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Tomography Introduction

When talking about Japanese puzzles, everyone thinks of

Sudoku.

8 7 9

4 1 9 5

6 2 8

7 2 6

4 8 3 1

8 6 3

9 8 6

6 1 9 5

5 3 7
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Tomography Introduction — 2

When talking about Japanese puzzles, everyone thinks of

Sudoku.

3 4 5 2 8 6 1 7 9

2 8 7 4 1 9 6 3 5

9 6 1 5 3 7 2 8 4

7 1 3 9 2 4 8 5 6

4 2 6 8 5 3 7 9 1

8 5 9 7 6 1 4 2 3

1 9 8 3 4 2 5 6 7

6 7 2 1 9 5 3 4 8

5 3 4 6 7 8 9 1 2

But we will talk about Nonograms today.

source: Wikipedia
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Tomography Example

A Nonogram is a puzzle; a small example:

3

1,1

0

1,1

0

1 1
1

1 1
1

1

Next to each row and column we enumerate the lengths

of consecutive series of red pixels.

Where are these red = black pixels?
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Tomography Example — solution

The (unique) solution looks like this:

3

1,1

0

1,1

0

1 1
1

1 1
1

1

~

~ ~ ~

~

~ ~

Next to each row and column we enumerate the lengths

of consecutive series of red pixels — in order.
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Tomography Practical tomography

Why are scientists interested in Nonograms?

Tomography tries to solve the following problem:

How to reconstruct an object from projections?

Examples:

• Solve Nonograms

• How do we look like, given CT-scans? (Computerized

Tomography = CT ⊇ DT = Discrete Tomography)

• Where are the “holes” in a diamond?
6



Tomography Discrete Tomography

In Discrete Tomography we try to reconstruct an object

from its projections.

An object “is” a finite subset of Z2 (so integer points in

2D space).

A projection gives all relevant “line sums” over lines parallel

to a given line, e.g., all horizontal lines and all vertical lines

(2 projections). It is also possible to use all lines through

a given point.

In CT one typically has many projections, in DT a few.
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Tomography Example DT

A small example of a Discrete Tomography problem:

3

2

0

2

0

1 2 1 2 1

Next to each row and column we give the total number of

red pixels.

Where are these red = black pixels?
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Tomography Example DT — solution

A (non-unique) solution looks like this:

3

2

0

2

0

1 2 1 2 1

~

~ ~ ~

~

~ ~

Next to each row and column we give the (total) number

of red pixels.
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Tomography More general

The problem can be defined more general:

Given an unknown function f on some domain D

(discrete, or just some subset of Rn), with a dis-

crete range ⊆ R, the task is to (approximately)

reconstruct f , given sums (integrals) over certain

subsets of D.

In our case, the range is {0,1} = {white,black}.
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Tomography References
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Tomography Three tasks

Usually we have three tasks:

Consistency Does an object with the given projection va-

lues (a “solution to the puzzle”) exist?

Uniqueness Suppose there is a solution. Does there exist

another one?

Reconstruction Construct a solution.
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Tomography 2 6= 3

These problems, with horizontal and vertical projections,

are solved in polynomial time by Ryser’s Theorem from

1957.

But the problems for 3 or more projections are NP-hard!

2 6= 3

If you were to use a flashlight in 2D, it would flicker like

when throwing a stone into the water.
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Tomography Ryser’s Theorem

Ryser’s Theorem

Given vectors R = (r1, . . . , rm) (all ≤ n) and S = (s1, . . . , sn)

(all ≤ m) with the same total sum:
∑m

i=1 ri =
∑n

j=1 sj.

There is a 0–1 m× n matrix with row sums R and column

sums S
⇐⇒

for all ℓ with 2 ≤ ℓ ≤ n we have:
∑n

j=ℓ s′j ≥
∑n

j=ℓ sj.

