
Data-driven name reduction for record linkage
Marijn Schraagen and Walter Kosters

Leiden Institute of Advanced Computer Science
Leiden University, The Netherlands
{schraage,kosters}@liacs.nl

Abstract—Automatic record linkage of data containing per-
sonal names is difficult in the presence of name variation and
spelling errors. This paper presents a standardization procedure
for personal names to address the variation problem. A classifica-
tion tree based model is constructed using a training set of 65,002
name-variant pairs. The method provides an efficient procedure
for record linkage (3500 records per second, F-measure 0.96 on
a sample of Dutch historical civil records). The results include
links with large edit distance between the records, however recall
is lower for this category. A bootstrapping procedure is used to
improve recall.

I. INTRODUCTION

Record linkage is the process of matching different records
from a database that contain information about the same
domain element (e.g., person). An example is linking patient
records from different hospitals, or linking people from his-
torical archives. In most record linkage approaches a match
is based on similarity between fields that identify the subject
of the record, such as person names. However, identification
based on names (both given names and family names) can be
difficult in the presence of name variation or spelling errors.

This paper presents a record linkage procedure based on
the observation that some parts of a name appear to be more
important for the identification of the name than others. The
sequence of important characters can be considered the core
of the name which remains constant between variants of the
same name. An algorithm is presented to automatically reduce
a name to a core representation which can be used in record
linkage. The reduction is based on training examples of name
variation in historical archives. On the conceptual level, the
training procedure provides a data-driven foundation for record
linkage that is missing from plain edit distance computation.

The construction of the core representations used for train-
ing is described in Section II. Related work is discussed in
Section III. The method uses an algorithm for computation of
Longest Common Subsequences for a set of strings which is
described in Section IV. In Section V the training method and
the set of features used to construct the model for the reduction
algorithm are described. The record linkage method using the
core representations resulting from the reduction algorithm is
presented in Section VI. An evaluation of the linkage results
is provided in Section VII, and Section VIII concludes.

II. CORE REPRESENTATIONS

Spelling variation is very common for person names in
European languages. The number of variants per name in large
databases can range from only 2 or 3 to 50 or more for high

frequent names. In this paper a training set containing 65,002
manually constructed Dutch name-variant pairs is used [1]. As
an example, this set contains 73 variants of the Dutch female
first name Aaltje, such as Aaeltien, Aal, Aalie, Altje, Aaltgijn,
Aaltjen, Aeltina, Aeltje, Aaeltjen, Alina, Altijen. The sequence
of characters that a name and its variants have in common,
known as the Longest Common Subsequence or LCS, can be
used as a core representation of this name. The 73 variants of
the name Aaltje result in the LCS Al.

Ideally, the core of a name and its variants should be unique
to prevent overgeneralization. Figure 1 shows the proportion of
unique cores by length. In total 7.8% of all cores constructed
from the training set is non-unique. This percentage is higher
for shorter lengths, but the core remains discriminative in
most cases. Moreover, a record generally contains multiple
names. The sequence of cores is unique for virtually all name
combinations (see Table VII for statistics).

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

am
ou

nt
 o

f n
am

es

core length

non-unique
unique

Fig. 1. Distribution of core length as stacked bar graph

III. RELATED WORK

A name core is essentially a key to identify a certain
name and its variants. Various key extraction algorithms have
previously been used in record linkage, for example phonetic
keys like Soundex and Double Metaphone (see, e.g., [2]), or
more syntactically oriented approaches such as suffix keys [3]
or skeleton and omission keys [4]. However, these methods
are based on general assumptions about word identity and
word similarity, whereas the method presented in this paper
constructs a key for a name based on automatically derived
specific patterns as observed in training examples.

Record linkage based on LCS (or the closely related concept
of longest common substring) has been performed previously
[5], [6]. Record linkage generally consists of two steps:
selection of potential link pairs and comparison of selected
pairs using a similarity measure. In the existing approaches,
LCS is used as a similarity measure only. The current approach
constructs an LCS-like key for a single record, which is used
both for selection and as similarity measure.

