
Understanding Customer Choice Processes

Using Neural Networks

Walter A. Kosters, Han La Poutré and Michiel C. van Wezel

Leiden University, Department of Computer Science
P.O. Box 9512, 2300 RA Leiden, The Netherlands
Phone: +31 71 527 7059; Fax: +31 71 527 6985
Email: {kosters,han,michiel}@wi.leidenuniv.nl

Abstract

We propose and examine two different models for customer choices in a wholesale

department, given the actual sales. Both customers and products are modelled by

points in a k-dimensional real space. Two possible strategies are discussed: one buys

the nearest option from categories of products, the other buys all products within

a certain radius of the customer. Now we deal with the following problem: given

only the sales list, how can we find again the original coordinates corresponding

with customers and products. In particular we are interested in the dimension of

the space. We are looking for low dimensional solutions with small errors compared

to a real sales list. Theoretical complexity of these problems is addressed: they are

very hard to solve exactly; in fact they are NP-complete. We use techniques from

neural networks for both artificial and real life data, and obtain promising results.

Appeared as pp. 167–178 in:
H.F. Arner Jr., editor, Proceedings of the First International Conference on the Practical
Application of Knowledge Discovery and Data Mining, PADD’97, London, April 1997.



1 Introduction

In this paper we examine large data files concerning sales in a wholesale department.
Every customer buys many items; he or she may choose from an extensive catalogue
of different products. At the end of every period only a list of all sales remains. If a
customer places a new order, he or she is considered to be a new customer: the identity
of the customer is hidden in this list.
We propose different models to understand the behaviour of the customers. In both
models customers and products are modelled as points in a k-dimensional real space.
These k dimensions are supposed to represent aspects that influence consumer behaviour,
such as price, product quality, appearance and so on. Without using any interpretation of
these dimensions, we try to find the number of relevant dimensions and the coordinates
of customers and products. Contrary to many approaches (cf. [1]) our methods use only
very partial information; instead of direct attributes like age or price, we only use the
sales list.
In the first model, following [5], the products are grouped into a small number of cat-
egories. Every customer has to buy a product from each category, choosing from the
options (products) available in it. The customer chooses —from the different options
within each category— the nearest one. In the second model every customer buys exactly
those products that are within a certain distance, the so-called radius of the customer.
Here some notion of distance is necessary. We examined the Euclidean distance and some
Manhattan-like distances.
Now the problem can be easily described. Given a list of sales, determine a dimension k
such that the model generates those same sales — up to a certain error. Here k should be
as small as possible. Furthermore, we also want to find the coordinates of both customers
and products.
We will prove that for the first model this problem is already NP-complete (see [2]) in
special cases. This means that an exact solution is beyond reach, possibly for many years
to come. This theoretical complexity justifies the use of approximating algorithms, such
as neural networks, see [4].
Next we provide some results of experiments on artificial data, using neural networks.
Customer and product points in k-space were generated randomly, and sales were gen-
erated according to one of the models. Throwing away the original points, the problem
was to relocate their coordinates. Experiments show that this is feasible, especially in
the case where every customer buys lots of products. The neural networks involved are
related to simple competitive neural networks.
Real data offer more difficulties. Motivated by the results on artificial data we restricted
the experiments to those customers who bought at least 40 products. At first it seemed
hard to improve upon the so-called naive error: the system that buys nothing at all
has a relatively small error. Fortunately we had several runs that were promising. The
experimental results can be analysed by e.g. cluster analysis in order to obtain a better
understanding of the coordinates — and the dimensions.
We would like to thank Camiel van Breugel, Marc Zegveld, and the anonymous referees,
who all contributed —in quite different ways— to this paper.

2 Description of the Problem and the Models

Suppose we are given n customers and m different products. We assume that customers
buy each product at most once. We have to analyse the so-called sales list: for every



customer we know exactly the products he or she bought. We now propose two models
to understand the behaviour of the customers.

