Multimedia Programming
2004

Lecture 6

Erwin M. Bakker
Joachim Rijsdam

C++ Classes: List Example

B Abstract Data Type List:
@ Data:
E Name
E Address
B Comments
i Basic operations:
E Create: Create a list
E Add: Add data to list
E Delete: Delete data from the list
E Find: Find data in the list
B List: Make a print of the contents of the list
B We would like to hide the implementation to the
user of our list

C++ Classes

Abstract Data Types: Struct + their
operations

B C++ class is a concept to define data
structures and their operations

8 The actual implementation of the
abstract data type can be hidden to
the user!

C++ Classes: CList

class CList \\ Declaration of CList

{

public:
CList(); \\ Mandatory constructor
~CList(); \\ Mandatory destructor

void Add(int element); \\ The public operations
void Delete(int element); \\ Public member functions
bool Find(int element);

bool ISEmpty();

void List()

private: \\ Private declarations
int element_listtMAX_ELEMENTS]; \\ Data
int number_of_elements;

int FindPlace(int element); \\ Private member function

Ji

C++ Classes: CList o C++ Classes Declaration

class ClList \\ Declaration of CList 5 X Class CMyClass CMyClass Examp;

void Add(int element); \\ Public member functions { Examp.my_data = 1;

void Delete(int element); S L pubhc(é o Examp.memberfunction_this(3);
N : MyClass();

bool Find(int element); ~cr\)/l|yCIas(s)();

bool ISEmpty();

void List(); void memberfunction_this(int element);

void memberfunction_that(int element);
Is everything the user needs to know to use the class CList

|nt my_data;
int main(void)) int my_array[10];
{ int *my_pointers;
ClList list; d

. s ’ S0 private:

list.Add(2); LR int my_private_memberfunctions();
listAdd(5); | DN

list.Delete(2);

list.List();
return 0;

int my_private_data;

Public:
... etc.

o

Using Existing C++ Classes

B CString

H CFile

M ClList

Microsoft Foundation Class Library
(MFC)

M Etc.

Microsoft Foundation Clsses

CList: member functions

Construction
I CList Constructs a CList object.

Head/Tail Access
1 GetHead Returns the head element of the list (cannot be empty).
GetTail Returns the tail element of the list (cannot be empty).

Operations
I RemoveHead Removes the element from the head of the list.
RemoveTail Removes the element from the tail of the list.

AddHead Adds an element (or all the elements in another list) to the head of the list
(makes a new head).

AddTail Adds an element (or all the elements in another list) to the tail of the list
(makes a new tail).

RemoveAll Removes all the elements from this list.

Status
GetCount Returns the number of elements in this list.
IsEmpty Tests for the empty list condition (no elements).

CString

Construction
CString Constructs CString objects in various ways.

The String as an Array

GetLength Returns the number of characters in a CString object. For multibyte
characters, counts each 8-bit character; that is, a lead and trail byte in one multibyte
character are counted as two characters.

IsEmpty Tests whether a CString object contains no characters.

Empty Forces a string to have 0 length.

GetAt Returns the character at a given position.

operator [] Returns the character at a given position — operator substitution for GetAt.
SetAt Sets a character at a given position.

operator LPCTSTR Directly accesses characters stored in a CString object as a C-
style string.

Assignment/Concatenation
1 operator = Assigns a new value to a CString object.
operator + Concatenates two strings and returns a new string.
operator += Concatenates a new string to the end of an existing string.

CList

i The CList class supports ordered lists of
non-unique objects accessible sequentially
or by value.

i CList lists behave like doubly-linked lists.

i template< class TYPE, class ARG _TYPE
>class CList : public CObject

CList: member functions

Iteration
I GetHeadPosition Returns the position of the head element of the list.
I GetTailPosition Returns the position of the tail element of the list.
GetNextGets the next element for iterating.
GetPrev Gets the previous element for iterating.