Here the s′j are the (non-increasing) sorted sj, and the sj

are the column sums of the matrix with the ri as row sums,

and ones in the leftmost positions.
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Tomography Ryser’s reconstruction

Ryser’s algorithm constructs a solution in the following

way. The column sums are already sorted in non-increasing

order (s = s′):

1
~

~

~

~

~

~

~

~

~

3

3

2

4 2 1 1 1

➊

4 3 2 0 0

~

~

~

~

~

~

~

~

~

4 2 1 1 1✓

➋

First initialize each row as far to the left as possible: s.

Then, from the right column backward, pull in red pixels

from the left as needed.
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Tomography Ryser’s reconstruction — 2

Ryser’s algorithm constructs a solution working backward

from the last column:

1
~

~

~

~

~

~

~

~

~

3

3

2

4 2 1 1 1

➊

4 3 2 0 0

~

~

~

~

~

~

~

~

~

4 2 1 1 1✓

➋

~

~

~

~

~

~

~

~

~

4 2 1 1✓1

➌

~

~

~

~

~

~

~

~

~

4✓2✓1✓1 1

➍➎➏
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Tomography Ryser’s Theorem — 2

Ryser’s Theorem (continued)

Furthermore, all solutions can be obtained from one ano-

ther by a series of “switchings” using so-called switching

components:

0 1
10 ←→

10
01

Note that a switch does not change row and column sums.

Open problem: what is the diameter of the solution graph?
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Tomography Switching components

3

2

0

2

0

1 2 1 2 1

~

~ ~ ~

~

~ ~

➊

(slide 9)

~

~ ~ ~

~

~ ~

➋

~

~ ~ ~

~

~ ~

➌

~

~ ~ ~

~

~ ~

➍

(slide 5)
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Tomography h-convex

In an h-convex object all rows must consist of consecutive

red pixels: the rows have the “Nonogram property”.

3

2

0

2

0

1 2 1 2 1

~

~ ~ ~

~

~ ~

For h-convex objects the 2 projections Consistency problem

is NP-complete . . .
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Tomography Solving Nonograms

Now back to Nonograms: how to solve them?

Most humans use logic rules, combined with heuristics like

“interchange row reasoning and column reasoning”.

An example of such a logic rule is: “if the number 3 is

next to a row/column of width 5, the middle pixel must be

red”. In this particular rule one looks at one row or column

at a time.

20



Tomography One row or column

Suppose you already know:

~ ~ t? ? ? ? ? ? ? ?3,2,1

A t means a known white/empty pixel, a ~denotes a known

filled pixel. The rest is still unknown.

Remember that we enumerate the lengths of consecutive

series of red = black pixels — in order.

What can we conclude?

21



Tomography One row or column — 2

We conclude that for this row:

~ ~ tt t ~~ ? ? ? ?3,2,1

A t means a known white/empty pixel, a ~denotes a known

filled pixel. The rest is still unknown.

So by examining a single row or column we can make pro-

gression.
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Tomography How?

How can a computer program draw such conclusions?

A first option is to use brute-force: try “all” possibilities.

But a 5 × 5 Nonogram has

225 = 210 · 210 · 25 = 1024 · 1024 · 32 ≈ 32 million

possible solutions! And the “80×50 Einstein” from slide 1

has 24000 ≈ 101200 possibilities.

So . . . no way! (But for small parts it might work.) We

therefore first try some logic reasoning for a single line =

row or column.
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Tomography Dynamic Programming

So we want a string s1s2 . . . sℓ over {?, t, ~} to match a

regular expression like 0∗130+120+110∗, representing the

Nonogram description 3,2,1.

We define Fix(i, j) to be true if and only if the prefix

s1s2 . . . si can be made to match the first j elements from

the description by “fixing” ?’s to elements from { t, ~}.

Now we compute, using Dynamic Programming:

with Fix(0, j − 1), Fix(1, j − 1), . . . , Fix(i − 1, j − 1)

somehow compute Fix(i, j)

and keep track of the “fixes”.
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Tomography Dynamic Programming — 2

So for a single line one can use Dynamic Programming.

We want a string s1s2 . . . sℓ over the alphabet Σ ∪ {?} to

match a regular expression d1d2 . . . = σ1{a1, b1}σ2{a2, b2} . . .

