
Expected heights in heaps

Jeannette M. de Graaf and Walter A. Kosters

Department of Mathematics and Computer Science
Leiden University

P.O. Box 9512
2300 RA Leiden
The Netherlands

Abstract In this paper several recurrences and formulas are presented leading to an upper
bound and a lower bound, both logarithmic, for the expected height of a node in a heap.
These bounds are of interest for algorithms that select the kth smallest element in a heap.

CR categories: E.1, F.2.2, G.2.1.

Keywords: expected height, heap, recurrences, upper and lower bounds.

This paper was published in BIT 32 (1992), 570–579.

1

1. Introduction

In this paper we consider heaps. A heap is a binary tree, in which every level is completely
filled with nodes, except for (perhaps) the lowest one. At this lowest level all nodes are as
far to the left as possible. We assume that all nodes contain a unique integer. A heap has
to satisfy the ‘heap-property’: every node, except for the root, contains an integer that is
larger than the integer in its father. Such a heap is sometimes called a min-heap. In the
literature ‘larger’ is often replaced by ‘smaller’, but this gives rise to an entirely equivalent
notion of heap (max-heap).

In [3] a logarithmic upper bound for the expected height of a node in a heap is derived.
This bound is used for the analysis of an algorithm that selects the kth smallest element
in a heap. Another algorithm for this problem is presented in [1], together with some
comments on previous results. In our paper we shall present several new recurrences and
formulas related to these problems. In particular the upper bound follows as an easy
consequence. In [3] there are some conjectures concerning a lower bound. In Section 4 we
shall give a logarithmic lower bound, thereby settling one of these conjectures. A more
precise description of the organization of this paper is given at the end of this section.

The height of a node in a tree T (denoted by ht(T, node)) is defined as the number of
nodes on the (shortest) path from the root to that particular node. So the root has height
1. Sometimes one defines the height of a node as the number of edges on this path, which
is one less than the number of nodes.

If a heap contains n nodes (n > 0) we may—for simplicity—assume that the integers
in the tree are exactly those in {1, 2, . . . , n}. Of course, 1 is in the root. From now on we
identify nodes and the numbers they contain, so 1 is the root of the heap.

Suppose that an integer k is given with 1 ≤ k ≤ n. We want to know the height of
k. Of course, when k = 1, this height equals 1; for k = 2 we get 2. In order to compute
the probability that k is at height i we have to define the probability that a certain heap
arises. It seems natural to impose:

Assumption A. All heaps on the numbers {1, 2, . . . , n} are equally likely.

If one assumes that all permutations of {1, 2, . . . , n} are equally likely, and one uses the
usual Williams-method of heapconstruction, Assumption A is satisfied ([2], p. 155).

We are interested in the probability that node k is at height i in a heap on {1, 2, . . . , n},
where 1 ≤ i ≤ k ≤ n. This probability is denoted by P (k, i, n). We shall always assume
that n is sufficiently large, so that nodes of height i do occur in the heap (i ≤ ⌊2log(n)⌋+1).
Of course we have P (1, i, n) = δi1, P (2, i, n) = δi2 and P (k, 1, n) = δk1. Here we used the
Kronecker-delta δij , which equals 1 if i = j and 0 otherwise.

It seems essential for our computations that the lowest level of the heap is completely
filled with nodes. So from now on we suppose:

2

Assumption B. n = 2t − 1 for some integer t with t ≥ 1.

Let lim′
n→∞ P (k, i, n) denote the limit of P (k, i, n) as n tends to ∞ (where ′ reminds

of the fact that n has to satisfy Assumption B), if this limit exists. The limit is denoted
by P (k, i). Of course we have P (1, i) = δi1, P (2, i) = δi2 and P (k, 1) = δk1.

The paper is organized in the following way. In Section 2 we derive a recurrence
for P (k, i, n) and show that lim′

n→∞ P (k, i, n) exists. This leads to a recurrence for the
expected height of the kth smallest element in a heap (where n → ∞). Section 3 contains
another approach also leading to these recurrences. Several other interesting formulas for
P (k, i, n) and P (k, i) are given there. The recurrence for the expected height of k is used in
Section 4 to prove an upper bound 1 + 2log(k) and a lower bound 2log(k) for this height.
The lower bound (Theorem 8) requires—as far as we can see—a rather intricate proof.

