Tomography

Some Aspects of Discrete Tomography

Walter Kosters, Universiteit Leiden

Wednesday April 13, 2011; Vlijmen
www.liacs.nl/home/kosters/

Introduction

When talking about Japanese puzzles, everyone thinks of Sudoku.

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

When talking about Japanese puzzles, everyone thinks of Sudoku.

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	3	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

source: Wikipedia

But we will talk about Nonograms today.

A Nonogram is a puzzle; a small example:

Next to each row and column we enumerate the lengths of consecutive series of red pixels.

Where are these red $=$ black pixels?

The (unique) solution looks like this:

Next to each row and column we enumerate the lengths of consecutive series of red pixels - in order.

Why are scientists interested in Nonograms?
Tomography tries to solve the following problem:
How to reconstruct an object from projections?

Examples:

- Solve Nonograms
- How do we look like, given CT-scans? (Computerized Tomography $=\mathrm{CT} \supseteq \mathrm{DT}=$ Discrete Tomography)
- Where are the "holes" in a diamond?

In Discrete Tomography we try to reconstruct an object from its projections.

An object "is" a finite subset of Z^{2} (so integer points in 2D space).

A projection gives all relevant "line sums" over lines parallel to a given line, e.g., all horizontal lines and all vertical lines (2 projections). It is also possible to use all lines through a given point.

In CT one typically has many projections, in DT a few.

A small example of a Discrete Tomography problem:

Next to each row and column we give the total number of red pixels.

Where are these red $=$ black pixels?

A (non-unique) solution looks like this:

Next to each row and column we give the (total) number of red pixels.

The problem can be defined more general:

> Given an unknown function f on some domain D (discrete, or just some subset of \mathbf{R}^{n}), with a discrete range $\subseteq \mathbf{R}$, the task is to (approximately) reconstruct f, given sums (integrals) over certain subsets of D.

In our case, the range is $\{0,1\}=\{$ white, black $\}$.
T.M. Buzug, Computed Tomography, Springer, 2008.
G.T. Herman, Fundamentals of Computerized Tomography, Springer 2009.

G.T. Herman \& A. Kuba, Discrete Tomography, Foundations, Algorithms and Applications, Birkhäuser, 1999.
G.T. Herman \& A. Kuba, Advances in Discrete Tomography and its Applications, Birkhäuser, 2007.

Usually we have three tasks:

Consistency Does an object with the given projection values (a "solution to the puzzle") exist?

Uniqueness Suppose there is a solution. Does there exist another one?

Reconstruction Construct a solution.

These problems, with horizontal and vertical projections, are solved in polynomial time by Ryser's Theorem from 1957.

But the problems for 3 or more projections are NP-hard!

$$
2 \neq 3
$$

If you were to use a flashlight in 2D, it would flicker like when throwing a stone into the water.

Ryser's Theorem

Given vectors $R=\left(r_{1}, \ldots, r_{m}\right)($ all $\leq n)$ and $S=\left(s_{1}, \ldots, s_{n}\right)$ (all $\leq m$) with the same total sum: $\sum_{i=1}^{m} r_{i}=\sum_{j=1}^{n} s_{j}$.

There is a 0-1 $m \times n$ matrix with row sums R and column sums S
for all ℓ with $2 \leq \ell \leq n$ we have: $\sum_{j=\ell}^{n} s_{j}^{\prime} \geq \sum_{j=\ell}^{n} \bar{s}_{j}$.

Here the s_{j}^{\prime} are the (non-increasing) sorted s_{j}, and the \bar{s}_{j} are the column sums of the matrix with the r_{i} as row sums, and ones in the leftmost positions.

Ryser's algorithm constructs a solution in the following way. The column sums are already sorted in non-increasing $\operatorname{order}\left(s=s^{\prime}\right)$:

First initialize each row as far to the left as possible: \bar{s}. Then, from the right column backward, pull in red pixels from the left as needed.