Retrieval/Modification
I GetAt Gets the element at a given position.
I SetAt Sets the element at a given position.
I RemoveAt Removes an element from this list, specified by position.

Insertion
1 InsertBefore Inserts a new element before a given position.
I InsertAfter Inserts a new element after a given position.

Searching
I Find Gets the position of an element specified by pointer value.
I Findindex Gets the position of an element specified by a zero-based index.

CFile Class Members

Data Members
B m_hFile Usually contains the operating-system file handle.

Construction
CFile Constructs a CFile object from a path or file handle.
Abort Closes a file ignoring all warnings and errors.
Duplicate Constructs a duplicate object based on this file.
Open Safely opens a file with an error-testing option.

M Close Closes a file and deletes the object.

CFile

1 CFile is the base class for Microsoft Foundation file classes. It
directly provides unbuffered, binary disk input/output services, and
it indirectly supports text files and memory files through its derived
classes. CFile works in conjunction with the CArchive class to
support serialization of Microsoft Foundation Class objects.

1 The hierarchical relationship between this class and its derived
classes allows your program to operate on all file objects through
the polymorphic CFile interface. A memory file, for example,
behaves like a disk file.

I Use CFile and its derived classes for general-purpose disk 1/0. Use
ofstream or other Microsoft iostream classes for formatted text sent
to a disk file.

1 Normally, a disk file is opened automatically on CFile construction
and closed on destruction. Static member functions permit you to
interrogate a file’s status without opening the file.

i For more information on using CFile, see the article Files in MFC in
Visual C++ Programmer's Guide and File Handling in the Run-Time
Library Reference.

CFile Input/Output

B Read Reads (unbuffered) data from a file at the
current file position.

B ReadHuge Can read more than 64K of
(unbuffered) data from a file at the current file
%osigon. Obsolete in 32-bit programming. See

ead.

B Write Writes (unbuffered) data in a file to the
current file position.

B WriteHuge Can write more than 64K of
(unbuffered) data in a file to the current file
position. Obsolete in 32-bit programming. See
Write.

B Flush Flushes any data yet to be written.

CFile Position

B Seek Positions the current file pointer.

B SeekToBegin Positions the current
file pointer at the beginning of the file.

B SeekToEnd Positions the current file
pointer at the end of the file.

GetLength Retrieves the length of the
file.

SetLength Changes the length of the
file.

CFile Static

B Rename Renames the specified file
(static function).

B Remove Deletes the specified file
(static function).

Hl GetStatus Retrieves the status of the
specified file (static, virtual function).

Ml SetStatus Sets the status of the
specified file (static, virtual function).

CFile Locking and Status

Locking
M LockRange Locks a range of bytes in a file.
B UnlockRangeUnlocks a range of bytes in a file.

Status

B GetPosition Retrieves the current file pointer.

I GetStatus Retrieves the status of this open file.

B GetFileName Retrieves the filename of the selected file.
1 GetFileTitle Retrieves the title of the selected file.

M GetFilePath Retrieves the full file path of the selected file.
1 SetFilePath Sets the full file path of the selected file.

Structured Programming

H Layout (your own style but consequent)
B Comment to clarify your code

i Naming: variables, functions, classes, etc.
should be meaningful

8 Appropriate control structures (if then,
while, for) should be used

i Functions, and member functions should
make the right division of tasks (careful
top-down design)

B Data abstraction

Debugging

@ A two-step process:

1.

correct compile-time errors that prevent
you from building your project, such as
incorrect syntax, misspelled keywords, or
type mismatches.

use the debugger to detect and correct
logic errors and errors in sequencing,
branching, and interaction among
program components.

Debugging Tools

B Visual C++ provides a variety of tools to help with

the varied tasks of tracking down errors in the
code and program components. The debugger
mterface provides

special menus,
B windows,
E dialog boxes, and

spreadsheet fields.

Drag-and-drop: moving debug information between
components.

