
HOW TO CONSTRUCT TETRIS CONFIGURATIONS

Hendrik Jan Hoogeboom and Walter A. Kosters
Leiden Institute of Advanced Computer Science (LIACS)

Universiteit Leiden
P.O. Box 9512, 2300 RA Leiden, The Netherlands

E-mail: {hoogeboo,kosters}@liacs.nl

KEYWORDS

TETRIS, reachable configurations.

ABSTRACT

In this paper we show that every (reasonable) TETRIS configu-
ration can be constructed from an initially empty game board
using a suitable sequence of pieces. On game boards of even
width a simple parity condition has to be fulfilled. The paper
provides an explicit construction. This problem is connected
to the NP-completeness of certain TETRIS related decision
problems.

INTRODUCTION

It has recently been shown that certain decision problems
concerning the TETRIS game are NP-complete (Demaine et
al. 2002; Breukelaar et al. 2003; Breukelaar et al. 2004) or
(un)decidable (Hoogeboom and Kosters 2004). This fits in
the larger research picture, where for many games these sorts
of problems are addressed (Berlekamp et al. 1982; Demaine
2001). In the current paper we are interested in the possibil-
ity of generating a given TETRIS configuration by supplying
suitable pieces and handling them in the appropriate way. This
problem arose during the proof of the NP-completeness, where
the constructibility of certain configurations used in the reduc-
tion was questioned. Note that similar questions for games as
chess are very complicated.

A regular TETRIS game is played on a rectangular game
board with squares; it uses pieces (all occupying 4 squares) in 7
shapes, as in the following picture. Their names and notations
for this paper are square Sq, left gun LG, right gun RG, left
snake LS, right snake RS, T T, and I I, respectively.

In a regular TETRIS game, random pieces are presented to
the player, one at a time. Initially such a piece is located in

the middle of the top row of the game board. The player can
translate and/or rotate the current piece, while it is falling down.
If the piece meets the floor or another piece, it is fixed. If a
whole row (or even more than one) gets filled, it is cleared:
it is removed from the game board, and the rows above it fall
one row down. Note that (parts of) pieces do not fall further
down, once rows below it are cleared. The game ends when the
new piece cannot fall down anymore, because it is blocked by
pieces below it. The more pieces the player has handled, and
the more rows he or she cleared, the better it is. For a more
precise definition of the game, consult (Demaine et al. 2002);
for other results on TETRIS, see, e.g., (Burgiel 1997).

A TETRIS configuration is a game board, where some of the
squares are already occupied. A configuration is called con-
structible if it is possible to reach it, from an initially empty
board, with a suitable series of pieces using appropriate transla-
tions and rotations. In this paper we shall prove that essentially
every reasonable configuration is constructible, see Theorem 3.
The one non-trivial exception deals with boards of even width,
where some simple parity condition should be fulfilled. The
example configuration below, on a board of width 13, is con-
structible. Our construction requires 276 TETRIS pieces, and
clears (4 · 276− 25)/13 = 83 intermediate rows. Note that the
rules of TETRIS allow squares to float, as in the upper right
hand part of the configuration.

u u u u

u u u u

u

u

u

u

u

u

u u

u u

u

u

u u

u u

u

� -w

?

6

h

OVERVIEW

The occupied squares from the configuration are called pixels;
the example configuration above has 25 of them. The width w
of the game board, 13 for the example, should be at least 4.

From now on we shall assume w ≥ 5, the case w = 4 being an
easy adaptation. Let h denote the height of the configuration,
i.e., the number of non-empty rows; in the example configura-
tion it is 7. All congruences (denoted by ≡) are modulo 4; e.g.,
p ≡ 2 means that p−2 is divisible by 4.

We will assume that there is enough room above the config-
uration to perform the proper piece rotations and translations.
The construction itself requires some extra room; 8 rows will
suffice. Once a column and an orientation for a piece is fixed,
it just falls down; it is neither translated nor rotated anymore.
Hence, there is no need for any special rotation model (cf. (De-
maine et al. 2002)).