Ryser's algorithm constructs a solution working backward from the last column:

Ryser's Theorem (continued)

Furthermore, all solutions can be obtained from one another by a series of "switchings" using so-called switching components:

$$
\begin{array}{|ll}
\hline 1 & 0 \\
0 & 1
\end{array}\left|\longleftrightarrow \begin{array}{|ll|}
\hline 0 & 1 \\
1 & 0
\end{array}\right|
$$

Note that a switch does not change row and column sums.

Open problem: what is the diameter of the solution graph?

Tomography

Switching components

(slide 5)

In an h-convex object all rows must consist of consecutive red pixels: the rows have the "Nonogram property".

For h-convex objects the 2 projections Consistency problem is NP-complete . .

Now back to Nonograms: how to solve them?

Most humans use logic rules, combined with heuristics like "interchange row reasoning and column reasoning".

An example of such a logic rule is: "if the number 3 is next to a row/column of width 5 , the middle pixel must be red". In this particular rule one looks at one row or column at a time.

Suppose you already know:

$$
\begin{array}{|ll|l|l|l|l|l|l|l|l|l|l|}
\hline 3,2,1 & ? & O & ? & & ? & \cdot & ? & ? & ? & ? & ? \\
\hline
\end{array}
$$

A • means a known white/empty pixel, a denotes a known filled pixel. The rest is still unknown.

Remember that we enumerate the lengths of consecutive series of red $=$ black pixels - in order.

What can we conclude?

Tomography One row or column - 2

We conclude that for this row:

A • means a known white/empty pixel, a denotes a known filled pixel. The rest is still unknown.

So by examining a single row or column we can make progression.

How can a computer program draw such conclusions?

A first option is to use brute-force: try "all" possibilities. But a 5×5 Nonogram has

$$
2^{25}=2^{10} \cdot 2^{10} \cdot 2^{5}=1024 \cdot 1024 \cdot 32 \approx 32 \text { million }
$$

possible solutions! And the " 80×50 Einstein" from slide 1 has $2^{4000} \approx 10^{1200}$ possibilities.

So ... no way! (But for small parts it might work.) We therefore first try some logic reasoning for a single line $=$ row or column.

So we want a string $s_{1} s_{2} \ldots s_{\ell}$ over $\{?, \bullet, \bigcirc\}$ to match a regular expression like $0^{*} 1^{3} 0^{+} 1^{2} 0^{+} 1^{1} 0^{*}$, representing the Nonogram description 3,2,1.

We define $F i x(i, j)$ to be true if and only if the prefix $s_{1} s_{2} \ldots s_{i}$ can be made to match the first j elements from the description by "fixing" ?'s to elements from $\{\bullet, \bigcirc\}$.

Now we compute, using Dynamic Programming:

$$
\begin{aligned}
& \text { with } \operatorname{Fix}(0, j-1) \text {, } \operatorname{Fix}(1, j-1), \ldots, \operatorname{Fix}(i-1, j-1) \\
& \text { somehow compute Fix }(i, j) \\
& \text { and keep track of the "fixes". }
\end{aligned}
$$

So for a single line one can use Dynamic Programming.

We want a string $s_{1} s_{2} \ldots s_{\ell}$ over the alphabet $\Sigma \cup\{?\}$ to match a regular expression $d_{1} d_{2} \ldots=\sigma_{1}\left\{a_{1}, b_{1}\right\} \sigma_{2}\left\{a_{2}, b_{2}\right\} \ldots$ (so first between a_{1} and b_{1} times the character σ_{1}, \ldots) in the following sense: $\operatorname{Fix}(i, j)$ is true if and only if the prefix $s_{1} s_{2} \ldots s_{i}$ can be made to match $d_{1} d_{2} \ldots d_{j}$ by "fixing" ?'s to elements from Σ (e.g., $\Sigma=\{\bullet, \bigcirc\}$):

$$
\operatorname{Fix}(i, j)=\sum_{p=\min \left(i-a_{j}, B_{j-1}\right)}^{\bigvee^{\max }\left(i-b_{j}, A_{j-1}, L_{i}^{\sigma_{j}}(s)\right)} \operatorname{Fix}(p, j-1)
$$

Here $A_{j}=\sum_{p=1}^{j} a_{p}, B_{j}=\sum_{p=1}^{j} b_{p}$ and $L_{i}^{\sigma}(s)$ is the largest index $h \leq i$ with $s_{h} \notin\{\sigma, ?\}$ if this exists (and 0 otherwise).

