

The Million Song Dataset

"There is no data like more data" Bob Mercer of IBM (1985).

T. Bertin-Mahieux, D.P.W. Ellis, B. Whitman, P. Lamere, **The Million Song Dataset**, In Proceedings of the 12th International Society for Music Information Retrieval Conference (ISMIR 2011), 2011.

(2022: 1481 citations)

Introduction

- The Million Song Dataset (MSD)
 - metadata and extracted audio features for a million songs from The Echo Nest.
- Licensing
 - GZTAN a smaller dataset
 - Magnatagatune
 - MSD Legally available

Other audio data sets:

- http://www.audiocontentanalysis.org/data-sets/
- http://www.ismir.net/resources/datasets/

MIREX 2021 http://www.music-ir.org/mirex/wiki/MIREX_HOME

- Chord Estimation, Cover Song Detection, Melody Extraction,
- Lyrics Transcription, Drum Transcription, Music Detection
- Query by Singing, Humming
- Set List Identification: determine the song sequence in a live concert

Previous challenges on MIREX:

- Multiple Fundamental Frequency Estimation and Tracking
- K-POP Mood and Genre Classification
- Singing Transcription, Lyrics Transcription
- Audio Key detection, Audio Fingerprinting, and Mood-, Genre-, Tag-Classification, etc

MSD Goals: Reference Benchmark Dataset

- Scale MIR related research to commercial sizes
- Provide reference dataset for research evaluation
- Alternative shortcut for The Echo Nest's API
 - >=2016 only Spotify https://en.wikipedia.org/wiki/The_Echo_Nest
 - https://acousticbrainz.org/ (data collection stopped 2022-02-16)
 - https://musicbrainz.org/
- API of the 7digital service, 30-s audio previews
- Kick start new MIR researchers

MIR Datasets Critical Requirements

- Algorithms should be scalable
- Realistically sized datasets are necessary

dataset	# songs / samples	audio
RWC	465	Yes
CAL500	502	No
GZTAN genre	1,000	Yes
USPOP	8,752	No
Swat10K	10,870	No
Magnatagatune	25,863	Yes
OMRAS2	50,000?	No
MusiCLEF	200,000	Yes
MSD	1,000,000	No

G. Tzanetakis et al. 2002

MusiCLEF 2012: http://www.cp.jku.at/datasets/musiclef/index.html

MSD Creation

- The Echo Nest API with Python wrapper pyechonest. (*)
- Echo Nest provided:
 - Metadata: artist, title, etc.
 - Audio Features: short time scale global scale
 - Defined by Echo Nest Analyze API (per segment)
- Additional info from musicbrainz server
- 5 Threads during 10 days
- Code available (not relevant anymore)
- *) 'Retired' since 2016
 Alternative: http://acousticbrainz.org/ (data collection stopped 2022-02-16)

MSD Content

- 280 GB of data
- 1,000,000 songs/files
- 44,745 unique artists
- 7,643 unique terms (Echo Nest tags)
- 2,321 unique musicbrainz tags
- 43, 943 artists with at least one term
- 2, 201, 916 asymmetric similarity relationships
- 515, 576 dated tracks starting from 1922

MSD Content

- HDF₅ format
- 55 fields per song
- Audio Features
 - Timbre
 - Pitches
 - Loudness max
 - Beats
 - Bars (~3 4 beats)
 - Note onsets/tatum

analysis_sample_rate artist_familiarity artist_id artist_location artist_mbid artist_mbtags_count artist_playmeid artist_terms_freq audio_md5 bars_start

beats_start duration

energy key_confidence mode num_songs

num_songs release_7digitalid sections_start segments_loudness_max segments_start segments_start similar_artists song_id

tatums_confidence tempo

time_signature_confidence track_7digitalid artist_7digitalid artist_hottmesss artist_latitude artist_longitude artist_mbtags artist_name

artist_terms artist_terms_weight bars_confidence

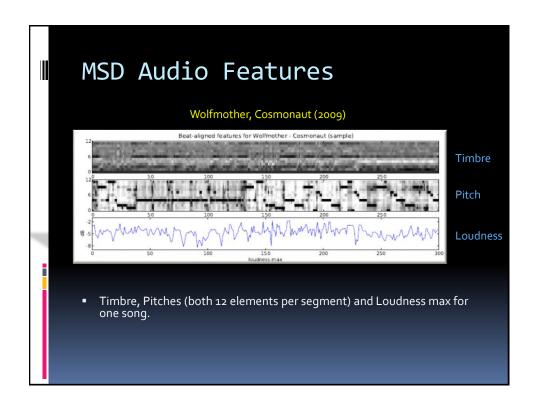
beats_confidence danceability end_of_fade_in