Results

If the width of the board equals w = 12 then every cleared row
decreases the number of occupied squares by 12 and every new
TETRIS piece increases it by 4. Hence, in every configuration
the number of pixels will be a multiple of four. With the same
reasoning, in the general case we have:

Lemma 1 Consider a constructible TETRIS configuration with
p pixels on a board of width w. Then there exists an integer u
such that u ·w+ p ≡ 0.

Indeed, u can be taken equal to the number of cleared rows.
An immediate consequence (for w = 4,8,12, . . ., and w =
6,10,14, . . .) is:

Corollary 2 Consider a constructible TETRIS configuration
with p pixels on a board of width w. If w ≡ 0, then p ≡ 0; if
w ≡ 2, then p ≡ 0 or p ≡ 2.

The main result of this paper is that these conditions are also
sufficient:

Theorem 3 A configuration of p pixels is constructible using
suitable TETRIS pieces starting from the empty board of width
w if and only if

1. no row is completely full, and

2. no row below the highest one containing pixels is com-
pletely empty, and

3. if w ≡ 0, then p ≡ 0; if w ≡ 2, then p ≡ 0 or p ≡ 2.

The rest of this paper is dedicated to the proof of this theorem,
giving an explicit construction (see (Hoogeboom and Kosters
2003) for an implementation in the form of a Java-applet). In
the sequel we shall assume that all three conditions mentioned
in the theorem are met.

The Construction

The configuration on the board is constructed row-by-row in a
modular fashion. For each row the construction consists of two
phases.

First we build a platform that serves as a scaffolding for
the construction work (it prevents TETRIS pieces from falling
down to lower rows). In general the platform looks as follows.

The ∗ denotes the bottom right empty square of the platform;
once it is filled, its whole row will be cleared. In some cases the
platform is mirrored.

∗
?

6
state

The number of squares sticking out vertically above the plat-
form at the left end may vary between 0 and 3, and is referred
to as the state of the platform. The state depends on properties
of the part of the board that already has been built below it and
on the number of rows cleared during its construction. We need
such a state as the total number of squares presently occupied
or cleared in the past must be a multiple of 4, cf. Lemma 1.
The construction of the platform is given in a separate section.

In the second phase, sometimes referred to as the row con-
struction phase, we build the pixels u of the next row of the
configuration on top of the platform, using six additional rows.
Basically we construct consecutive blocks two columns wide
and six rows high with the necessary pixels on top, proceed-
ing from left to right. Again, however, we have the multiple of
4 restriction, and we carry a surplus of squares as state of the
blocks. This state is visible as indent of up to three squares at
the bottom in the left column of the block. The last block is
designed to fill both the final square of the platform and the six
rows of the blocks, clearing all additional squares that are not
part of the final configuration.

∗

u u u u u u u

As always, the number of squares occupied in the construction
need not be a multiple of 4, and we have to take this into
account. We solve this by allowing a group of up to three
additional squares placed on top of one of the pixels. This
overflow is indicated by + in the figure below. The overflow
is used as a starting point in the construction of the platform
for the next row of pixels. If there is no overflow then we start
the construction by putting a horizontal I on top of one of the
pixels of the last row (artificially introducing an overflow of

four).

+ +

∗

u u u u u

The precise form of the blocks (for each state, number of pixels
and overflow) is explained in a separate section. Particular care
has to be taken for the last block which has to clear the six
intermediate rows and the platform.

The whole construction starts with a horizontal I. It is ex-
tended to a platform with state 1. In order to remove the last
overflow — if any —, the construction ends with some final
details, see below.

Note that in some cases there exist simpler constructions
(e.g., for boards of odd width overflow can be handled differ-
ently), but we try to give a uniform approach. Indeed, some
configurations are even extremely simple to reach (e.g., a sin-
gle vertical I), whereas the construction from the sequel might
use an abundance of pieces, clearing many rows on the way.