This polynomial time Dynamic Programming approach allows for efficient solving of most puzzles from newspapers. One can repeatedly apply the method to all rows or all columns (sweeps), thereby introducing a difficulty measure.

See K.J. Batenburg \& WAK, Solving Nonograms by combining relaxations, Pattern Recognition 42 (2009) 16721683.

percentage unsolved pixels for randomly generated puzzles of different size \& percentage black

So a difficulty measure could be: How many sweeps are needed to solve a given puzzle?

There exist $m \times n$ puzzles that require $\approx m n / 2$ sweeps.

An 18×18 example, requiring 115 sweeps:

K.J. Batenburg, S. Henstra, WAK \& W.J. Palenstijn, Constructing Simple Nonograms of Varying Difficulty, Pure Mathematics and Applications 20 (2009) 1-15 (*).

How far can we get by looking at a single row/column? Again, with • for a white pixel, and for a filled one:

But now we are stuck ... unless we use rows and columns together.

We have this:

Suppose that $u=0$, then (column) v must be •, and so (row) $w=0$, and therefore (column) x must be •. Contradiction (row)! So u must be • .

The rest is simple.

The logic we used here has rules like "if this pixel is red, that pixel must be white". This can be modeled through a 2-SAT problem, which happens to be solvable in polynomial time - in contrast with 3-SAT, which is NP-complete.

This offers another dimension for a difficulty measure.

Solving a Nonogram in general is NP-complete. In fact, Ueda and Nagao in 1996 even showed it to be "ASPcomplete": given a solution, it is NP-hard to determine if there is another solution. (This also holds for 3-SAT, but not for Graph 3-Coloring!)

As an illustration that this 2-SAT logic sometimes fails to catch everything:

2		$\begin{array}{ll} & 1 \\ 1 & 1 \end{array}$		1	
1	?		?		?
2	?	?	?	?	?
1	?		?		(0)
2	?	?	?	?	?
1	?		?		?

Partially solved 5×5 Nonogram, where the fact that pixel O must be white is hard(er) to infer.

Randomly generated partially solved 30×30 Nonogram with 50 \% black pixels; the grey cells denote the unknown pixels. This Nonogram has six solutions.

How to build $=$ design your own Nonogram?

color picture

grey value picture

puzzle

See www.liacs.nl/home/kosters/nono/ and (*) from slide 26.

Tomography
Unique?

Remember that a good Nonogram should have a unique solution.

In general they have many different solutions with "some sort of" switching components!

	1	1	1
	1		
1	1	1	1
1,1			

We conclude: Discrete Tomography is an important (bio) research area, with many interesting algorithms and related complexity issues.

Vincent van Gogh

There are several interesting questions attached to Tetris:

- How to play well? (AI - Artificial Intelligence)
- How hard is it? (complexity: IPA, July 8, 2011)
- What might happen?

It has been shown that certain Tetris-problems are NPcomplete (joint work with researchers from MIT \& HJH), that you can reach almost all configurations, but that not all related problems are "decidable".

The 7 Tetris-pieces:

Random pieces fall down, and filled lines are cleared. The question "Is it possible, given a finite ordered series of these pieces, to clear a partially filled game board?" is NP-complete.
If someone clears the board, this is easy to verify. If clearing is not possible however, up till now the only thing one can do to prove this is to check all possibilities, one by one!

Tetris: reachable?

An "arbitrary" configuration:

This figure can be made by dropping 276 suitable Tetrispieces in the appropriate way, see
www.liacs.nl/home/kosters/tetris/

Claim: on a game board of odd width every configuration is reachable.