The Longest Common Subsequence (LCS) problem for two
strings a and b can be addressed using dynamic program-
ming in O(mn) time, with n and m denoting the length
of string a and b, respectively [7]. Several other solutions
exist with various complexity bounds, e.g., O(pℓ + ℓ log ℓ)
or O(p(m+1−p) log n) [8], O(n(m−p)) [9]), or O(r log s)
[10]. In these formulas p, ℓ and s denote the length of the LCS,
max(m,n) and min(m,n), respectively, and r depends on the
character distributions in a and b. These solutions can be very
useful under certain circumstances, e.g., for small alphabets
(DNA) or for a high degree of overlap (text file comparison).
The problem can be extended to a set of strings, also called
multiple alignment. The complexity of dynamic programming-
based approaches becomes O(nk) in this case, for string length
n and k elements in the set. The alternative solutions do not
always require exponential time, however a full analysis is
beyond the scope of this paper.

IV. LCS COMPUTATION

All of the previous bounds correspond to the worst-case
time complexity of computing a LCS. However, for name
variants a greedy backtracking algorithm can be applied with
linear behaviour in practical cases. Algorithm 1 implements
a straightforward exponential time method that generates all
common subsequences for a string name and a set of variants
of this name and returns the longest. The variable lcs is the
common subsequence found so far (initialized as the empty
string), pos represents the current position in name.

Algorithm 1 string LCSGREEDY(lcs, pos)
if pos > name.size then

return lcs
else
lcsskip ← LCSGREEDY(lcs, pos+1)
character ch ← name[pos]
for all v ∈ variants do

i← (position of last match of lcs in v) + 1
find ch in v starting from i

if ch found in all v ∈ variants then
lcsmatch ← LCSGREEDY(lcs + ch, pos + 1)

return LONGEST(lcsmatch , lcsskip)

This algorithm can be improved by executing the branching
step that computes lcsskip on demand only. If the remaining
part of the string name is a subsequence of the remaining part
of each variant, then branching is not necessary to find the
LCS. Alternatively, a character in the remaining part of name

Current character a l i n a
Position of character within word 0 1 2 3 4
Word length 5 5 5 5 5
Number of syllables in word 3 3 3 3 3
Part of syllable 2 1 2 1 2
Previous character # a l i n
Next character l i n a #
Distance to end of word 4 3 2 1 0
Included in LCS (class) 1 1 0 0 0

TABLE I
CLASSIFICATION FEATURES WITH EXAMPLE VECTORS

may not be present in the remaining part of some variant.
In this case lcsskip needs to be computed for this character.
Additionally, the algorithm checks whether this character has
been discarded from the current variant in an earlier matching
step (effectively preventing the later match). If this is the
case, the earlier matching step is retracted and the algorithm
proceeds to compute lcsskip from that point.

When applied to the name variant data set, the median value
(which effectively discards outlier values) of the number of
steps needed to compute the LCS for a name is approximately
2.1 times larger than the length of the name (corrected for
number of variants). Therefore, this dataset provides empirical
evidence for the average case behaviour of the algorithm.

V. CLASSIFICATION

The name variants in the training set can be used as a
look-up table for record linkage. However, a look-up approach
is restricted to names that are present in the training set.
To overcome this restriction, a model can be constructed
that generates a core representation for arbitrary names. The
longest common subsequences in the training data are used to
construct this model. For each character in a name the model
predicts whether it is included in the core representation or
not. The features, listed in Table I, are therefore defined at
character level. Some redundancy is present in the features
to facilitate convergence of the training algorithm. Consider
for example the name Alina with the associated LCS Al (see
Section II). The first character is a, at position 0, word length
5, 3 syllables, second part of syllable, previous character is
blank (#), next character l, distance to end of word is 4. This
character is part of the LCS, therefore the class is 1. Table I
shows all 5 training examples constructed from this name.