BUILDING THE PLATFORM

In this section we will erect a platform on the last row that
was constructed so far. The platform will enable us to precisely
construct the next row. After clearance of some additional rows
the platform consists of a row which is completely filled, except
for its rightmost square, plus up to three squares on top of the
platform in the leftmost column, the state of the platform.

As we have seen, we have to pass an overflow of zero, one,
two or three squares to the next row construction phase. Take
a pixel u that must be filled from the last row that was con-
structed. This pixel can be chosen at will, in our methods usu-
ally the leftmost one. On this single pixel we horizontally put
the overflow of up to three squares. If there is no overflow, we
add an extra horizontal I consisting of four squares.

These b new squares together are referred to as the overflow
group. The overflow group is situated on top of u in some ar-
bitrary horizontal position, for instance as far to the left as pos-
sible. These situations look like (with the b squares from the
overflow group denoted by +’s):

+ + + +
u

b = 4

+

+ +
u

b = 3

+

+ +
u

b = 3

+ + +
u

b = 3

+ +
u

b = 2

+
u

b = 1

The second and third situation with b = 3 may only occur
along the walls of the board. Note that the overflow group has
to be built using appropriate pieces. For instance, the b = 2
case might be part of a RG. The precise construction is given
below.

The value of b is such that the number of occupied squares
so far (including these b) is a multiple of 4. This value is deter-
mined by the construction up till then, see below.

In the sequel we make frequent use of the following con-
struction, which will be referred to as an extension. It starts
from the rightmost square of an overflow group, denoted by
+. Assume that there are r > 0 empty squares to its right. The
∗ again denotes the bottom right empty square of the platform
to be, whereas the ×’s are squares intentionally left empty —
for the moment. By the way, nothing is known about the row
below it. We now produce:

×

×

+ ∗

r� -

4

6

?

This can be easily obtained with LS’s starting from +, putting
in one T or LG (dependent on the parity of r), and stacking
Sq’s into the two top rows (for r = 1 it consists of just a single
LG):

+ . . .

. . .

. . .

. . .

∗

×

×

r even

+ . . .

. . .

. . .

. . .

∗

×

×

r odd

Notice that the final shape of the extension does not depend
on the parity of r. Its construction requires exactly r TETRIS

pieces.

Now we can handle the platform construction. Let us say that
there are ` ≥ 0 (still) empty squares to the left of the overflow
group, and r ≥ 0 (still) empty squares to its right. As the over-
flow group covers at most 4 columns of the board which we
have assumed to be of width 5 or more, at least one of ` and r
is nonzero.

If ` = 0, the overflow group is positioned against the left wall.
Now first build an extension on the group, and then, depending

on b, proceed as follows:

+ ∗

b = 1

+ + ∗

b = 2

+ + + ∗

b = 3

+

+

+ ∗

b = 3

+ + + + ∗

b = 4

Note the two situations for b = 3. When b > 2 the final piece
clears the top rows, in the other cases one or two rows are
already cleared earlier (in some cases one row in the extension
itself is cleared). In all cases the bottom row is never cleared
due to the empty square to the right. If r = 0 we mirror this
construction (and obtain a mirrored platform).

We now look at the case where both ` and r are nonzero. We
first assume that b > 1, and start with an extension, followed by
a series of RS’s and a single T or RG. Depending on the parity
of ` we have two cases, illustrated for b = 3:

+ +. . .

. . . ×

+ ∗

� -` odd

+ +. . .

. . . ×

+ ∗

� -` even

Remember that × denotes an empty square. The two cases can
be combined into one, the α’s denoting the difference:

+ + + ∗

α α
×

6

The case where b = 2 has its second row from below cleared.
Now we can utilize crawling, which means the use of I’s to
fill long horizontal areas, starting from below, and using LG’s,
RG’s and Sq’s to go around edges in order to proceed to higher
rows. In the picture the crawling is indicated by means of a
long arrow, starting from the α-part. There are some necessary
adaptations near × according to the value of b. If b = 2, there
is no ×-square, and the crawling is easy. If b = 3 — as in the
previous picture — there is one ×-square, and the crawling
near this square proceeds like:

` ≡ 2

�
-

×

` ≡ 1

�
-

×

` ≡ 0

�
-

×

` ≡ 3

�
-

×

Finally we handle the crawling for b = 4, where there are two
×-squares, and where we give the overall picture:

+ + + + ∗

α α
× ×

6

It remains to consider the case b = 1 with both ` and r
nonzero. If ` is odd, we first build an extension, followed by
a series of RS’s and a single LG:

+ ∗

. . .