loudness mode_confidence release sections_confidence

segments_confidence segments_loudness_max_time

segments_pitches segments_timbre song_hottnesss start_of_fade_out tatums_start

time_signature title track_id



MSD Integration

- Echo Nest identifiers
 - (track, song, album, artist) => updates on dynamic values: popularity, familiarity, etc.
- Yahoo Music Ratings Datasets provides user ratings for 97 954 artists
 - 15 780 artists in MSD (91% overlap with the more popular artists in MSD)
 - At the time one of the largest benchmarks for evaluating content-based music recommendation
- Identifiers
 - Artist, album, song names
 - Echo Nest id
 - Musicbrainz id
 - MusiXmatch id => lyrics
 - 7digital identifiers > 30sec samples

Note: Spotify and others use ISRC (International Standard Recording Code)

MSD Usage Examples

- Metadata Analysis
- Artist Recognition
- Automatic Music Tagging
- Recommendation
- Cover Song Recognition
 - SecondHandSong Dataset 18 196 covers of 5 854 songs
 - Most methods based on chroma features
- Lyrics
 - Mood prediction
- Year Prediction

Metadata Analysis

- Are all good artist names already taken?
- "Tim and Sam's Tim and the Sam Band with Tim and Sam"
- Do newer bands have to use longer names?
- Etc.

Metadata Analysis

- Are all good artist names already taken?
- "Tim and Sam's Tim and the Sam Band with Tim and Sam"
- Do newer bands have to use longer names?
 Seems false, apart from outliers. See graph.
- Etc.

Artist name length per year

artist name lengths
least squared regression

150
1920
1940
1960
1960
1980
2000
2020

Artist Recognition

- 18 073 artists with at least 20 songs in MSD
- standard training/test datasets
 - 20 songs/artist
 - 15 songs/artist
- Benchmark k-NN algorithm with accuracy of 4% provided => much room for improvement?

Automatic Music Tagging

- Core of MIR research for many years
- 300 most popular terms in The Echo Nest
- Split all artists in training/test sets according to terms
- Correlations between artist names and genre, or year and genre etc.

artist	EN terms	musicbrainz tags
Bon Jovi	adult contemporary arena rock 80s	hard rock glam metal american
Britney Spears	teen pop soft rock female	pop american dance

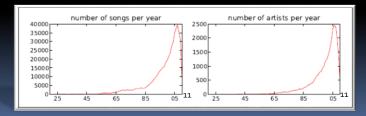
Music Recommendation

- Music recommendation and music similarity have high commercial value.
- Content based systems underperform when compared to collaborative filtering methods (2011)
 - Also novelty and suprise are important.
- Integration with Yahoo Music Ratings
 - Enables large scale experiments
 - Clean ground truth
- Similar Artists according to Echo Nest:

Ricky Martin	Weezer
Enrique Iglesias	Death Cab for Cutie
Christina Aguilera	The Smashing Pumpkins
Shakira	Foo Fighters
Jennifer Lopez	Green Day

Year Prediction

- Little studied
- Practical applications in music recommendation
- Years-of-release field (1922 2011)
 - 515 576 tracks of 28 223 artists
 - Errors
 - Non-uniformity over the years



Year Prediction

- K-NN: the predicted year is the average of the k nearest training songs
- Vowpal & Wabbit (VW): regression by learning a linear transformation T of the features using gradient descent => predicted year is equal to the application of T on the features of the song
- Table shows
 - average absolute difference between predicted and actual year
 - the square root of the average squared difference between predicted and actual year.
- Benchmark average release year predicted from the training set.
 VW improves this baseline.

method	diff	sq. diff
constant pred.	8.13	10.80
1-NN	9.81	13.99
50-NN	7.58	10.20
VW	6.14	8.76