• First we describe the option model, cf. [5]. The products can be divided into c
disjoint categories O1, O2, . . . , Oc. In each category we have a number of products,
say oi ≥ 2 in category Oi (i = 1, 2, . . . , c); these products are called the options
or the alternatives. Every customer has to choose exactly one of the options in
each category. We suppose that the sales list has this property. If customers and
options are points in a k-dimensional real space, the model lets the customer choose
the nearest option. We assume that there always is exactly one option that is the
nearest; if not, we slightly disturb the customers’ coordinates. Here we need a
certain metric on the space. It is also possible —but not obvious— to deal with the
concept of non-buying in this model: an extra option could be added, corresponding
with the situation where the customer does not want to choose from the original
options. Finally, the division into categories is in principle done by the wholesale
department.

• Secondly, we describe the product model. Now each customer j also has a radius

rj (j = 1, 2, . . . , n), proportional to the number of products he or she bought. If
customers and options are points in a k-dimensional real space, the model lets the
customer buy precisely the products within its own radius.

Now the problem is the following. Given real data, i.e. customers with their sales, is it
possible to find points in k-space such that either the option model or the product model
predicts these sales within some reasonable error bound? Here the dimension k should be
as low as possible. In fact, it can be shown that if k = m a zero error solution can be given.
To do so for the option model, take the vector vi (i = 1, 2, . . . ,m), corresponding with
product i, to be (0, . . . , 0, 1, 0, . . . , 0) (a one in coordinate i), and just add the products
bought in reality to produce the vector corresponding with customer j (j = 1, 2, . . . , n).
However, in order to hope for some real life interpretation we are interested in situations
where k is in the order of magnitude 10.
In the previous paragraphs an error is mentioned. This error may be defined —for the
moment— as the number of products/options the model buys, but the customers do not,
added to the number of products/options the customers buy, but the model does not. So
the naive error, where the system buys nothing at all, equals the total number of sales.

3 Complexity of the Models

In this section we shall examine a special case of the option model, and we shall prove that
the corresponding decision problem is NP-complete in the sense of [2]. These problems are
very difficult indeed; up to this moment nobody has been able to find efficient solutions
to any of these problems. Often approximating or probabilistic algorithms are used, for
instance neural networks. Since exact solutions are not feasible, one would be happy to
accept near optimal solutions. A famous example is the Traveling Salesman Problem,
where a person is asked to visit a given number of cities using a route as short as possible.
NP-complete problems are usually formulated as decision problems with a yes/no answer.
The most common technique used to show NP-completeness is called reduction, where
a known NP-complete problem is reduced —in a very precise way— to the problem at
hand. For instance, in [2] a reduction is given from the Traveling Salesman Problem to



the problem of finding a Hamiltonian circuit in a graph: a closed route connecting all
nodes, visiting them once.

We first describe the special case of the option model we would like to address. We have
n customers, who must choose from only c = 2 categories, with a total of m products. We
identified customers who had bought exactly the same products. The customer choices
are easily represented using a graph consisting of two horizontal rows of nodes, where the
nodes in the first row correspond with the options from the first category, and the nodes
in the second row with the options from the second category. The edges now correspond
with the choices made: every customer corresponds with a unique edge. So the graph
has m vertices and n edges. We call this graph a sales graph. We may assume that this
graph is connected. An example, with m = 6 + 5 = 11 and n = 10:

r

r

r

r

r

r

r

r

r

r r

L
LL

\
\\

L
LL

�
��

�
��

�
��

This graph is bipartite: the nodes can be split into two nonempty disjoint sets, such
that every edge is incident with a node from both sets. The converse also holds: every
bipartite graph can be viewed as a sales graph.