A. Syllabification

For two features the names need to be split into syllables.
A syllable is a part of a word, typically consisting of a vowel,
called the nucleus (2 in Table I), and the consonants preceding
and following the vowel, called the onset (1) and the coda
(3), respectively [11]. The nucleus is always present, while
the onset and coda can be empty. Near-perfect identification
of syllable borders can be performed using machine learning
[12]. However, in the absence of syllable training data a simple
rule-based procedure is sufficient for the present purposes. The
name core training procedure is performed to derive patterns

from data, and patterns based on incorrect syllabification are
still useful as long as the errors in syllabification are made in
a consistent way. The implemented procedure (cf. [13]) parses
a name from left to right. All consonants at the start of the
string, if any, are added to the onset of the first syllable. The
following (possibly multi-character) vowel is the nucleus of
the syllable. Consonants following the vowel are added to the
coda, except for the last consonant preceding the next vowel
which is considered to be the onset of the next syllable.

B. Training

Preliminary classification experiments have been performed
using a Naive Bayes classifier, a Bayesian network, a Support
Vector Machine, a 1-nearest neighbor classifier and a C4.5
decision tree. The decision tree was selected based on ac-
curacy and classification efficiency. This section describes the
training process for the decision tree that implements the name
reduction method. For categorical variables (current, previous
and next character) the binary split algorithm of Breiman [14]
is used to improve the efficiency of tree construction. The
name variant data set [1] contains 65,002 names with a total
of 554,450 characters with associated feature vectors. The
tree is evaluated using 80% of the characters for training and
the remaining 20% for testing (see Table II). The accuracy
of the classification is 0.80, which is not perfect but a
significant improvement over the prior class probabilities. For
the majority of misclassified test examples the corresponding
training examples display conflicting class labels, indicating
noise in the data. However, the classification accuracy is
sufficient to perform record linkage (see Section VI). The tree

Class distribution of training examples
amount proportion

in core 303,996 0.69
not in core 139,562 0.31

Classification of test examples`````````predicted
actual in core not in core

in core 68,104 8,033
not in core 13,738 21,015
accuracy: (TP + TN)/all examples 0.80

TABLE II
STATISTICS CLASSIFICATION TREE

construction algorithm creates leaf nodes based on an absolute
impurity threshold, an impurity improvement threshold relative
to the previous node, and a threshold on the number of
instances in the node. These thresholds are intended to reduce
the size of the tree, which results in less overfitting and
improved efficiency in learning and classification. However,
the number of training instances that belong to the minority
class of a leaf node also serves as a quality measure of the
classification made using this node (see Definition 1). The
tree classifies each character of a name as present or absent
in the core representation. Using the quality of the leaf nodes,
the length of the generated core representation can be varied

from permissive (including characters from lower quality leaf
nodes) to strict (using only high-quality leaf nodes). Table III
provides an example of the quality thresholds for the name
Geertien. The eight characters in this name (with associated
feature vectors) are pushed down the tree into eight leaf nodes.
The lowest percentage of training examples with class 1 (3%)
is found in the leaf node corresponding to the character i in
Geertien. This means that if the leaf quality threshold is set to
0.03, the full name is generated as a core representation. For
a threshold of 0.5 three leaf nodes remain with at least 50%
training examples of class 1, resulting in the core ger.

threshold core
g e e r t i e n .03 geertien
g e e r t e n .09 geerten
g e e r t e .29 geerte
g e r t e .30 gerte
g e r t .47 gert
g e r .70 ger
g e .83 ge

e .93 e

TABLE III
LEAF NODE QUALITY FOR THE NAME Geertien

Definition 1: The quality of a leaf node in the classification
tree is defined as the proportion of positive training examples
in the node. A leaf node returns class 1 if and only if the
quality is above a given threshold.

VI. RECORD LINKAGE

The data used in the experiments is part of the Dutch
Genlias database1. Genlias contains historical civil records
from the 19th and early 20th century. In the current experiment
marriage certificates are used. A marriage certificate contains
the names of the bride and groom, and the parents of the bride
and groom. The certificates containing couples mentioned as
parents are linked to the certificates where these couples are
mentioned as bride and groom. A record is defined as a
complete certificate containing three couples. Figure 2 shows
an example link between two records from the Genlias data set.
The figure illustrates that a link is defined between certificates,
primarily based on name similarity between couples.