Interactive: the debugger is paused in break mode,
meaning the debugger is waiting for user input after
completing a debugging command (like break at
breakpoint, step into/over/out/to cursor, break at
exception, break after Break command or Restart).

Debug vs Release

B Win32 Debug: Full symbolic debugging
information in Microsoft format No optimization
(optimization generally makes debugging more
difficult)

B Win32 Release: No symbolic debugging
information Optimized for maximum speed

Change debug options:
to output line numbers only,
E to generate a mapfile
E to redirect output.
Etc.

Debugger Menu’s

1 <Build><Start Debug> contains a subset of the commands
on the full Debug menu.

i1 These commands (Go, Step Into, Run To Cursor and
Attach to Process) start the debugging process

The Debug menu appears in the menu bar while the
debugger is running (even if it is stopped at a breakpoint).

1 From the Debug menu, you can control program execution
and access the QuickWatch window. When the debugger is
not running, the Debug menu is replaced by the Build
menu.

1 The View menu contains commands that display the various
debugger windows, such as the Variables window and the
Call Stack window.

1 From the Edit menu, you can access the Breakpoints
dialog box, from which you can insert, remove, enable, or
disable breakpoints.

Debug Commands

Go Executes code from the current statement until a
breakpoint or the end of the program is reached, or until
the application pauses for user input. (Equivalent to the
Go button on the toolbar.)

Step Into Single-steps through instructions in the
program, and enters each function call that is
encountered.

Run to Cursor Executes the program as far as the line
that contains the insertion point. This is equivalent to
setting a temporary breakpoint at the insertion point
location.

Attach to Process Attaches the debugger to a process
that is running. Then you can break into the process and
perform debugging operations like normal.

Debug Commands
Control Program Execution

I Step Into Single-steps through instructions in the program, and enters
each function call that is encountered. When the Debug menu is not
available, you can choose Step Into from the Start Debug submenu of
the Build menu.

I Step Over Single-steps through instructions in the program. If this
command is used when you reach a function call, the function is
executed without stepping through the function instructions.

1 Step Out Executes the program out of a function call, and stops on the
instruction immediately following the call to the function. Using this
command, you can quickly finish executing the current function after
determining that a bug is not present in the function.

Run to Cursor Executes the program as far as the line that contains
the insertion point. This command is equivalent to setting a temporary
breakpoint at the insertion point location. When the Debug menu is not
available, you can choose Run To Cursor from the Start Debug
submenu of the Build menu.

I Step Into Specific Function Single steps through instructions in the
program, and enters the specified function call. This works for any
number of nesting levels of functions.

Debug Commands
Control Program Execution

Go Executes code from the current statement until a
breakpoint or the end of the program is reached, or until
the application pauses for user input. (Equivalent to the
Go button on the Standard toolbar.) When the Debug
menu is not available, you can choose Go from the Start
Debug submenu of the Build menu.

Restart Resets execution to the first line of the program.
This command reloads the program into memory, and
discards the current values of all variables (breakpoints
and watch expressions still apply). It automatically halts
at the main() or WinMain() function.

Stop Debugging Terminates the debugging session, and
returns to a normal editing session.

Break Halts the program at its current location.

Debug Menu Commands

B Exceptions Displays the Exceptions dialog, which
you can use to specify how you want the debugger
to handle your program exceptions.

B Threads Displays the Threads dialog, which you
can use to suspend, resume, or set focus to
progam threads.

B Show Next Statement Shows the next statement
in your program code. If source code is not
available, displays the statement within the
Disassembly window.

B QuickWatch Displays the Quick Watch window,
where you can work with expressions.

Debugger Windows

Output Information about the build process, including any
compiler, linker, or build-tool errors, as well as output from
the OutputDebugString function or the afxDump class
library, thread termination codes, loading symbols
notification and first-chance exception notifications.

I Watch Names and values of variables and expressions.