Now we return to our original problem, and we consider the special case of dimension
k = 1: “we only look at the price of the products”. Is it possible to find an exact solution
in this case? In other words, is it possible to attach real numbers to customers and
options (where customers choose the nearest option), in such a way that the given graph
represents the corresponding sales? In dimension 1 we should divide the real axis for
both categories into disjoint intervals; in higher dimensions we get Voronoi cells here.
We now explain a way to find suitable coordinates for customers and products. We pro-
ceed from left to right, adding one customer at a time. Notice that every new customer
adds a new option too. So suppose coordinates for l customers and the corresponding
options —coming from the left— have been chosen. We now choose a new option coordi-
nate to the right of the previous one (in the same category) in such a way that the latest
customer coordinate is still correct. In the example above, suppose we have correctly
chosen l = 3 customers, say as:

r

r r r

1 2 3

Here the real axis is depicted three times: the first horizontal line shows the first category,
the second horizontal line represents the second category; in the middle we see numbers
representing the customers. The dots represent the coordinates for the options. The small
vertical lines denote the boundaries of the intervals, precisely in the middle between two
option coordinates. For instance, customer 2 buys the only option available from the first
category and the second option from the second category. Now we want to add the fourth
customer, who bought a new option from the first category, and bought the rightmost
option from the second category. We have to take care that we do not disturb the third
customer, so the small vertical line in the upper row has to be to the right of the 3. We
get:

r r

r r r

1 2 3 4



Continuing in this way we see that horizontally stretching the sales graph we arrive at
the desired coordinates. If we shrink all intervals by the same factor, we can embed all
coordinates in the interval [0, 1].
When does this construction fail? It is easily seen that this happens in the following
situation:

r

r

r

r

�
��

\
\\

In this case we have to cut the real axis into two parts —for both categories— in such
a way that all four combinations have a nonempty intersection. This is impossible. In
every way we choose the coordinates for customers and options, at least one customer
will be treated incorrectly. In fact, if for the first category, with options A and B, we
choose real numbers a and b with a < b, and for the second category, with options C
and D, we choose real numbers c and d with c < d, then a customer corresponding to
x chooses A if x < (a + b)/2 and B if x > (a + b)/2 and similarly for C and D. Now
—given real a, b, c and d— it is not possible to find x1 that buys both A and D, and x2

that buys both B and C.
In general we see that cycles are forbidden, in other words: the sales graph should be
acyclic, i.e. not contain any paths from a node to itself. It seems that in the example
it could be possible to deal with this problem by allowing nondeterminism, for instance
with x’s precisely in the middle of a and b. However, first of all the model would become
more complex, and secondly this would also fail in the case of cycles with more than four
nodes.
Furthermore the construction also fails for:

r

r

r

r

r

r r

�
��

�
��

L
LL

�
��

However hard one tries, it is impossible to arrange the option nodes in such a way that
crossing edges can be removed. Since crossing edges correspond to the fact that customers
are treated correctly or not, they should be avoided. We can conclude that a sales graph
can be realised in the way we want, if and only if it contains no cycles and no subgraphs
isomorphic to graph H:

r r r

r

r

r

r

��
QQ

��

QQ

Here we replaced the sales graph from the previous example by an isomorphic one. The
minimal number of edges that should be omitted in order to obtain a graph that meets
the conditions, is exactly the minimal number of customers that is treated incorrectly.

So we are motivated to examine the following decision problem, called SG (Sales Graph).
Given a bipartite graphG. DoesG possess a spanning tree (a connected subgraph without
cycles, containing every node) that does not have a subgraph isomorphic to H? Stated
otherwise, does G have a spanning tree that looks like:



r r r r r r

r r r r r

S
S

�
�

�
�

r r r

�
�

S
S

So we should have a long “spine”, to which several degree one nodes are attached.
We now arrive at the main result of this section:

Theorem SG is NP-complete.