The basic method of record linkage using core representa-
tions is straightforward: two records with the same sequence
of core representations are considered as a match. The rest of
this section describes heuristics to find additional matches.

The decision tree can be applied twice, first on the original
name (single core) and again on the resulting core representa-
tion (double core). To compute the double core, a new feature
vector is constructed for each of the characters in the single
core (see Definition 2). Apart from the character itself, this
feature vector can be completely different from the original.
This can result in the removal of additional characters, which
in turn can lead to additional matches. An example is provided
in Table IV. This example contains two names with a variant:

1http://www.genlias.nl/en

Marriage couple
Ewout Kaptein
Geertrui Dekker

Parents groom
Jacob Kaptein
Dirksje van den Broek

Parents bride
Arij Dekker
Kniertje Verschoor

Marriage couple
Jacob Kaptein
Lijntje Smits

Parents groom
Ewoud Kaptein
Geertrui Dekker

Parents bride
Souverein Smits
Lijntje Delgens

Certificate 09915109 Certificate 09914931

Date: September 18, 1868

Municipality: Mijnsheerenland Municipality: Mijnsheerenland

Date: August 29, 1895

Fig. 2. Example of a link between two Genlias marriage certificates. The couple on which this link is based
contains a small spelling variation in a first name: Ewout has changed into Ewoud.

Harm-Harmen and Janneke-Jannetje. For the first name, the
single core extraction is sufficient: both variants are assigned
the core hr. For the second name, the double core extraction
is necessary to provide the core jan for Janneke. The core
algorithm is trained on full names, therefore the second pass of
the algorithm will target cores that morphologically resemble
names (such as janek).

Definition 2: A single core of a name is generated by
application of the trained decision tree on the characters of
the name using feature vectors computed on the full name.
A double core of a name is generated by application of the
trained decision tree on the characters of the single core of
the name using feature vectors computed on the single core.

record single core double core
Harmen van Buiten hr bute janek kolk hr but jan kolk
Janneke van der Kolk
Harm van Buiten hr bute jan kolk hr but jan kolk
Jannetje van der Kolk

TABLE IV
EXAMPLE OF DOUBLE CORE EXTRACTION

Another improvement can be obtained by using the inherent
alphabetical order of core sequences. The basic method per-
forms an exact match of the sequence of cores for a record. If
no other record is found with the same sequence, a heuristic
can be applied that selects the surrounding records using
alphabetical order (similar to the record selection technique
in [3]). The names can be rotated to avoid missing links with
a spelling variation in the first part of a name sequence. The
concept of rotation is described as follows:

Definition 3: A rotation of a core sequence is obtained by
shifting the position of the elements of the sequence from right
to left. The relative order of the sequence is preserved. The
first element is placed at the end of the sequence.

The accuracy of the rotation heuristic can be improved
by selecting only records that match in at least two rota-
tions. This procedure is illustrated with a record containing
a couple Gerrit Engbringhof and Frouwkje van der Meulen
(Table V). This couple is used to construct the original
sequence and three rotation sequences. For all other couples

the core sequences (with rotations) are also computed and
alphabetically ordered. For every rotation of the core sequence
of the first couple the alphabetically preceding and succeeding
sequences from the list of couple core sequences are extracted
as possible matches. Two sequences are encountered twice

rotation core sequence
preceding grt|engbnhof|ant|bonstra
original grt|engbnhof|fr|mul
succeeding grt|engbrhof|fru|mul
preceding engbnhof|ant|bonstra|grt
rotation 1 engbnhof|fr|mul|grt
succeeding engbnhof|r|schepe|mrte
preceding fr|mul|gesk|gorhui
rotation 2 fr|mul|grt|engbnhof
succeeding fr|mul|huber|bierman
preceding mul|grt|elzng|pter
rotation 3 mul|grt|engbnhof|fr
succeeding mul|grt|engbrhof|fru

TABLE V
EXAMPLE OF CORE ROTATIONS

in different rotations, grt|engbnhof|ant|bonstra and
grt|engbrhof|fru|mul. The first sequence is based on
a match with the original couple sequence and another match
with rotation 1. These two couple sequences both start with
a core from the same person (Gerrit Engbringhof), either
the core of the first name (grt) in the original sequence or
the core of the family name (engbnhof) in rotation 1. A
single person match is likely to be incorrect, therefore this
link is rejected. The sequence grt|engbrhof|fru|mul
is based on a match with the original sequence and another
match with rotation 3. These two couple sequences start with
a core from different people, therefore this match is accepted.
The sequences correspond to the couple Gerrit Engbrenghof,
Froukje van der Meulen, which is indeed a valid match.