3

2. Some recurrences

In this section we show that the P (k, i, n), the P (k, i) and the E(k) (where E(k) is the
expected height of node k in the case where we let n tend to ∞) satisfy certain recurrences.
The recurrence for E(k) will later be used to prove upper and lower bounds.

Theorem 1. For 2 ≤ i ≤ k ≤ n and i ≤ 2log(n + 1) we have:

(∗) P (k, i, n) =

k−1
∑

j=i−1

(

k − 2

j − 1

)

A(k, j, n)P (j, i − 1,
n − 1

2
)

where A(k, j, n) is defined by:

A(k, j, n) =
2(n−1

2)(n−1
2 − 1) . . . (n−1

2 − j + 1)(n−1
2)(n−1

2 − 1) . . . (n−1
2 − k + j + 2)

(n − 1)(n − 2) . . . (n − k + 1)

Proof. Let Q(k, j, n) be the probability that k is the jth smallest element in the right
subtree of the root, given that k indeed occurs in this subtree. Note that this subtree has
n−1

2 nodes. We can compute Q(k, j, n) as follows. The smallest key is always in the root.
The kth smallest key in the heap is the jth smallest key in the right subtree for some
number j. So from the remaining k − 2 keys larger than 1 and smaller than k, we must
choose j − 1 in the right subtree. This can be done in

(

k−2
j−1

)

ways. From the remaining

n − k keys we must then choose (n − 1)/2 − j in the right subtree. This kan be done in
(n−k

n−1

2
−j

)

ways. Hence

Q(k, j, n) =

(

k−2
j−1

)(n−k
n−1

2
−j

)

(n−2
n−1

2

)

where in the denominator a factor n−2 arises since we have assumed k in the right subtree.
A similar result holds of course for the left subtree. The probability that the kth key is
in the left subtree is equal to the probability that it is in the right subtree. Therefore
the probability that in a heap the kth smallest key is the jth smallest in one of the two
subheaps is given by:

(

k−2
j−1

)(n−k
n−1

2
−j

)

(n−2
n−1

2

) =

(

k − 2

j − 1

)

A(k, j, n)

Now the formula for P (k, i, n) follows. |

Corollary 2. For 2 ≤ i ≤ k we have that P (k, i) = lim′
n→∞ P (k, i, n) exists and

P (k, i) = (1/2)
k−2

k−1
∑

j=i−1

(

k − 2

j − 1

)

P (j, i − 1)

4

Proof. From the definition of A(k, j, n) we deduce: lim′
n→∞ A(k, j, n) exists and equals

(1/2)
k−2

. Using (∗) one can now easily prove (by induction with respect to i) that
lim′

n→∞ P (k, i, n) exists. Finally, if one takes the limit in (∗), the recurrence for P (k, i)
follows immediately. In the next section we shall give another proof of this corollary. |

Using this recurrence it is rather easy to compute P (k, i) for small values of i. For
instance:

P (k, 2) = (1/2)k−2 (k ≥ 2)

P (k, 3) = 2(3/4)k−2 − 2(1/2)k−2 (k ≥ 3)

P (k, 4) =
8

3
(7/8)k−2 − 4(3/4)k−2 +

4

3
(1/2)k−2 (k ≥ 4)

We are particularly interested in the expected height En(k) of k. En(k) is given by
∑k

i=1 iP (k, i, n) for k ≤ n. Now we let E(k) = lim′
n→∞ En(k). This limit exists (since

lim′
n→∞ P (k, i, n) exists) and equals

∑k
i=1 iP (k, i). Obviously E(1) = 1, and using the

result derived in Corollary 2 we find, after interchanging the order of the summations
involved:

Corollary 3. We have:

{

E(1) = 1

E(k) = 1 + (1/2)k−2
∑k−2

i=0

(

k−2
i

)

E(i + 1) (k ≥ 2) |

Remark. If Assumption B is not satisfied the limit of P (k, i, n) does not exist in general.
For example one can show that for arbitrary n > 2 (without Assumption B):

P (3, 2, n) =
2

(n − 1)(n − 2)
(2⌊

2log(n)⌋−δ(n) − 1)(n − 2⌊
2log(n)⌋−δ(n))

where

δ(n) =

{

1 if 2t ≤ n ≤ 2t + 2t−1 − 1 for some integer t > 0
0 otherwise

Imposing suitable restrictions on n one can achieve any value between 5/2 and 23/9 as a
limit for En(3). (In the case where n satisfies Assumption B, Corollary 3 yields E(3) =
5/2.) However, if one weakens the definition of ‘heap’ in such a way that the lowest level
is not necessarily filled to the left, it might be possible that the limit exists (averaging
over all possible shapes of such heaps). Another possibility would be to consider ordinary
binary trees with the ‘heap-property’. We have not studied these situations in detail yet.

