valued
functions on the interval
$$[-\pi, \pi]$$
.
- If $f,g \in V$, we define $< :, :>$ as follows:
 $< f_ig> = \int_{\pi}^{\pi} f(t) \overline{g(t)} dt$
This can be shown using standard properties of the integral,
ble a positive definite hermitican product.
- het $f_n(t) = e^{int}$
All if $n + m$, then $< f_n, f_n > = \int_{\pi}^{\pi} e^{int} e^{imt} dt = \int_{\pi}^{\pi} e^{ikt} dt = 0$
if $n = m$, then $< f_n, f_n > = \int_{\pi}^{\pi} e^{int} e^{-int} dt = \int_{\pi}^{\pi} dt = 2\pi$
- If $f \in V$, then its Fourier coefficient with
respect to f_m in equal to:
 $\frac{< f_i, f_n > = \frac{1}{2\pi} \int_{\pi}^{\pi} f(t) e^{-int} dt}{< f_n(t) e^{-int} dt}$.

Note: Al shows that for and for with u + un are orthogonal. Furthermore it can be shown that {ful, n (N) constitutes abasis for V. Hence Selt, ezit, esit] is an orthogonal basis of V the vector space of continuous complex-valued functions on the interval [-17, 17]. (Note, by dividing through < fr. fm) Z

LML Audio Processing and Indexing


```
Recap:
               Complex numbers C:
                I RCC; sum and products for these numbers ERCC
                 as before.
                2] ] complex unber i such that i2 = -1
                3] Every complex number can be uniquely expressed as a + bi,
with a, b < IR
                y a, B, de C, then (aB) = a (B)
                                    (\alpha + \beta) + \gamma = \alpha + (\beta + \beta)
                                      a (B+ )= a B + af
                                      (B+8) = Ba+ f +
                                      abope
                                      d+B = Bta
                    If I e IR then love or
                    IF OER the og= 0
                    Furthemole, a + (-1) a = 0.
                   as atbi , B = ctdi, the atB = (atbi) + (ctdi) =
                                                    = (a+c) + (b+d) i
                                           and Q.B = (a+bi)(c+di)
                                                    = ac + ad i + bei + bdi<sup>2</sup>
                                                      = (ac - bd) + (ad + bc) i
                   , and if de IR dor = d (at bi) = da + dbi
                   \overline{\alpha} = \overline{\alpha + bi} = \alpha - bi = 1 = \overline{\alpha} = \alpha^2 + b^2 \in \mathbb{R}
                   or is conjugate of a
                                          47
```