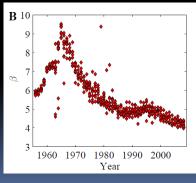
Smaller is better

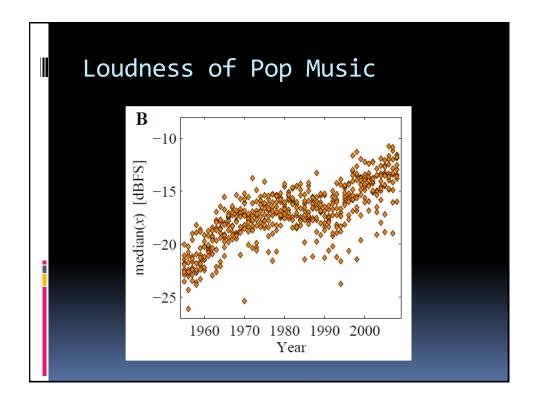
Evolution of Pop Music

Measuring the evolution of contemporary western popular music, J. Serra, A. Corral, M. Boguna, M. Haro and J.L. Arcos, 2012

Timbre of Pop Music

- The distributions of timbre codewords are fitted to a power-law distribution with parameter β.
- Lower β indicates less timbre variety, i.e., frequent code words become more frequent and infrequent ones less frequent.
- More homogeneity in timbre





MSD Limitations

- No or limited access to original audio
 - Novel audio feature analysis and acoustic features
- Lack of album and song level meta data and tags
- Limited Diversity
 - $\ ^{\square}$ World, ethnic, and classic music almost not represented
- Accurate time stamps problematic
 - No guarantee that audio features have been computed using the same audio track
 - As a result from many official releases, different ripping and encoding schemes, etc

the Million Song Dataset Challenge

B. McFee, et al., WWW 2012 Companion, April 16-20 2012, Lyon, France.

Personalized music recommendation challenge.

Goal:

 predict the songs that a user will listen to, given the user's listening history and full information (including meta-data and content analysis) for all songs.

the Million Song Dataset Challenge

http://www.kaggle.com/c/msdchallenge

"What is the task in a few words?" You have:

- 1) the full listening history for 1M users,
- 2) half of the listening history for 110K users (10K validation set, 100K test set), and
- 3) you must predict the missing half. .."

Winner: *aio* with a MAP@k score of 0.17910 (MAP@k = Mean average precision over k queries)

Future (of 2012)

- Success? Time will tell.
- Hopefully used as one of the default benchmarks
- Depends on efforts of research community
- Preserving commonality and comparability
- Important for visibility of MIR research
- Subsets on UCI Machine Learning Repository

2021: Number of citations 1211.

2022: Number of citations 1378 (March); 1481(October)

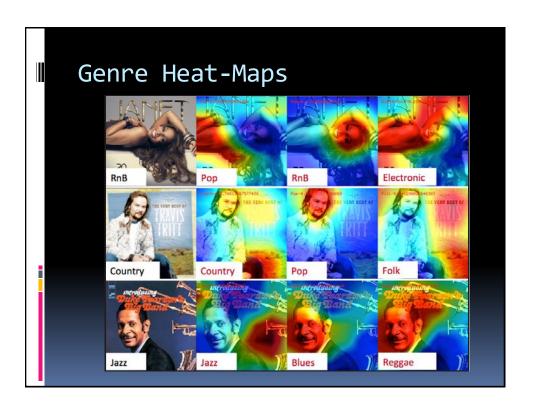
Recent citations in work on recommender systems, etc.

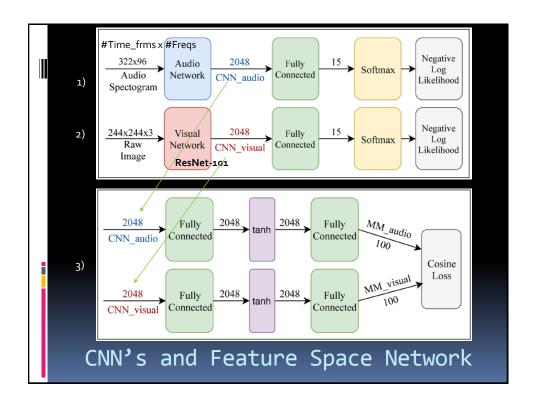
Example: https://zenodo.org/record/1240485#.W78ZtPloSUk