5

3. Some other formulas

In this section is we shall follow another line of reasoning, also leading to the result men-
tioned in Corollary 2. The proofs in this section are a bit more combinatorial.

Theorem 4. For 1 ≤ i ≤ k ≤ n and i ≤ 2log(n + 1) we have:

P (k, i, n) =
1

n(n − 1) . . . (n − k + 1)

∑

T

k
∏

j=1

(

n − (2ht(T,j)−1 − 1)

2ht(T,j)−1

)

In this summation T runs over all binary trees that contain only {1, 2, . . . , k}, satisfy the
‘heap-property’, and have k at height i. If n is small we restrict the summation to those
T that arise as subtree of the original heap. (Otherwise, some trees would be higher than
this heap.)

Proof. From [2], p.154, we know that the number of heaps containing {1, 2, . . . , n} equals
n! divided by the product over all subheaps of the number of nodes in these subheaps. The
number of nodes in a subheap rooted at a node at height j equals (with t = 2log(n + 1))

2t−j+1 − 1 =
n − (2j−1 − 1)

2j−1

We compute P (k, i, n) as the sum over T of (the number of heaps on {1, 2, . . . , n} where
the numbers {1, 2, . . . , k} are situated as they are in T) divided by (the total number of
heaps on {1, 2, . . . , n}).
An easy argument shows that this summation boils down to the formula in the theorem.
Indeed, once T is given, we only have to spread the numbers {k + 1, . . . , n} over the
remaining n − k nodes in the heap (maintaining the ‘heap-property’). This gives rise to a
factor (n − k)! divided by the product (over the subheaps rooted at {k + 1, . . . , n}) of the
number of nodes in the subheaps. These terms cancel out, and finally only the subheaps
rooted at {1, 2, . . . , k} contribute to the sum. |

Since—for k and i fixed—numerator and denominator in Theorem 4 are both polyno-
mials in n of degree k, we can conclude (cf. Corollary 2):

Theorem 5. For 1 ≤ i ≤ k we have that P (k, i) = lim′
n→∞ P (k, i, n) exists and

P (k, i) =
∑

T

1/2Pl(T)

where T runs over all binary trees that contain only {1, 2, . . . , k}, satisfy the ‘heap-
property’, and have k at height i. Here we defined Pl(T) as the sum (over all nodes
in T) of the lengths of the paths from the root to these nodes. |

6

From Theorem 5 we can derive

Theorem 6. For 1 ≤ i ≤ k we have:

P (k, i) =
(k − 2)!

2(i−1)(i−2)/2

∑

t1,...,ti−1

t1+···+ti−1=k−i

2−t1−···−(i−1)ti−1

t1! . . . ti−1!(ti−1 + 1) . . . (ti−1 + · · · + t2 + i − 2)

Proof. We have to sum over all trees T with k at height i. The path from the root
to k contains exactly i nodes. The numbers on this path are denoted by a1, a2, ..., ai,
with a1 = 1 and ai = k. Let tj be the number of nodes in the subtree rooted at aj

(j = 1, 2, . . . , i− 1). (This subtree is the subtree that does not contain k.) Together, these
subtrees contain k − i numbers.
Now we enumerate all possible trees T . First, choose a partition t1 + . . . + ti−1 = k − i.
Then choose t1 numbers from {2, . . . , k−1}; these numbers will be stored in the subtree T1

of a1. The number a2 is now completely determined: it is the smallest remaining number.
Continue in this way: choose t2 numbers from the remaining k − 3 − t1 to fill the subtree
T2 of a2, and so on. This leads to a factor

(

k − 2

t1

)(

k − 3 − t1
t2

)

. . .

(

ti−1

ti−1

)

This construction fixes the contents of the subtrees Tj . We still have to sum over all
possible T ’s corresponding to these choices. We must compute terms like 2−jtj /2Pl(Tj).
Only the numbers in Tj are chosen, but still all binary trees satisfying the ‘heap-property’
are possible. (The term 2−jtj arises because a node in Tj has height j + ht(Tj , node) in
T .) Note that

∑

S

1/2Pl(S) = 1

if one sums over all binary trees S satisfying the ‘heap-property’ (this easily follows from
Theorem 5 by summation over i). So the summation gives rise to a factor 2−jtj .
Finally taking into account the numbers on the path from the root to k (contributing a
factor 2−i(i−1)/2), and multiplying by 2i−1 (the number of possible shapes of this path),
one arrives at the formula in the theorem. |

Remark. The recurrence in Corollary 2 is an easy consequence of Theorem 6.