. . .
×� -` odd

Now the two middle rows are cleared and we fill the remaining
rows with RS’s and a final RG, thereby clearing the top row:

+ ∗. . .

. . .

Up till this moment we always cleared three additional rows
while building the platform. We now arrive at the last situation,
where b = 1 and ` is even. In this case we were not able to find
a solution with three additional rows, but we had to use four
more. Note that by mirroring we could have assumed both ` and
r to be even. We also have a construction with three additional
rows for the case b = 1, ` even and r = 2, but unfortunately this
did not generalize to larger r.

So we give a construction with seven extra cleared rows for
the situation where b = 1 and ` ≥ 2 is even (there is no restric-
tion on r except that it is nonzero). We start as usual with an
extension and a series of RS’s, this time followed by a T:

+ ∗

. . .

. . .
×� -` even

thereby clearing two rows. We then clear the two top rows by
means of crawling (not necessary if r = 1; one can also use
a sequence of vertical I’s), continued for three more rows,
followed by a series of LS’s and one T:

+ ∗

. . .

. . .

�

And finally, using two series of snakes and three RG’s, we get:

+ ∗. . .

. . .

. . .

. . .

This completes the platform construction. We make the fol-
lowing observation.

Lemma 4 Starting from an overflow group with b ∈ {1,2,3,4}
squares we turn this into a platform with state (b +
1) (modulo 4), using w or 2w TETRIS pieces, meanwhile cre-
ating and clearing 3 or 7 additional rows.

CREATING A ROW OF PIXELS

A row of pixels is built on top of the platform using building
blocks of two columns wide and six additional rows in between
platform and row of pixels. The six additional rows are cleared
together with the platform during the construction. This leaves
the rows below unchanged, builds the row under construction,
and possibly places an overflow on the next row. Again, no fur-
ther properties of the pixel row immediately below are used.

The number of additional rows, six, might seem arbitrary.
It is indeed possible to use fewer rows, at the cost of a less
uniform construction.

Each block has a basic shape of 2×6 with up to two pixels on
top. When there is a pixel on top, the block cannot be formed by
an integer number of TETRIS pieces. We compensate for this by
introducing a state transition induced by the block: each block
may leave up to three additional squares in the first column
of the next block. If a block starts in state s (i.e., the s bottom
squares of its first column are already occupied; s = 0,1,2,3), it
carries q pixels (q = 0,1,2) and it has overflow f (f = 0,1,2,3),
then it leaves state t ∈ {0,1,2,3} determined by q+ t − s+ f ≡
0 (so q+ t − s+ f is divisible by 4).

u e

2 3

+ +

The figure illustrates a block from state s = 2
to state t = 3, putting a single pixel (q = 1),
and an overflow of f = 2. Larger dots indi-
cate the presence uor absence eof a pixel.
Indeed q+t−s+ f = 1+3−2+2 is (a mul-
tiple of) 4.

As there are four possible ways to put up to two pixels on a
block, we have to design sixteen basic blocks, without overflow.
In the sequel, small dots illustrate the position of the row of
pixels under construction.

Transitions and Blocks

Transitions are incomplete blocks that consist of Tetris pieces
changing one state into another. The transitions are character-
ized by their state change modulo four. Each type of transition
has a characteristic shape in the two topmost rows.

q q

0 0

q q

1 1

q q

2 2

q q

3 3

+0-transitions

q q

0 1

q q

1 2

q q

2 3

q q

3 0

+1-transitions

q q

0 2

q q

1 3

q q

2 0

q q

3 1

+2-transitions

q q

0 3

q q

1 0

q q

2 1

q q

3 2

+3-transitions

Basic blocks. Using these transitions as base, we now give
the sixteen basic blocks, i.e., blocks carrying pixels, but no
overflow.