1 Variables Information about variables used in the current and
previous statements and function return values (in the Auto
tab), variables local to the current function (in the Locals
tab), and the object pointed to by this (in the This tab).
Registers Contents of the general purpose and CPU status
registers.

Memory Current memory contents.

Call Stack Stack of all function calls that have not returned.
Disassembly Assembly-language code derived from
disassembly of the compiled program.

Debugger Dialog Boxes

Breakpoints A list of all breakpoints assigned to your
project. Use the tabs in the Breakpoints dialog box to create
new breakpoints of various types.

Exceptions System and user-defined exceptions for your
project. Use the Exceptions dialog box to control how the
debugger handles exceptions.

M QuickWatch A variable or expression. Use QuickWatch to

quickly view or modify a variable or expression or to add it to
the Watch window.

1 Threads Application threads available for debugging. Use

the Threads dialog box to suspend and resume threads and
to set focus.

Drag and drop: If you expand an object (Obj, for example) in
the Variables window, you can drag a member of that object
(such as Obj.child) to the Watch window.

Set Break Points

at a source-code line

M at the beginning of a function
@ at the return point of a function
M at a label

Viewing, disabling, and removing
breakpoints

Viewing Values

B of a variable or expression or the contents of a
register

B of a variable using QuickWatch

i of a variable or expression or the contents of a
register in the Watch window

i@ View type information for a variable in the Watch
window

@ View a variable in the Variables window

View type information for a variable in the
Variables window

@ Display meaningful values for your custom data
type

Changing Values

When the program is paused at a breakpoint
or between steps, the value of any non-
const variable or contents of any register
can be changed.

B Modify the value of a variable or contents
of a register using QuickWatch

B Modify the value of a variable or contents
of a register using the Watch window

B Modify the value of a variable in the
Variables window

Running to a Location

® until a breakpoint is reached

M to the cursor or cursor location in
object code or in the call stack

Hl to a specified function
i Set the next statement to execute

i Set the next disassembled instruction
to execute

Edit and Continue

@ With Edit and Continue you can make
changes to your source code while
the program is being debugged (with
some limitations).

You can apply code changes while
the program is running or halted
under the debugger.

Stepping into Functions

B Run the program and execute the
next statement

Step into a specific function

ASSERT

ASSERT(booleanExpression)

1 booleanExpression: Specifies an expression (including pointer values) that
evaluates to nonzero or 0.
ASSERT evaluates its argument, if the result is 0, the macro prints a
diagnostic message and aborts the program. If the condition is nonzero, it
does nothing.
The diagnostic message has the form: assertion failed in file <name> in line
<num> where name is the name of the source file, and num is the line
number of the assertion that failed in the source file.
This function is available only in the Debug version of MFC. In the Release
version of MFC, ASSERT does not evaluate the expression and thus will
not interrupt the program.
If the expression must be evaluated regardless of environment, use the
VERIFY macro in place of ASSERT.

Example

/I example for ASSERT

CPerson* pperson = new CPerson(“James”, 21); //CPerson derived from CObject

ASSERT(pperson != NULL) /I Terminates if pperson equals NULL
ASSERT(pperson->IsKindOf(RUNTIME_CLASS(CPerson)))
/I Terminates program only if pperson is not a CPerson*.

VERIFY (interrupts in both Release
and Debug programs)

VE

RIFY(booleanExpression)

booleanExpression: Specifies an expression (including
pointer values) that evaluates to nonzero or 0.

In the debug version of MFC, the VERIFY macro evaluates
its argument. If the result is 0, the macro prints a diagnostic
message and halts the program. If the condition is nonzero,
it does nothing.

The diagnostic message has the form: assertion failed in file
<name> in line <num> where name is the name of the
source file and num is the line number of the assertion that
failed in the source file.

In the release version of MFC, VERIFY evaluates the
expression but does not print or interrupt the program. (For
example the function call will be made (which is not the case
in the ASSERT case))