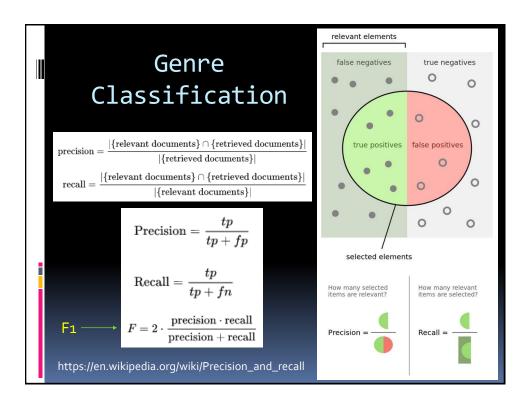
MSD-I: Million Song Dataset with Images for Multimodal Genre Classification

Multimodal Deep Learning for Music Genre Classification.
Transactions of the International Society for Music
Information Retrieval
Oramas, S., et al. (2018)

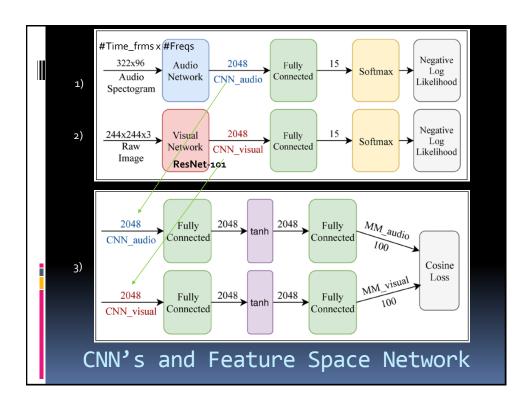
- learn and combine multimodal data representations for music genre classification
- deep neural networks are trained with:
 - audio tracks
 - text reviews
 - cover art images
- single label genre classification (only A + V)
 - using Million Songs Data set (MSD-I)
- multi label genre classification (A + V + T)
 - using their MuMu (combines Amazon Review dataset and the Million Song Dataset)







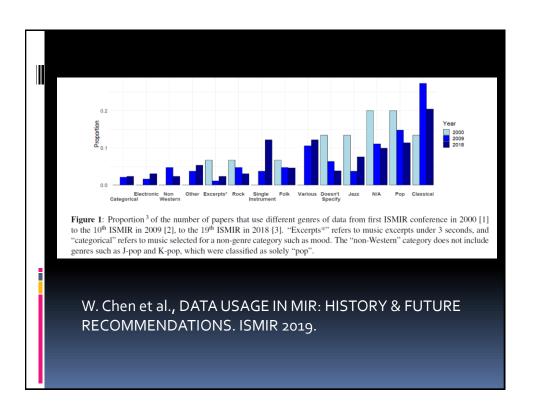
Input Audio	Model CNN Audio	Precision 0.385 ± 0.006	0.341 + 0.001	F1 0.336 ± 0.002
Audio	MM Audio	0.385 ± 0.006 0.406 ± 0.001	0.341 ± 0.001 0.342 ± 0.003	0.336 ± 0.002 0.334 ± 0.003
	CNN_Audio + MM_Audio	0.400 ± 0.001 0.389 ± 0.005	0.342 ± 0.003 0.350 ± 0.002	0.346 ± 0.003
Video	CNN_VISUAL	0.291 ± 0.016	0.260 ± 0.006	0.255 ± 0.003
	MM_VISUAL	0.264 ± 0.005	0.241 ± 0.002	0.239 ± 0.002
	CNN_VISUAL + MM_VISUAL	0.271 ± 0.001	0.248 ± 0.003	0.245 ± 0.003
$\boldsymbol{A} + \boldsymbol{V}$	CNN_AUDIO + CNN_VISUAL	0.485 ± 0.005	0.413 ± 0.005	0.425 ± 0.005
	MM_Audio + MM_Visual	0.467 ± 0.007	0.393 ± 0.003	0.400 ± 0.004
	ALL	0.477 ± 0.010	0.413 ± 0.002	0.427 ± 0.000