7

4. Upper and lower bounds

The following theorem is due to [3]; here we present a proof using the recurrence for E(k)
derived in Section 2.

Theorem 7. For k ≥ 1 we have:

E(k) ≤ 1 + 2log(k)

Proof. Use induction with respect to k, the case k = 1 being trivial. Then (note that
∑k

j=0

(

k
j

)

= 2k):

E(k) ≤ 2 + (1/2)k−2
k−2
∑

i=0

(

k − 2

i

)

2log(i + 1)

Combining the terms with summation-index (k − 2)/2 − j and (k − 2)/2 + j, and using

(k/2 − j)(k/2 + j) = (k/2)2 − j2 ≤ (k/2)2

one easily deduces the desired result. |

We can also derive a lower bound for E(k).

Theorem 8. For all k ≥ 1:

E(k) ≥ 2log(k)

Proof. We define

H(j, k) = 1 + (1/2)
k−j

k−j
∑

i=0

(

k − j

i

)

E(i + j) (1 ≤ j ≤ k)

For k ≥ 2 we have E(k) = H(1, k − 1). The H(j, k) are completely determined by

H(1, 1) = 2 (a)

H(j, j) = 1 + H(1, j − 1) (j ≥ 2) (b)

H(j, k) = (H(j + 1, k) + H(j, k − 1))/2 (1 ≤ j < k) (c)

These equations form an easy scheme for the computation of the E(k). First we shall prove
that

H(j, k) ≥ 2log(j + k) (1 ≤ j ≤ k)

The proof is divided in five steps.

8

(1) For integers K ≥ 2 we let

bK = 1 − K

2
+

1

2

√

K2 + 4

aK = 1/ 2log(bK + 1)

Note that bK ↓ 1 and aK ↑ 1 for K → ∞. We have

(bK(j + 1) + k)(bKj + k − 1) ≥ (bKj + k)2 (1 ≤ j < k, k ≥ K)

(since bK > 1 this is equivalent to b2
K + (K − 2)bK − K ≥ 0) and

1 + aK
2log(bK + j − 1) ≥ aK

2log(bKj + j) (j ≥ 2)

In order to guarantee these inequalities aK and bK are the best choices possible.

(2) Let K = 2. Then bK =
√

2. We shall show that

H(j, k) ≥ a2
2log(b2j + k) + c2 (1 ≤ j ≤ k)

where c2 = 1. We prove this inequality by induction with respect to j and k, using the
defining relations (a), (b) and (c). To this end we have to show:

2 ≥ a2
2log(b2 + 1) + c2 (a′)

1 + a2
2log(b2 + j − 1) ≥ a2

2log(b2j + j) (j ≥ 2) (b′)

(b2(j + 1) + k)(b2j + k − 1) ≥ (b2j + k)2 (1 ≤ j < k) (c′)

Using step (1) it is easy to check that these inequalities hold.

(3) Suppose that for some integer K ′ ≥ 2 we have found cK′ such that

(∗∗) H(j, k) ≥ aK′

2log(bK′j + k) + cK′ (1 ≤ j ≤ k)

We want to use this lower bound to derive a better one. In fact, we show that for any
integer K > K ′ we have

H(j, k) ≥ aK
2log(bKj + k) + cK (1 ≤ j ≤ k)

where cK is defined by

cK = cK′ + min
1≤j≤k≤K−1

{aK′

2log(bK′j + k) − aK
2log(bKj + k)}

To prove this we use induction (cf. step (2)). The basis of the induction is here the
following finite set of inequalities

H(j, k) ≥ aK
2log(bKj + k) + cK (1 ≤ j ≤ k ≤ K − 1)

9

These inequalities are satisfied by (∗∗) and the choice of cK , which again is ‘optimal’.
The other inequalities involved—corresponding to (b′) and (c′) in step (2), but now with
k ≥ K—are met by the definitions of aK and bK , cf. step (1).