• No pixels. A +0-transition will do the work.

• Single pixel. Put a T (left pixel) or a LS (right pixel) on
top of a +3-transition.

• Two pixels. Put a Sq on top of a +2-transition.

e e u e e u u u

Overflow blocks. As the number of squares occupied (in-
cluding those cleared afterwards) during the construction is a
multiple of four, we may have to put an overflow of up to three
squares on top of one of the pixels in the row. This means that
(at most) one of the blocks used to build the row of pixels is an
overflow block. Here we show how to construct them. There is
a large number of these blocks, depending on state, pixels and
overflow.

Note that we do not have to provide overflow blocks for the
case where the block carries no pixels. Moreover, overflow zero
is not considered as this is taken care of by the basic blocks
above.

• Single pixel, left.

One overflow. Place a RG on top of a +2-transition.

Two overflow. Place a LG on top of a +1-transition.

Three overflow. Place a T on top of a +0-transition. This
will not work if the block under consideration is the
leftmost block, as there is no room to the left to put
the third overflow square. This is solved by a special
form of the overflow. It is also possible to use a RG,
but this might cause some (solvable) problems for
the next block.

u e

+
u e

+ +
u e

+ + +
u e

+ +

+

• Single pixel, right. These cases are symmetric to the ones
above. For the second situation however, we need a vari-
ant of the +1-transitions, having an empty square top-right
rather than top-left. These can be obtained by replacing the
topmost piece (T or LS) by another one (RS or T, respec-
tively).

e u

+
e u

+ +
e u

+ + +
e u

+

+ +

• Two pixels.

One overflow. Place a T on top of a +1-transition.

Two overflow. Place a Sq on top of a +0-transition.

Three overflow. Place two pieces on top of a +3-
transition.

u u

+
u u

+ +
u u

+ + +
u u

+

+

+

Final Block

The last pixel of the row that makes up the platform under the
blocks is empty, and has to be filled to clear the platform. The
process needs some attention. As lines are cleared we have to
take care to leave support for the pieces that are dropped later.
Usually the order of the pieces is immediately clear, but in some
cases special care is necessary.

If the final block has width v (v = 2,3; v and w are equal
modulo 2), starts in state s (s = 0,1,2,3), places q pixels (q =
0, . . . ,v), leaving overflow f (f = 0,1,2,3), these parameters
must satisfy 6v+1− s+q+ f ≡ 0 (and q = 0 implies f = 0).

Odd width, no overflow. The final block has width v = 3, to
complete an odd width row of pixels. We consider the cases that
leave no overflow on the next row. The number of possibilities
is limited by the formula above, simplifying to s ≡ q+3.

• State 0, single pixel. First place a Sq and I, clearing two
lines. We then continue to clear the area while adding the
final pixel.

∗

q q q

∗

q q q u e e e u e e e u

• State 1, two pixels. First place a Sq and RG, clearing three
lines. We then continue to clear the area while adding the
final pixels; note that in the second case the I goes in first.

q q q

∗

q q q

∗

u u e u e u e u u

• State 2, three pixels; state 3, no pixels. Straightforward
stacking.

u u u e e e

Even width, no overflow. The general construction resem-
bles the previous case. The numerous possibilities are limited
by s ≡ q+1.

• State 0. This cannot occur without overflow.

• State 1, no pixels. Drop two Sq’s, clearing four rows. The
remaining squares form the final RG.

• State 2, one pixel. Drop a RG and a Sq. The remaining
squares form a final piece.

• State 3, two pixels. Again the same strategy: a RG, a Sq
and a RG will work.

∗

e e

∗

u e

∗

e u

∗

u u

Final overflow. Placing overflow in the final block is a dif-
ficult task as we have to build a structure on a disappearing
platform.