Genre	Human Annotator			Neural Model		
	Audio	Visual	$\mathbf{A} + \mathbf{V}$	Audio	Visual	$\mathbf{A} + \mathbf{V}$
Blues	0	0.50	0.67	0.05	0.36	0.42
Country	0.40	0.60	0.31	0.37	0.21	0.40
Electronic	0.62	0.44	0.67	0.64	0.44	0.68
Folk	0	0.33	0	0.13	0.23	0.28
Jazz	0.62	0.38	0.67	0.47	0.27	0.49
Latin	0.33	0.33	0.40	0.17	0.08	0.13
Metal	0.80	0.43	0.71	0.69	0.49	0.73
New Age	0	0	0	0	0.12	0.10
Pop	0.43	0.46	0.42	0.39	0.43	0.49
Punk	0.44	0.29	0.46	0.04	0	0.30
Rap	0.74	0.29	0.88	0.73	0.39	0.73
Reggae	0.67	0	0.80	0.51	0.34	0.55
RnB	0.55	0	0.46	0.45	0.31	0.51
Rock	0.58	0.40	0.40	0.54	0.20	0.58
World	0	0.33	0	0	0	0.03
Average	0.41	0.32	0.46	0.35	0.25	0.43

MSD-I: Million Song Dataset with Images for Multimodal Genre Classification

For data see:
https://zenodo.org/record/1240485#.XamLyngS-Uk



J. Kim, J. Urbano, C.C.S. Liem, A. Hanjalic, One deep music representation to rule them all? A comparative analysis of different representation learning strategies, Neural Computing and Applications, Vol. 32, pp 1067 - 1093, 2020 https://link.springer.com/article/10.1007/s00521-019-04076-1

- Uses MSD
- how effective are various deep representation learning strategies for multitask learning
- desired properties of a deep representation learning
- pre-trained music representation networks for multiple semantic learning sources.

Contrastive learning of musical representations J Spijkervet, JA Burgoyne - arXiv preprint arXiv:2103.09410, 2021 - arxiv.org We evaluate CLMR in the downstream task of music classification on the MagnaTagATune and Million Song datasets. A linear classifier fine-tuned on representations from a pretrained ... ☆ Opslaan 💯 Citeren Geciteerd door 14 Verwante artikelen Alle 6 versies 🕪 Multimodal metric learning for tag-based music retrieval M Won, S Oramas, O Nieto, F Gouyon... - ICASSP 2021-2021 ..., 2021 - ieeexplore.ieee.org ... Furthermore, we release the MSD500: a subset of the Million Song Dataset (MSD) containing 500 cleaned tags, 7 manually annotated tag categories, and user taste profiles. . ☆ Opslaan 99 Citeren Geciteerd door 13 Verwante artikelen Alle 4 versies Semi-Supervised Music Tagging Transformer M Won, K Choi, X Serra - arXiv preprint arXiv:2111.13457, 2021 - arxiv.org . DATASET We use the million song dataset (MSD) [8] which consists of one million songs with audio features and metadata. Most of the previous works [2-6] relied on the Last.fm tags, a ... ☆ Opslaan 99 Citeren Geciteerd door 3 Verwante artikelen Alle 3 versies >>> High-dimensional sparse embeddings for collaborative filtering J Van Balen, B Goethals - Proceedings of the Web Conference 2021, 2021 - dl.acm.org . R and CHOL models on the Million Song Dataset as a function of ... datasets, weighted matrix factorization and several non-linear auto-encoders. On the challenging Million Song Dataset, ... ☆ Opslaan 💯 Citeren Geciteerd door 2 Verwante artikelen Alle 4 versies Melon Playlist Dataset: a public dataset for audio-based playlist generation and music tagging A Ferraro, Y Kim, S Lee, B Kim, N Jo... - ICASSP 2021-2021 ..., 2021 - ieeexplore.ieee.org . The Million Song Dataset [2] (MSD) contains audio features extracted for one million songs, it was expanded by the MIR community with additional metadata, including collaborative ☆ Opslaan 99 Citeren Geciteerd door 4 Verwante artikelen Alle 7 versies

