A short note on
 Hamiltonian circuits in subgraphs of the triangulation graph

A survey of results
Jeannette de Graaf and Walter Kosters

In this short note we consider the set Tri(n) consisting of all triangulations of the regular n-gon $(n \geq 7)$. Tri n) becomes a graph if we say that two triangulations are adjacent if and only if there is a "flip" transforming these triangulations into one another. A flip toggles the diagonal in one rectangle in the triangulation. For details, and the connection with rotations of binary trees, the reader is referred to [LUCAS]. The major problems are:
(A) Determine the diameter of $\operatorname{Tri}(n)$.
(B) Examine the Hamiltonian circuits of $\operatorname{Tri}(n)$ (they exist by a result of [LUCAS]).
(C) Find the shortest path between two given triangulations.

We now construct certain subgraphs of $\operatorname{Tri}(n)$, and consider problem (B). Let k be an integer, $0 \leq k \leq\left\lfloor\frac{1}{2}(n-4)\right\rfloor$. Then $\operatorname{Tri}(n, k)$ is the subgraph of $\operatorname{Tri}(n)$ containing all triangulations of the regular n-gon having exactly k internal triangles. An internal triangle is a triangle that does not use any sides of the n-gon. We have:

LEMMA The number of elements of $\operatorname{Tri}(n, k)$ is

$$
n\binom{n-4}{2 k} 2^{n-2 k-4} \frac{1}{k+1}\binom{2 k}{k} \frac{1}{k+2} .
$$

Summation over k gives the Catalan number $\frac{1}{n-1}\binom{2(n-1)}{n-2}$, which is the number of elements of $\operatorname{Tri}(n)$ (this follows by using the hypergeometric function ${ }_{2} F_{1}$). Furthermore, there is -up to a factor $k+2$ - an effective way to enumerate $\operatorname{Tri}(n, k)$. If n is not equal to $2 k+4$ then $\operatorname{Tr} i(n, k)$ is connected; notice that $\operatorname{Tr} i(2 k+4, k)$ consists of two disjoint copies of $\operatorname{Tri}(k+2)$.

THEOREM $\operatorname{Tri}(n, 0)$ has at least

$$
c n 2^{0.006 n 2^{n}}
$$

Hamiltonian circuits, where c is an explicitly known constant.
We also have some results for small n.
[LUCAS] J.M. Lucas, The rotation graph of binary trees is Hamiltonian, J. Algorithms 8 (1987), 503-535.

Address of the authors: Department of Mathematics and Computer Science, Leiden University, P.O. Box 9512, 2300 RA Leiden, The Netherlands.