In general, we may assume that the necessary overflow is
placed on top of the first (leftmost) pixel in the row. Hence, if
we are forced to place the overflow in the final block, we may
use the fact that the blocks to the left do not contain pixels, and
that they are all in the same state. We will consider the previous
block together with the final block, and do not fill that block
using the final LG until the final block has been completed. In
that way we postpone clearing the rows, allowing us to build a
stable structure. In the pictures the final LG is indicated by Key,
it is the last piece added to the construction.

Odd width, overflow. If the final block has width v = 3, then
we are restricted to cases where 3− s + q + f ≡ 0, while addi-
tionally f 6= 0 and q ∈ {1,2,3}.

• State 0, two pixels, three overflow; state 0, three pixels,
two overflow. First we build the last-but-one block ex-
cept the last piece marked Key, then we complete the final
block, and finally we use the LG as a key.

q q q

Key

u u e

+ + +
u e u

+ + +
e u u

+ + +
u u u

+ +

• State 1, one pixel, one overflow; state 1, three pixels, three
overflow.

q q q

Key

u e e

+
e u e

+
e e u

+
u u u

+ + +

• State 2, two pixels, one overflow; state 2, one pixel, two
overflow. The final variant has a separate solution; note
that the I goes in before the LS’s.

q q q

Key

u u e

+
u e u

+
e u u

+

u e e

+ +
e e u

+ +
e u e

+ +

Key

• State 3, three pixels, one overflow; state 3, two pixels, two
overflow; state 3, one pixel, three overflow.

q q q

Key

u u u

+
u u e

+ +
u e u

++
e u u

+ +

u e e

+ + +
e u e

+ + +
e e u

+ + +

Even width, overflow. Here we consider the case when the
last block has width v = 2 while it should carry overflow. This
means that none of the previous blocks contain pixels. The pos-
sibilities we consider are limited by 1−s+q+ f ≡ 0, f 6= 0 and
q ∈ {1,2}.

Again we include the previous block in the construction, ei-
ther by postponing the completion of that block until the final
block has been built, or by integrating the construction of the
last block and the previous one, effectively creating a block of
width four.

• State 0, one pixel, two overflow; state 0, two pixels, one
overflow. Dropping the final LG of the last-but-one block
is postponed.

q q

Key

u e

+ +
e u

+ +
u u

+

• State 1, one pixel, three overflow; state 1, two pixels, two
overflow.

q q

Key

u e

+

+ +
e u

+

+ +
u u

+ +

• State 2, two pixels, three overflow. The final two blocks
are combined, as above. Again the I has to go in before
the bottom rows are cleared.

u u

+

+

+

Key

• State 3, one pixel, one overflow.

q q

Key

u e

+
e u

+

THE LAST DETAILS

The construction proceeds until the last pixels from the top row
have been accomplished. We then have an overflow group of 0,
1, 2 or 3 squares we have to get rid of. If it is 0, we are already
done. In this section we deal with the remaining cases.

From below we are handed an overflow for every new pixel
row, say b. In the current construction we use 10 (or sometimes
14; note that 14 ≡ 10) intermediate rows that are cleared, con-
taining 10w−b new squares. Let us say that the following row
contains k pixels. We then choose the unique b′ ∈ {0,1,2,3}
such that 10w− b + k + b′ ≡ 0 (remember that this means that
10w− b + k + b′ is divisible by 4) as next overflow. This will
guarantee that indeed the construction can be performed. Be-
ginning with a first overflow group of size 4 and telescoping

on this formula, for the last b we arrive at b ≡ −10hw− p ≡
2hw − p, where p is the total number of pixels and h is the
height of the configuration under construction.

From Corollary 2 we know that w ≡ 0 implies p ≡ 0, and
therefore b = 0. If w ≡ 2, either p ≡ 0 or p ≡ 2; if p ≡ 0, b = 0;
if p ≡ 2, b = 2. The latter case can be resolved by building a
platform with state 3 on this overflow group, and clearing the
whole thing with three extra rows (the middle two being cleared
first; use a final LG):

∗

. . .

. . .