Music recommendation system approaches in machine learning SN Pasha, D Ramesh, S Mohmmad... - AIP Conference ..., 2022 - aip.scitation.org For this investigation we used the million song dataset available from kaggle. We used both the content based filtering and collaborate filtering algorithms to provide best music ☆ Opslaan 99 Citeren Verwante artikelen Discussion of 'Multi-scale Fisher's independence test for multivariate dependence' A Schrab, W Jitkrittum, Z Szabó, D Sejdinovic... - ..., 2022 - academic.oup.com the Million Song Dataset with \$X\$ consisting of 90 song features and \$Y\$ being the song's release ... (a) Power experiment using the Million Song Dataset with |\$X\$| consisting of 90 song ... ☆ Opslaan 59 Citeren Geciteerd door 1 Alle 9 versies Music Recommendation via Hypergraph Embedding V La Gatta, V Moscato, M Pennone.. , 2022 - ieeexplore.ieee.org ... on Neural Networks . We run experiments on songs and users collected from the Million Song dataset [10] and compared HEMR with state-of-the-art baselines. Our results show that not only do the ☆ Opslaan 99 Citeren Geciteerd door 4 Verwante artikelen Alle 3 versies [PDF] Datasets Finders and Best Public Datasets for Machine Learning and Data Science Applications R Marappan, S Bhaskaran - COJ Rob Artificial Intel, 2022 - sunbeltsport.com Hence it is necessary to learn the different public datasets before one starts the project. Dataset Finders This section explores the best public datasets finders available for data science . ☆ Opslaan 99 Citeren Geciteerd door 7 ≫ LFM-2b: A Dataset of Enriched Music Listening Events for Recommender Systems Research and Fairness Analysis

M. Schedl, S. Brandl, O. Lesota... - ACM SIGIR Conference ..., 2022 - dl.acm.org .. We present the LFM-2b dataset containing the listening records of over 120,000 users of the datasets include the Million Song Dataset [1], Spotify's Music Streaming Sessions Dataset [2... ☆ Opslaan 99 Citeren Geciteerd door 8 Verwante artikelen Alle 2 versies Improved self-attentive Musical Instrument Digital Interface content-based music recommendation system N Yadav, A Kumar Singh, S Pal - Computational Intelligence, 2022 - Wiley Online Library . over a real-world dataset, that is, the million song dataset, to evaluate the performance of our ... dataset, we use the Million Song dataset, 39 which also contains The Lakh MIDI dataset. ☆ Opslaan 99 Citeren Verwante artikelen

Next Week's ToDo's

API Student Paper Selection

- Each student has to select a research paper on some audio related subject, that you would like to present during one of the 4 Student Paper Presentation Sessions and submit the pdf to Brightspace before October 17th 2022.
- For research papers see:
 - ISMIR https://dblp.org/db/conf/ismir/index.html
 - Interspeech https://dblp.org/search?q=interspeech
 - Eurasip https://dblp.org/db/journals/ejasmp/index.html
 - And the <u>API-website</u> for further journals

Audio Features Workshop

Available Wednesday October 12th 2022

FYI: Next slides show some research topics and challenges(2016 - 2022).

Some Links for Finding Research Papers

- https://www.iscaspeech.org/iscaweb/index.php/online-archive
- https://dblp.org/search?q=interspeech
- https://dblp.org/db/conf/ismir/index.html

See also:

https://liacs.leidenuniv.nl/~bakkerem2/api/

ISMIR 2021 https://www.ismir.net/conferences/ismir2021.html S. Showdhury, G. Widmer, ON PERCEIVED EMOTION IN EXPRESSIVE PIANO PERFORMANCE: FURTHER EXPERIMENTAL EVIDENCE FOR THE RELEVANCE OF MID-LEVEL PERCEPTUAL FEATURES, ISMIR 2021, pp128 – pp134 B. Cornelissen, W. Zuidema, J.A. Burgoyne, COSINE CONTOURS: A MULTI PURPOSE REPRESENTATION FOR MELODIES, ISMIR 2021, pp135 – pp142. Data Sets D. Foster, S. Dixon, FILOSAX: A DATASET OF ANNOTATED JAZZ SAXOPHONE RECORDINGS, ISMIR 2021, pp205 – pp212. M. Zehren, M. Alunno, P. Bientinesi, ADTOF: A Large Dataset of Nonsynthetic Music for Automatic Drum Transcription, ISMIR2021, pp818 – pp824.