(4) Here we prove that

min
1≤j≤k≤K−1

{aK′

2log(bK′j + k) − aK
2log(bKj + k)}

is attained for j = k = K − 1. In fact, consider

h(x, y) = aK′

2log(bK′x + y) − aK
2log(bKx + y)

for real x and y with 0 ≤ x ≤ y ≤ K − 1 and y ≥ 1. Derivation with respect to y,
using 1 < bK < bK′ , shows that for fixed x the function h(x, y) is strictly decreasing in y.
Therefore the minimum is attained for y = K − 1. So we let g(x) = h(x,K − 1). Then we
have g(0) = g(K − 1) = (aK′ − aK) 2log(K − 1). Derivation with respect to x reveals that
g(x) has precisely one stationary point, which has to be in the interval [0,K − 1].
In order to show that g(x) attains its minimal value (in the interval [0,K − 1]) in K − 1
it suffices to show that g′(0) > 0. We compute:

g′(0) =
1

(K − 1)
{ bK′

elog(bK′ + 1)
− bK

elog(bK + 1)
}

where 1 < bK < bK′ ≤
√

2. To show that g′(0) > 0, it is sufficient to prove that
h(x) = x/ elog(x + 1) is increasing on the interval [1,

√
2]. Taking the derivative this

is equivalent to

l(x) = elog(x + 1) − x

x + 1
> 0 (1 ≤ x ≤

√
2)

which follows from l(1) > 0 and l′(x) > 0. This completes the argument.

(5) Now we take K = 2m for some integer m ≥ 2 and we let K ′ = K/2. Then we may
conclude from steps (2), (3) and (4) that

H(j, k) ≥ aK
2log(bKj + k) + cK (1 ≤ j ≤ k)

where

cK = cK/2 + (aK/2 − aK) 2log(K − 1) ≥ cK/2 + (aK/2 − aK) 2log(K)

Repeating this process we get

cK ≥ 1 + (aK/2 − aK) 2log(K) + (aK/4 − aK/2)
2log(K/2) + . . . + (a2 − a4)

2log(4)

= 1 − aK
2log(K) + (aK/2 + . . . + a4 + a2) + a2

10

We can estimate br and ar (for 2 ≤ r ≤ K) as follows:

1 < br = 1 − r

2
+

1

2

√

r2 + 4 = 1 +
1

r
2 + 1

2

√
r2 + 4

< 1 + 1/r

and

1 > ar = 1/ 2log(br + 1) > 1/ 2log(2 + 1/r) > 1 − 1

2r elog(2)

The last inequality is derived by estimating the function v(x) = 1/ 2log(2 + x). To do so
take the first and second term of the Taylor-expansion of v and show that v′′(x) > 0.
Now we derive

cK ≥ 1 − 2log(K) + (2log(K) − 1) − 1

2 elog(2)
(1/(K/2) + . . . + 1/4 + 1/2) + a2

≥ 1
2log(

√
2 + 1)

− 1

2 elog(2)
≥ 0

For any integer m ≥ 1 we have, with K = 2m:

H(j, k) ≥
2log(bKj + k)
2log(bK + 1)

(1 ≤ j ≤ k)

If we let K → ∞ we can conclude

H(j, k) ≥ 2log(j + k) (1 ≤ j ≤ k)

hereby proving the promised result.

Finally we have
E(k) = H(1, k − 1) ≥ 2log(k) (k ≥ 2)

This completes the proof of the theorem (the case k = 1 being trivial). |

Remark. Numerical results (up to k = 5000) suggest that

E(k) ≥ 2log(k) + 0.72... (k ≥ 1)

and
lim

k→∞
(E(k) − 2log(k)) = 0.72...

However, we were not able to prove this in general. The argument in the proof of Theorem
8 can be slightly improved, but we could not do better than a constant 0.34 instead of
the constant 0.72... mentioned above. The lower bound for E(k) (apart from the constant
involved) is also conjectured in [3].

11

Acknowledgements

The authors are very grateful to Henk J.M. Goeman for his stimulating encouragements
and discussions, and to Hendrik Jan Hoogeboom for his careful reading of the manuscript.

References

[1] G.N. Frederickson, The information theory bound is tight for selection in a heap,
Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, p. 26–33,
1990.
[2] D.E. Knuth, The art of computer programming, Volume 3, Sorting and searching,
Addison-Wesley, 1973.
[3] M.A. Weiss and J.K. Navlakha, The distribution of keys in a binary heap, p. 510–516
in LNCS 382, Springer, 1989.

Leiden, June 1991

12