(so first between a1 and b1 times the character σ1, . . . ) in

the following sense: Fix(i, j) is true if and only if the prefix

s1s2 . . . si can be made to match d1d2 . . . dj by “fixing” ?’s

to elements from Σ (e.g., Σ = { t, ~}):

Fix(i, j) =

min(i − aj, Bj−1)∨

p = max(i − bj, Aj−1, L
σj
i (s))

Fix(p, j − 1)

Here Aj =
∑j

p=1 ap, Bj =
∑j

p=1 bp and Lσ
i (s) is the largest

index h ≤ i with sh 6∈ {σ, ?} if this exists (and 0 otherwise).
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Tomography Practical solving

This polynomial time Dynamic Programming approach al-

lows for efficient solving of most puzzles from newspapers.

One can repeatedly apply the method to all rows or all co-

lumns (sweeps), thereby introducing a difficulty measure.

See K.J. Batenburg & WAK, Solving Nonograms by com-

bining relaxations, Pattern Recognition 42 (2009) 1672–

1683.
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Tomography Difficulty

So a difficulty measure could be: How many sweeps are

needed to solve a given puzzle?

There exist m × n puzzles

that require ≈ mn/2 sweeps.

An 18 × 18 example,

requiring 115 sweeps:

1 2 1 1 1 1 1 1

2 1 1 1 1 1 1 2

1

2 1 1 2 1 2 1

1 1 1 2 1 1 1

1

18

1 1

1 2 1 2 1 1 2

1 1 1 2 1 1 1

1

2 1 1 2 1 2 1

1 1 1 2 1 1 1

1

18

1 1

1 2 1 2 1 1 2

1 1 1 2 1 1 1

3

2

3

2

1

1

1

2

1

1

2

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
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1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

1

3

1

3

middle columns

5-strip

3-strip

5-strip

3-strip

2-strip

split row

split row

K.J. Batenburg, S. Henstra, WAK & W.J. Palenstijn,

Constructing Simple Nonograms of Varying Difficulty,

Pure Mathematics and Applications 20 (2009) 1–15 (*).
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Tomography Example — solving

How far can we get by looking at a single row/column?

Again, with t for a white pixel, and ~for a filled one:

3

1,1

0

1,1

0

1 1
1

1 1
1

1

~

~ ~

t t t t t

tt t

t t t t t

t

? ? ? ?

? ? ? ?

But now we are stuck . . . unless we use rows and columns

together.
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Tomography Example — more solving

We have this:

3

1,1

0

1,1

0

1 1
1

1 1
1

1

u x

v w

~

~ ~

t t t t t

tt t

t t t t t

t

? ?

? ?

Suppose that u = ~, then (column) v must be t, and

so (row) w = ~, and therefore (column) x must be t.

Contradiction (row)! So u must be t.

The rest is simple.
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Tomography NP-complete

The logic we used here has rules like “if this pixel is red,

that pixel must be white”. This can be modeled through a

2-SAT problem, which happens to be solvable in polynomi-

al time — in contrast with 3-SAT, which is NP-complete.

This offers another dimension for a difficulty measure.

Solving a Nonogram in general is NP-complete. In fact,

Ueda and Nagao in 1996 even showed it to be “ASP-

complete”: given a solution, it is NP-hard to determine

if there is another solution. (This also holds for 3-SAT,

but not for Graph 3-Coloring!)
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Tomography Hard example

As an illustration that this 2-SAT logic sometimes fails to

catch everything:

1

2

1

2

1

2 1 1
1

1 1

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?nml
?

?