Note that the cores in this match are different for both the
last name of the first person (engbnhof vs. engbrhof)
and the first name of the second person (fr vs. fru). This
indicates that the core selection mechanism does not perform
well for these names, however the rotation heuristic is capable
of solving this issue in many cases (see Section VII).

An alternative for this method is to select records with

three cores in common (instead of all four cores as in the
basic algorithm). This is sufficient for a large number of
cases, but the current method has several advantages. First,
not all matching records have three cores in common, like in
the example described in this section. In that case two cores
can be used, but this leads to a large number of incorrect
matches. Second, this method uses the information from the
non-matching cores by exploiting the alphabetical order of
the full core sequence. In the example the core engbnhof
does not match, but the alphabetical order provides the core
engbrhof which is part of the correct match. When simply
selecting three matching cores, the information from the fourth
core is lost. Third, this method is efficient to implement using
a binary search tree that provides the preceding and succeeding
records in constant time.

A. Bootstrapping

The record linkage step results in variant combinations
that partly are not present in the original training data. In a
bootstrapping step these new variant combinations are used
as additional training data for the decision tree. The original
training data was biased towards the positive class (0.69),
the additional examples are selected to reduce this bias to
0.53. The classification accuracy after bootstrapping does not
significantly change, however the linkage results are improved
(see Section VII).

VII. EVALUATION

The record linkage problem is centered around two main
aspects: linkage quality and scalability. Both aspects are es-
sential for practical applicability of a linkage procedure. From
a data mining point of view scalability is of key interest,
while link quality is important on the linguistic level. The
time complexity of computing the core sequence for a record is
linear in the length of the string. The complexity of comparing
the core sequence to the database is logarithmic in the number
of records, therefore the method can be easily scaled up
to larger databases. The linking phase for the current data
set takes 24.5 minutes for 5.2 million records (2.6 million
certificates which each contain two parent couples that can
be linked), or around 3500 records per second. The linking
phase is preceded by constructing the model (67 seconds
for around 0.5 million training examples) and computing the
reference core sequences (14.5 minutes). Experiments have

True Positive (TP) correct match
True Negative (TN) no match found, match does not exist
False Positive (FP) incorrect match
False Negative (FN) no match found, match does exist

Precision TP
TP+FP

Recall TP
TP+FN

F-measure 2 · Precision·Recall
Precision+Recall

TABLE VI
EVALUATION MEASURES

been performed on a 3.16 GHz dual core CPU with 6GB
memory using 64-bit Linux. All programs are written in C++.

The quality of record linkage methods can be evaluated by
measuring precision and recall (see Table VI for definitions).
The correct links are not known, and due to missing records
also the amount of links is unclear. For evaluation purposes a
selection of the Genlias data has been made that is known to
contain a relatively small number of missing records in order
to provide a realistic estimate of the recall of the method (see
Table VII). Links with a Levenshtein edit distance (lv) of
4 or higher between the records in the match are manually
evaluated. Links with lv ≤ 3 are assumed to be correct by
default. To test this claim, as well as to evaluate recall, a full
manual verification on all matches is provided for a sample of
6212 records from a small town (Table VIII). The matches are
computed using threshold 0.6 after bootstrapping. A number of
indexing methods as described in a recent overview article [15]
has been applied to the verification set for comparison. These
methods are more oriented towards recall and efficiency, which
is common in record linkage. The current method is more
precision-oriented, however the overall quality is competitive.
This holds also for scalability (not shown in Table VIII).