+ +

. . .

w ≡ 2

If w ≡ 1 or w ≡ 3, the final b can have any value. If b = 2,
we first build a virtual next row containing zero pixels, in the
usual way. We then get b′ ≡ b + 2w ≡ 2 + 2w ≡ 0, and we are
done. Next we deal with b = 3. As above, we build a platform
with state 0 on this overflow group. This can be totally cleared
with one or three extra rows, again using a final LG, the w ≡ 1
case being analogous to the w ≡ 2 situation above:

∗

. . .

. . .

+ + +

. . .

w ≡ 1

∗

. . .

+ + +

w ≡ 3

Finally we handle b = 1 by first clearing the two top rows:

∗

. . .

. . .

+

w ≡ 1,3

and finish this as in the case b = 3. By the way, these construc-
tions show that for odd w it is possible to reduce the overflow
for each row to 0 — which is definitely not possible for even
w.

CONCLUSION

We have shown that every reasonable TETRIS configuration is
constructible, if a simple parity condition on the configuration
is met.

To this problem we can attach a decision problem: given
a configuration and an ordered series of TETRIS pieces, their
sizes satisfying a suitable congruence modulo 4; is it possible
to construct the configuration using this series? It would be in-
teresting to understand the complexity of this problem, in par-
ticular concerning NP-completeness (see (Garey and Johnson
1979)). A similar problem is the quest for minimum length se-
ries of pieces that generate a given configuration.

We thank the referees for their comments.

REFERENCES

Berlekamp, E.R., J.H. Conway and R.K. Guy. 1982. Winning
Ways for Your Mathematical Plays, Volume 1 and 2. Aca-
demic Press, New York.

Breukelaar, R., E.D. Demaine, S. Hohenberger, H.J. Hooge-
boom, W.A. Kosters and D. Liben-Nowell. 2004. “Tetris
is Hard, Even to Approximate.” International Journal of
Computational Geometry and Applications, 14: 41–68.
doi:10.1142/S0218195904001354

Breukelaar, R., H.J. Hoogeboom and W.A. Kosters. 2003.
“Tetris is hard, made easy.” Technical Report, Leiden In-
stitute of Advanced Computer Science, Universiteit Lei-
den.

Burgiel, H. 1997. “How to Lose at Tetris.” Mathematical
Gazette, 81: 194–200.

Demaine, E.D. 2001. “Playing Games with Algorithms: Algo-
rithmic Combinatorial Game Theory.” In J. Sgall, A. Pultr
and P. Kolman, editors, Proceedings 26th International
Symposium on Mathematical Foundations of Computer
Science MFCS2001, volume 2136 of Lecture Notes in
Computer Science, Springer-Verlag, 18–32. (Springerlink)

Demaine, E.D., S. Hohenberger and D. Liben-Nowell. 2002.
“Tetris is Hard, Even to Approximate.” In T. Warnow and
B. Zhu, editors, Proceedings Computing and Combina-
torics, 9th Annual International Conference, COCOON
2003, volume 2697 of Lecture Notes in Computer Science,
Springer-Verlag, 351 – 363. (Springerlink)

Garey, M.R. and D.S. Johnson. 1979. Computers and In-
tractability: A Guide to the Theory of NP-completeness.
Freeman, New York.

Hoogeboom, H.J. and W.A. Kosters. 2003. Website
— How to Construct Tetris Configurations. URL
http://www.liacs.nl/˜kosters/tetris/.

Hoogeboom, H.J. and W.A. Kosters. 2004. “Tetris and De-
cidability.” Information Processing Letters, 89: 267–272.
doi:10.1016/j.ipl.2003.12.006

http://dx.doi.org/10.1142/S0218195904001354
http://springerlink.metapress.com/openurl.asp?genre=article&issn=0302-9743&volume=2136&spage=18
http://springerlink.metapress.com/openurl.asp?genre=article&issn=0302-9743&volume=2697&spage=351
http://www.liacs.nl/~kosters/tetris/
http://dx.doi.org/10.1016/j.ipl.2003.12.006