The proof proceeds as follows. At first we notice that SG is in the class NP. Given a
candidate subgraph, it is easy to verify the conditions. Next we will reduce a known
NP-complete problem to this one. We choose problem GT39 from [2]. Given a bipartite
graph G; does G possess a Hamiltonian path, i.e. a path connecting all nodes without
repeated visits to nodes?
The reduction goes as follows. Suppose that a bipartite graph G is given; we would like
to know whether or not G admits a Hamiltonian path. We construct a bipartite graph
G′ from G by adding a node x′ to every node x of G, only connected to the rest of G′

by an edge incident with x and x′.
Now we notice that G′ has a spanning tree, without subgraphs isomorphic to H, if and
only if G has a Hamiltonian path. In fact, suppose G has a Hamiltonian path; attach
the extra nodes to this path, and we are done. If the desired spanning tree of G′ exists,
all nodes x′ occur as degree one nodes (by construction they are incident with precisely
one edge); omit these nodes in order to obtain a Hamiltonian path for G. The remaining
nodes indeed form a path, since if there were a node of degree at least three, we would
have a subgraph isomorphic to H in the original G′.

Now that we have shown that SG is NP-complete, we can infer that given customers
and their choices, it is not feasible to determine the minimal error that can be reached.
If this were possible, the existence of a spanning tree without subgraphs isomorphic to
H would be immanent. It is therefore appropriate to turn to approximating algorithms,
such as neural networks.

4 Description of the Neural Network

The neural network we used in our experiments is inspired by simple competitive neural
networks (see e.g. [3] or [4]). In such neural networks, the weight vectors associated
with the neurons are merely points in a k-dimensional real space if the input data for
the network are k-dimensional real vectors. Each time a data vector is presented to a
competitive neural network, a “winning unit” w is determined by calculating which unit
has its weight vector closest to the presented pattern (in a Euclidean sense). Next, this
units’ weight vector is moved towards the presented pattern. This increases the chance
of unit w being the winner if the same input pattern is presented again later on.
In our case, where we analyse sales lists, all customers and all products (or options within
a category) are represented by a separate competitive unit. The weight-vectors of the
units correspond with the points in a k-dimensional real space describing the customers
and products (or options).
Of course, the learning process has to be modified in order to be able to work with
sales lists. The aim of the learning process is to bring weight vectors of each customer
and weight vectors of the products he or she has bought sufficiently close to each other,



whereas weight vectors of the products the customer has not bought should be at a
sufficient distance from each other.
The meaning of the word sufficient is crucial here, and it is determined by the model
used. In the case where a customer buys everything within a certain radius of his own
weight vector, sufficiently close means within this radius, and sufficiently distant means
outside this radius. In the case where a customer buys the closest one of a number of
options within a category, sufficiently close means closer than all the other options in
the category, and sufficiently distant means at a greater distance than the option the
customer did buy from the category.
Now, the training of our network roughly proceeds as follows. First, the network weights
are randomly initialized in the [0 :1] hypercube. Next, the network is trained for a number
of iterations. In each iteration, a number (say 5000) of random customer/product pairs
are examined. If the customer and the product are not sufficiently close, the weight
vectors representing them are pulled towards each other in the k-dimensional hypercube.
If they are not sufficiently far apart, they are pushed away from each other. At the end
of an iteration the coordinates are renormalised in order to make optimal use of the full
unit cube. Iterating is stopped if the error (which is described below) has not decreased
anymore for a sufficiently large number of iterations.
The error associated with this neural network can be divided into two types:

only reality bought error: this error occurs when a product is not sufficiently close
to a customer, so the product is not bought according to our model, but is bought
according to the real data;

only model bought error: this error occurs when a product is not sufficiently distant
from a customer, so the product is bought according to our model, but it is not

bought according to the real data.

At the end of each run we in particular have four significant figures:

“both bought”: number of products both reality and the model bought;

“only reality bought”: number of products only reality bought;

“only model bought”: number of products only the model bought;

“none bought”: number of products none bought.

In most experiments this last number is enormous. If we talk of the number of products
here, we mean the number of combinations customer-product.
The error we make could be defined as the sum of “only reality bought” and “only model
bought”, perhaps relative to “both bought” or the total number of sales. If we think of
the naive error, where the model buys nothing at all, it is more illustrative to show all
numbers involved. Notice however that the sum of all four always equals the number of
customers times the number of products, and that the sum of “both bought” and “only
reality bought” always equals the total number of sales.