Indeed only a single match with a small edit distance
is considered incorrect after verification. The maximum edit
distance of 3 ranges over the full string which consists of
four names, therefore the distance threshold is relatively strict.
Additionally, linking on a combination of names prevents
potentially incorrect matches. Consider for example the names
Jack and John, which have edit distance 3 and therefore could
be part of an incorrect match. However, in order for a match
with maximum edit distance 3 to occur, the remaining three
names in both records need to be equal which is improbable
given the name distribution commonly found in data.

In Table VII cumulative matching rates are listed for the cat-
egories exact match, standard core, double core and rotations.
The matching rate for the single and double core matching
increases for higher thresholds, because a higher threshold
implies a shorter core sequence with less variation. Con-
versely, the number of rotation matches decreases for higher
thresholds. Rotations are intended as a repair mechanism
in case standard core matching fails, therefore the decrease
can be explained by a smaller need for repairs for higher
thresholds. Bootstrapping has been performed for threshold 0.6
only, as a proof of concept. This results in a total matching
rate of 0.899 for this threshold. Except for exact matching,
all matching categories can produce matches with a large
difference (lv ≥ 4) between the records. The proportion of
large difference matches over all records is listed in Table VII.
The table also shows that the generated core sequence is
unique for virtually all target records, indicating that core
extraction preserves the distinction between different records.

VIII. CONCLUSION AND FUTURE WORK

The algorithm from Section V can be used in record linkage
with practical recall and precision properties in a computation-
ally efficient way. Because the model performs normalization

threshold
category 0.4 0.5 0.6 0.7
exact match 0.692 0.692 0.692 0.692
standard core 0.758 0.767 0.773 0.790
double core 0.766 0.784 0.787 0.812
rotations 0.848 0.861 0.857 0.864
bootstrapping n/a n/a 0.899 n/a
large difference 0.008 0.008 0.008 0.008
correct 70.5% 75.2% 70.7% 67.2%
duplicate core 0.0007 0.0009 0.0014 0.0021
sequences

TABLE VII
RESULTS OF THE NAME CORE ALGORITHM FOR DIFFERENT DECISION

TREE THRESHOLDS

all matches 1 ≤ lv ≤ 3 lv ≥ 4

TP 5656 1302 12
TN 50 50 50
FP 5 1 4
FN 440 377 68
Precision 0.99 0.99 0.75
Recall 0.93 0.78 0.15
F-measure 0.96 0.88 0.26

measure 1 2 3 4 5 6
Traditional blocking 1.00 0.79 0.89 1.00 0.15 0.26
q-grams 0.99 0.91 0.95 0.97 0.37 0.51
Suffix array 0.36 0.84 0.48 0.13 0.20 0.14
Suffix array substring 0.15 0.97 0.24 0.09 0.60 0.15
Suffix array robust 0.31 0.93 0.45 0.18 0.44 0.23
Sorted array 0.36 0.92 0.47 0.21 0.54 0.27
Sorted array adaptive 0.80 0.90 0.84 0.63 0.41 0.47
th-Canopy clustering 0.99 0.86 0.92 0.98 0.30 0.44
nn-Canopy clustering 0.13 0.93 0.22 0.06 0.47 0.11
Sorted inverted index 0.14 0.98 0.24 0.08 0.63 0.14
th-String map 0.45 0.83 0.49 0.28 0.22 0.15
nn-String map 0.48 0.82 0.54 0.27 0.20 0.16

TABLE VIII
RESULTS ON EVALUATION SET. PRECISION, RECALL AND F-MEASURE ARE
LISTED FOR MATCHES WITH 1 ≤ lv ≤ 3 (MEASURES 1–3, RESPECTIVELY)

AND MATCHES WITH lv ≥ 4 (MEASURES 4–6, RESPECTIVELY). FOR
DEFINITIONS AND PARAMETERS OF COMPARISON METHODS SEE [15].

on individual records, there is no trade-off between computa-
tional efficiency and recall. The method produces a substantial
number of links with high edit distance, which is desirable
for any record linkage procedure. The accuracy of the method
can be attributed to the fact that a comparison of cores is
an informed way of performing edit distance. The core of a
name represents the elements that are actually important for
the identity of that name, based on training data. This provides
a conceptual foundation for the method, unlike standard edit
distance where all characters are considered equal. There
have been various extensions and adaptations of edit distance
to account for aspects of relative importance of characters,
such as Soundex (position and grouping of characters), Jaro-
Winkler distance (prefix matching), or weighted Levenshtein
distance (learn common edit operations from data). The current

work is an attempt to build a model that can cover all these
aspects, and deduce from data what the most important aspects
of strings (in this case names) actually are.