MIREX 2021 Challenges https://www.music-ir.org/mirex/wiki/2021:Main Page MIREX 2021 Possible Evaluation Tasks ■ 2021: Audio Beat Tracking ■ 2021:Audio Chord Estimation ■ 2021:Audio Cover Song Identification ■ 2021:Audio Downbeat Estimation = 2021:Audio Fingerprinting ■ 2021:Audio Key Detection = 2021:Audio Melody Extraction ■ 2021:Audio Onset Detection ■ 2021:Audio Tag Classification ■ 2021:Audio Tempo Estimation ■ 2021:Automatic Lyrics Transcription = 2021:Drum Transcription = 2021:Multiple Fundamental Frequency Estimation & Tracking ■ 2021:Music Detection ■ 2021:Patterns for Prediction (offshoot of 2017:Discovery of Repeated Themes & Sections) ■ 2021:Query by Singing/Humming ■ 2021:Query by Tapping ■ 2021:Real-time Audio to Score Alignment (a.k.a Score Following) 2021:Set List Identification ■ 2021:Structural Segmentation

ISMIR 2018 Proceedings

https://dblp.org/db/conf/ismir/ismir2018

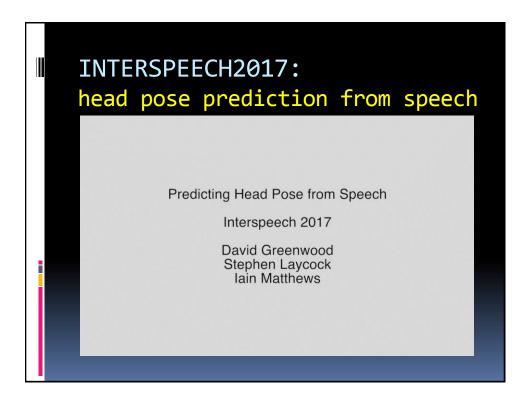
- Deep Learning!
- Music Transcription
- Chord Recognition
- Music Generation
- Playlist generation
- Singing Voice detection
- Etc. etc.

INTERSPEECH 2017

http://www.causalproductions.com/JOBS/INTERSPEECH_2017/

Some subject (there are many more):

- Challenge: Automatic Speaker Verification Spoofing and Countermeasures
- Speech production and perception: models, prosody, emotion, etc.
- NN for ASR
- Forensics
- Audio Scene Classification
- Human robot interaction
- Speech synthesis novel paradigms:



ISMIR 2016 https://wp.nyu.edu/ismir2016/event/proceedings/ MIREX 2016 Possible Evaluation Tasks Real-time Audio to Score Alignment (a.k.a Grand Challenge on User Experience (J-DISC) Score Following) Grand Challenge on User Experience Query by Singing/Humming **Audio Classification:** Audio Melody Extraction Audio US Pop Genre Classification Multiple Fundamental Frequency Estimation Audio Latin Genre Classification & Tracking Audio Music Mood Classification **Audio Chord Estimation** Audio Classical Composer Identification **Query by Tapping** 2016: Audio K-POP Mood Classification Audio Beat Tracking 2016: Audio K-POP Genre Classification Structural Segmentation **Audio Cover Song Identification Audio Tempo Estimation** Audio Tag Classification Discovery of Repeated Themes & Sections Audio Music Similarity and Retrieval Audio Downbeat Estimation Symbolic Melodic Similarity Audio Fingerprinting **Audio Onset Detection** Singing Voice Separation **Audio Key Detection** Set List Identification Audio Offset Detection

ISMIR 2016

https://wp.nyu.edu/ismir2016/event/proceedings/

Some Examples (random, many more):

- Music Recommendation
- Composer Recognition
- Cover Song Identification
- Deep Learning: Chord Estimation, Medoly Extraction, Automatic Tagging
- Symbolic: Extraction ground-truth from MIDI-files, etc.
- Rhythm: beat tracking with Recurrent Neural Networks
- Brain Beats: Tempo Extraction from EEG Data

Next Week's ToDo's

API Student Paper Selection

- Each student has to select a research paper on some audio related subject, that you would like to present during one of the 4 Student Paper Presentation Sessions and submit the pdf to Brightspace before October 17th 2022.
- For research papers see:
 - ISMIR https://dblp.org/db/conf/ismir/index.html
 - Interspeech https://dblp.org/search?q=interspeech
 - Eurasip https://dblp.org/db/journals/ejasmp/index.html
 - And the <u>API-website</u> for further journals

Audio Features Workshop

Available Wednesday October 12th 2022