Lindstrom scanning and link inversion

Dick Bruin and Walter A. Kosters Leiden University, Department of Computer Science P.O. Box 9512, 2300 RA Leiden, The Netherlands
Email: kosters@wi.leidenuniv.nl

In this short note we present a derivation (with implicit correctness proof) of Lindstrom scanning of binary trees, starting from simple specifications of tree traversals. In a similar way the link inversion algorithm can and will be derived. As general references we mention [1] and [2].

Binary trees are defined by

```
Tree ::= "nil" | "t(" Tree ",n(" Name "," Mark ")," Tree ")" ,
```

where Mark is an integer and Name represents the name of the node. A root-left-root-rightroot traversal of such a tree is generated by

```
Visit( nil ) = [ ] ,
Visit( t(L,n(r,0),R) ) = [r,0] + Visit( L ) + [r,1]
    + Visit( R ) + [r,2] ,
```

where - for the moment- we assume that initially all nodes contain 0 . Here the symbol + denotes concatenation of lists.
For trees S and T, and lists v, we define

```
Lindstrom( S,T,v ) = v + Visit( S ) + Visit( T ) .
```

Notice that
Lindstrom(nil, nil, v) = v ,
Lindstrom(nil, T, v) = Lindstrom($\mathrm{T}, \mathrm{nil}, \mathrm{v}$) .
Now we compute

```
Lindstrom( t(L,n(r,0),R),T,v )
    = v + [r,0] + Visit( L ) + [r,1]
    + Visit( R ) + [r,2] + Visit( T )
    = Lindstrom( L,t(R,n(r,1),T),v+[r,0] ) ,
```

if we define

```
Visit( t(L,n(r,1),R) ) = [r,1] + Visit( L ) + [r,2] + Visit( R ) .
```

Notice that initially Visit was only defined for a tree with root containing 0. Proceeding as above we get, for x in $\{0,1,2\}$,

```
Lindstrom( t(L,n(r,x),R),T,v )
    = Lindstrom( L,t(R,n(r,x+1),T),v+[r,x] ) ,
```

where we defined

```
Visit( t(L,n(r,2),R) ) = [r,2] + Visit( L ) + Visit( R ) ,
Visit( t(L,n(r,3),R) ) = Visit( L ) + Visit( R ) .
```

Finally we have

```
Lindstrom( t(L,n(r,3),R),T,v ) = v + Visit( L )
    + Visit( R ) + Visit( T ) .
```

In order to clearify this "halting condition", and also for showing similarity to the usual Lindstrom scanning, we state

Theorem

Suppose that a tree S initially has only zeroes in its Mark fields. Let T be an arbitrary tree and v an arbitrary list. Then the computation of Lindstrom ($\mathrm{S}, \mathrm{T}, \mathrm{v}$) reaches Lindstrom(T,Three(S),v+Visit(S)), where Three is defined by

```
Three( nil ) = nil ,
Three( t(L,n(r,0),R) ) = t(Three(L),n(r,3),Three(R)) .
```


Proof

The proof of the theorem is by induction on S, the case $S=$ nil being trivial. So we let $S=t(L, n(r, 0), R)$, and assuming the truth of the theorem for L and R we get

```
Lindstrom( t(L,n(r,0),R),T,v )
\(=\) Lindstrom ( L, \(\mathrm{t}(\mathrm{R}, \mathrm{n}(\mathrm{r}, 1), \mathrm{T}), \mathrm{v}+[\mathrm{r}, 0]\) )
= Lindstrom( t(R,n(r,1),T),Three( L ),v+[r,0]+Visit( L ) )
\(=\) Lindstrom ( \(\mathrm{R}, \mathrm{t}(\mathrm{T}, \mathrm{n}(\mathrm{r}, 2)\), Three ( L ) ) , \(\mathrm{v}+[\mathrm{r}, 0]+\) Visit ( L\()+[r, 1]\) )
\(=\) Lindstrom ( \(\mathrm{t}(\mathrm{T}, \mathrm{n}(\mathrm{r}, 2)\), Three ( L ) ), Three ( R ),
    \(\mathrm{v}+[\mathrm{r}, 0]+\mathrm{Visit}(\mathrm{L})+[r, 1]+\) Visit( R ) )
\(=\) Lindstrom( \(T, t(\) Three ( L ) , \(\mathrm{n}(\mathrm{r}, 3)\), Three ( R ) ),
    \(\mathrm{v}+[\mathrm{r}, 0]+\) Visit ( L ) \(+[\mathrm{r}, 1]+\mathrm{Visit}(\mathrm{R})+[\mathrm{r}, 2]\) )
= Lindstrom( T,Three( S ),v+Visit( S ) ) .
```

As a consequence we have

Corollary

Suppose that a tree S initially has only zeroes in its Mark fields. Let T* be either nil or t (nil, n (special, 3) , nil). Then the computation of Lindstrom ($\mathrm{S}, \mathrm{T} *$, []) reaches Lindstrom (T*, Three (S),Visit (S)) and in this case the "halting condition" may be replaced with

```
Lindstrom( t(L,n(r,3),R),T,v ) = v .
```

Notice that Lindstrom does not destroy the original tree structure; it only changes all zeroes into threes (this follows from the Theorem). It is also possible to drop all marking, introducing an explicit "halting condition" by means of $\mathrm{T} *$. This leads to the following more familiar self-explaining program:

```
if ( Root <> NIL ) then
    New(Star);
    Present, Previous := Root, Star;
    while ( Present <> Star ) do
        if ( Present = NIL ) then
            Present, Previous := Previous, Present fi;
        Present, Present->Left, Present->Right, Previous :=
            Present->Left, Present->Right, Previous, Present;
    od;
fi;
```

In a similar way one can produce the link inversion algorithm. The only difference is that, instead of the original definition of Visit ($\mathrm{t}(\mathrm{L}, \mathrm{n}(\mathrm{r}, 1), \mathrm{R})$), we start from

```
Visit( t(L,n(r,1),R) ) = [r,1] + Visit( R ) + [r,2] + Visit( L ) .
```

In order to get the usual link inversion algorithm some computations are necessary, for instance

```
LinkInversion( nil,t(L,n(r,1),R),v )
    = LinkInversion( t(nil,n(r,1),R),L,v ) ,
```

giving a link inversion analogue of one of the equations above, for this choice of the second argument. It also appears that we now get

```
LinkInversion( t(L,n(r,x),R),T,v )
    = LinkInversion( A,t(B,n(r,x+1),C),v+[r,x] ) ,
```

where (A, B, C) is either (L, T, R), (R, L, T) or (L, R, T), corresponding with either $x=0$, $\mathrm{x}=1$ or $\mathrm{x}=2$.
So in this case the Mark fields are necessary. However, it appears that one bit per node is sufficient (using one global variable).

References

[1] D. Gries, The science of programming, Springer-Verlag, New York, 1981.
[2] T.A. Standish, Data structure techniques, Addison-Wesley, Reading, 1980.

Leiden, November 1987.