The contribution of this work consists of three aspects: a
novel, morphologically motivated model of name variation;
computational efficiency and high recall in discovering links
with small edit distance; and additional discovery of a signif-
icant amount of links with large edit distance within practical
levels of precision.

The method has been evaluated on the domain of historical
archives in the Netherlands. However, the method itself is not
restricted to the Dutch language or to historical data. Provided
that training data on name variation is available, the method
can be applied to various other domains.

In future work the training data can be chosen to be more
specific and the feature set can be expanded in order to
improve precision and recall. Bootstrapping can be developed
to increase the use of information contained in the data.

ACKNOWLEDGMENT

This work is part of the research programme LINKS, which
is financed by the Netherlands Organisation for Scientific
Research (NWO), grant 640.004.804.

REFERENCES

[1] R. Alma, “Thesauri of standardized personal names in Drenthe,” Per-
sonal communication. Data set supplied by Drents Archief, http://www.
drentsarchief.nl, 2011.

[2] P. Christen, “A comparison of personal name matching: Techniques
and practical issues,” in Proceedings of the Sixth IEEE International
Conference on Data Mining — Workshops. IEEE Computer Society,
2006, pp. 290–294.

[3] T. de Vries, H. Ke, S. Chawla, and P. Christen, “Robust record linkage
blocking using suffix arrays,” in CIKM ’09: Proceedings of the 18th
ACM Conference on Information and Knowledge Management. ACM,
2009, pp. 305–314.

[4] J. Pollock and A. Zamora, “Automatic spelling correction in scientific
and scholarly text,” Communications of the ACM, vol. 27, pp. 358–368,
1984.

[5] C. Friedman and R. Sideli, “Tolerating spelling errors during patient
validation,” Computers and Biomedical Research, vol. 25, pp. 486–509,
1992.

[6] M. Ektefa, F. Sidi, H. Ibrahim, M. Jabar, and S. Memar, “A compar-
ative study in classification techniques for unsupervised record linkage
model,” Journal of Computer Science, vol. 7, pp. 341–347, 2011.

[7] D. Hirschberg, “A linear space algorithm for computing maximal com-
mon subsequences,” Communications of the ACM, vol. 18, pp. 341–343,
1975.

[8] ——, “Algorithms for the longest common subsequence problem,”
Journal of the ACM, vol. 24, pp. 664–675, 1977.

[9] S. Kumar and C. Rangan, “A linear space algorithm for the LCS
problem,” Acta Informatica, vol. 24, pp. 353–362, 1987.

[10] G. Jacobson and K.-P. Vo, “Heaviest increasing/common subsequence
problems,” in Combinatorial Pattern Matching, ser. Lecture Notes in
Computer Science. Springer, 1992, vol. 644, pp. 52–66.

[11] S. Bartlett, G. Kondrak, and C. Cherry, “Automatic syllabification with
structured SVMs for letter-to-phoneme conversion,” in Proceedings of
ACL-08: HLT. ACL, 2008, pp. 568–576.

[12] G. Bouma, “Finite state methods for hyphenation,” Natural Language
Engineering, vol. 9, no. 01, pp. 5–20, 2003.

[13] M. Hammond, “Optimality theory and prosody,” in Optimality Theory:
An Overview. Blackwell Publishers, 1997, pp. 33–58.

[14] L. Breiman, Classification and regression trees, ser. The Wadsworth and
Brooks-Cole statistics-probability series. Chapman & Hall, 1984.

[15] P. Christen, “A survey of indexing techniques for scalable record linkage
and deduplication,” Transactions on Knowledge and Data Engineering,
vol. 24, pp. 1537–1555, 2012.