5 Results on Artificial Data

Suppose that our models resemble reality. Since we only get the sales lists, it still is diffi-
cult to find the coordinates of all customers and products involved. Even the dimension
is hard to find. Therefore we have to develop methods to examine sales lists. In order
to show that these methods work, we apply them to artificial data first. This method
seems promising, see [5] for an application in the case of the option model. The data are
generated by randomly assigning coordinates to customers and products, and producing
the corresponding sales list using the model. In this section we shall describe several
experiments. We shall also draw some conclusions for the real situation.
Let us now first restrict our attention to dimension k = 2 in the product model. In
this case results can be easily visualised. We chose n = 500 customers and m = 3000
products, so experiments took little time. As a good run we present a situation where
116638 products were sold, whereas the total error was a mere 8928, with 7122 “only
model bought”. In this case every customer bought at least about 200 products. Figure 1
shows both customer and product coordinates; customers correspond to small squares,
products to small +’s.

Figure 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

As a second example (see Figure 2) we consider a situation where we achieved a total
error of 21015, with 20773 “only model bought”. The total number of sales was 117997.
This example shows the importance of repeated runs — the parameters were exactly the
same as in the previous example, but this time the unit square was only partially used.
The result is not really bad, but if one fills the whole square, as in the previous example,
a better result is possible. Note that the coordinates found are situated in a rectangular
shape, suggesting that the regained coordinates have almost the same positions relative
to each other as the original ones. This illustrates the fact that there are some degrees
of freedom (i.e. rotations and scaling) in the behaviour of the model.



Figure 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

As a final example for dimension k = 2 we present some results of an experiment with few
sales. In this case only 14985 products were sold. The total error was 24094, with 20850
“only model bought”. Figure 3 is representative for many experiments: the final error is
large, whereas customers and products are not evenly distributed in space, contrary to
the artificially generated ones.

Figure 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

From the experiments we concluded that the best results were obtained when customers
bought very many products. Intuitively customers that buy only a few products are not
representative, and from a marketing point of view, these customers are perhaps not
the most interesting ones. In the sequel we therefore restrict our attention to customers
buying at least 40 products.
In the following table we give some results in the case of artificial data for higher di-
mensions, where every customer bought about 50 products. The number of customers
considered was near to 200.



name dimension number “both “only reality “only model
of cycles bought” bought” bought”

A 4 2820 6868 493 83
B 5 2460 12323 1294 267
C 6 2400 12348 1768 331
D 7 2000 13422 1648 345
E 8 2060 12072 356 207
F 9 1480 10956 338 91
G 10 1680 6695 25 12
H 10 1760 6115 38 17
I 10 1320 24426 4259 1042

Here the experiments G, H and I had slightly different parameters. Some runs were
almost perfect. We may conclude that the neural network is capable of fitting the coor-
dinates in the case of artificial data.

6 Results on Real Data

In this section we present some results from experiments on real data. As a running
example we use a real sales list consisting of n = 1368 customers, who bought 32523
products. The number of different products was m = 10381. We restricted our attention
to customers buying at least 40 products. These 228 customers (17% of the total number
of customers) bought t = 11769 products (36% of the total number of products sold).
As this example will show, reasonable results can be obtained.
In the first table we present some simple theoretical values. We denote by “k-wrong” a
situation where the total number of products bought matches the corresponding number
from the sales list exactly, but precisely k products are replaced by incorrect ones. Of
course, perfect is 0-wrong.

name dimension “both “only reality “only model
bought” bought” bought”

naive any 0 t 0
perfect any t 0 0
k-wrong any t− k k k

In the second table we show results from interesting runs using real data. Note that “both
bought” and “only reality bought” always add to t = 11769. The error is a combination
of the columns “only reality bought” and “only model bought”.

name dimension number “both “only reality “only model
of cycles bought” bought” bought”

X 9 2340 6468 5301 1211
Y 9 1360 5512 6257 668
A 10 1820 7072 4697 1138
B 10 1440 6010 5759 499
C 10 1760 7990 3779 5700

As an illustration two experiments,X and Y , in dimension 9 have been added. The results
arise from slightly different settings of parameters, and from repeated experiments with
the same parameters.