Partially solved 5× 5 Nonogram, where the fact that pixel
nmlmust be white is hard(er) to infer.
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Tomography Example puzzle

1 8 2 1 3 2

7 2 2 1 1 2 2

1 1 2 1 1 2

2 1 4 1 2 3 1 1 1

1 3 3 4 1 1 1 2

2 1 1 1 2 1

2 2 2 3 1 2 1 1 1 2

1 1 1 1 1 1 1 3 1 1 1 1

3 1 4 1 1 4 1

1 2 1 3 1 1 1 1 1 2 1

2 4 1 2 4 1 3

2 4 2 4 2 1 2 1

3 2 1 1 1 1 1 2 1

1 1 1 1 1 7 2

1 3 3 1 1 1 3

1 1 2 3 3 1 3

1 3 1 1 2 1 1 2 1

4 1 1 2 1 2 1 1 1 1

2 1 1 2 3 1 2 1 1 2

1 1 1 1 1 2 1 2 1 1

1 1 1 2 2 1 1 2 3

3 1 9 3 2

1 1 2 5 1 3 1 2

1 4 1 6 4 1

2 2 1 2 2 2 1 6

2 2 2 2 2 1 2 1 1

4 1 1 1 2 3 2

1 4 1 1 1 2 2 6

3 1 2 1 2 1 2 1 1 1

2 2 3 1 1 1 6 1

1

7

2

1

1

2

1

1

3

2

1

3

1

1

3

1

2

1

1

3

1

1

4

2

1

1

1

1

1

1

2

1

1

4

1

5

1

5

3

2

2

1

1

4

4

6

1

4

3

3

1

1

2

1

1

1

4

1

1

1

3

1

2

6

1

2

2

1

1

1

2

2

5

1

1

1

2

2

2

2

4

1

1

1

1

1

1

1

1

1

3

6

1

1

1

2

5

3

2

2

4

1

1

7

2

2

1

1

1

3

5

1

2

2

1

2

3

1

2

3

1

1

2

2

1

2

1

2

1

4

1

1

1

8

3

1

5

1

2

2

2

1

1

3

1

2

1

3

2

1

2

1

1

1

1

1

3

1

1

3

1

3

2

6

2

1

2

1

2

2

2

1

1

3

1

1

2

2

3

1

2

2

2

2

4

1

1

3

1

1

1

1

3

1

2

2

1

1

2

3

1

1

1

2

2

1

1

1

1

1

1

1

1

3

2

1

1

3

3

1

1

2

1

1

4

3

1

2

1

1

1

1

1

3

5

Randomly generated partially solved 30×30 Nonogram with

50% black pixels; the grey cells denote the unknown pixels.

This Nonogram has six solutions.
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Tomography Design

How to build = design your own Nonogram?

color picture grey value picture puzzle

See www.liacs.nl/home/kosters/nono/ and (*) from slide 26.
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Tomography Unique?

Remember that a good Nonogram should have a unique

solution.

In general they have many different solutions with “some

sort of” switching components!

1,1

1,1

1,1

1,1

1
1

1
1

1
1

1
1

~ ~

~ ~

~ ~

~ ~

~ ~

~ ~

~ ~

~ ~
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Tomography Conclusion

We conclude: Discrete Tomography is an important (bio)

research area, with many interesting algorithms and related

complexity issues.

Vincent van Gogh
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Tetris

There are several interesting questions attached to Tetris:

• How to play well? (AI — Artificial Intelligence)

• How hard is it? (complexity: IPA, July 8, 2011)

• What might happen?

It has been shown that certain Tetris-problems are NP-

complete (joint work with researchers from MIT & HJH),

that you can reach almost all configurations, but that not

all related problems are “decidable”.
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Tetris: NP-complete?

The 7 Tetris-pieces:

Random pieces fall down, and filled lines are cleared.

The question “Is it possible, given a finite ordered series

of these pieces, to clear a partially filled game board?” is

NP-complete.

If someone clears the board, this is easy to verify. If clearing

is not possible however, up till now the only thing one can

do to prove this is to check all possibilities, one by one!
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Tetris: reachable?

An “arbitrary” configuration:

u u u uu u u uuuu uuuu uu u
uuu uu u u� -13

This figure can be made by dropping 276 suitable Tetris-

pieces in the appropriate way, see

www.liacs.nl/home/kosters/tetris/

Claim: on a game board of odd width every configuration

is reachable.
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