Experiment A shows a relatively good result. An average customer buys 52 products
and the model correctly buys 31 of these, where instead of the remaining 21 it buys
5 incorrect products. For experiment B this last number is lowered to 2, but only 26
products are properly handled on average. In experiment C we see that on average even
35 products out of 52 are correctly predicted by the model; raising “both bought” seems
only possible at the cost of raising “only model bought” too.
As a visualisation of experiment A we plot the error against the number of cycles. In
Figure 4 we show the “relative error”: the sum of “only reality bought” and “only model
bought” divided by “both bought”.

Figure 4

0.820

0.840

0.860

0.880

0.900

0.920

0.940

1000 1200 1400 1600 1800

From the experiments we noticed that the best results were achieved when using the

Euclidean distance d, defined by d(x, y) =
√

∑k
i=1

(xi − yi)2 for vectors x = (x1, . . . , xk)
and y = (y1, . . . , yk) in k-space. We also experimented with Manhattan-like distances
(taking the sum of the absolute values of xi − yi), but results were not very promising
in that case: the errors obtained were much larger.

7 Conclusions and Further Research

In this paper we described models to understand and analyse customer choices. Using
techniques from neural networks, we were able to obtain reasonable results for real data
in the case of customers buying lots of products.
At the moment it is not possible to conclude whether or not these models reflect real
life customer choices. In order to do so, we have to examine several topics. Of course,
it would be unrealistic to expect customers to behave exactly as in a model, but we
do hope to discover underlying trends. Feedback from domain experts may reveal the
possible meaning of the dimensions. We mention some topics of interest:

• The theoretical power of the two models should be compared. For instance, what
is the complexity of the decision problems involved?

• The models can be adjusted in several ways. As an example, it is possible to account
for situations where customers can buy more than one item per product.



• Our program —as usual for neural networks— has many parameters. We have
to do lots of experiments to obtain a fine-tuned system. We also have to give a
theoretical basis for several choices involved here.

• At the moment a run takes several hours on a workstation, due to the number of
iterations involved. The algorithm has to be optimised in order to get acceptable
response times.

• The method has to be applied to real life data from different branches. Perhaps this
has some influence on the behaviour. We would also like to examine the behaviour
on totally random data.

• Cluster analysis has to be applied to the product coordinates supplied by good
runs. Do these coordinates, or these clusters, have any significance in real life? In
general, we have to apply statistical methods to clarify the results.

• We would like to examine how well the coordinates provided by the system corre-
spond with the real coordinates in case of artificial data.

From a marketing point of view we also have some remarks:

• We see that a certain relationship between products can be analysed, which will
have an impact on the organisation of the warehouses, so that the picking process
of different products can be set up more efficiently.

• When finding a new clustering of products it will also be possible to describe these
clusters and to analyse what the functions of these products are to the customers
who ordered them. In doing so the company will get a deeper insight in the simi-
larities and differences of their customers.

• It is expected that given a time series of analyses, differences in seasons can also
be analysed. By doing so the company will be able to adapt better to seasonal and
other fluctuations than it does today.

All in all we think we have some promising methods that still require further research.

References

[1] U. Fayyad and R. Uthurusamy (editors), Data Mining and Knowledge Discovery
in Databases, Communications of the ACM, Volume 39, No. 11, Special issue,
November 1996

[2] M.R. Garey and D.S. Johnson, Computers and Intractability, Freeman, 1979

[3] S. Haykin, Neural Networks: a Comprehensive Foundation, MacMillan, 1994

[4] J. Hertz, A. Krogh and R.G. Palmer, Introduction to the Theory of Neural Compu-
tation, Addison-Wesley, 1991

[5] M.C. van Wezel, J.N. Kok and K. Sere, Determining the Number of Dimensions
Underlying Customer-Choices with a Competitive Neural Network, Proceedings
of the IEEE International Conference on Neural Networks (ICNN’96), Volume 1,
484–490, 1996


