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Abstract. In this paper we propose and examine two different models for cus-
tomer choices in for instance a wholesale department, given the actual sales. Both
customers and products are modeled by points in a k-dimensional real vector space.
Two possible strategies are discussed: in one model the customer buys the nearest
option from categories of products, in the other he/she buys all products within a
certain radius of his/her position. Now we deal with the following problem: given
only the sales list, how can we retrieve the relative positions corresponding to cus-
tomers and products? In particular we are interested in the dimension k of the space:
we are looking for low dimensional solutions with a good “fit” to the real sales list.
Theoretical complexity of these problems is addressed: they are very hard to solve
exactly; special cases are shown to be NP-complete. We use competitive neural
network techniques for both artificial and real life data, and report the results.

1 Introduction

Often shop owners know very little about their customers. We examine the
situation where only sales slips are present, i.e., for every customer visiting
the shop a list of his or her purchases is available. It is obvious that these data
contain very valuable information, which could lead to interesting insights.
The question we ask ourselves here is how many “underlying” dimensions
do exist that influence the client in his/her decision when purchasing certain
goods. Marketing literature suggests that such underlying dimensions indeed
exist, see [11]. In the example of a wholesale department with an extensive
catalogue of products, two such dimensions might be price and brand-quality.

We propose different models to analyse (and hopefully understand) the
behaviour of the customers. In both models customers and products are mod-
eled as points in a k-dimensional real vector space. These k dimensions are
supposed to represent the underlying dimensions mentioned in the previous
paragraph. Without using any interpretation of these dimensions, we try to
find the number of relevant dimensions and the coordinates of customers and
products. Contrary to many approaches (cf. [4]) our methods use only very
partial information; instead of direct attributes like age or price, we only use
the sales list. Notice that the identity of the customers is entirely hidden: only
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the sales slips are used; if a customer appears for the second time, he/she is
even considered to be a new customer.

In the first model, the products are grouped into a small number of cat-
egories. Every customer has to buy a product from each category, choosing
from the options (products) available in it. The customer chooses—from the
different options within each category—the nearest one. In the second model
every customer buys exactly those products that are within a certain distance,
the so-called radius of the customer. Some notion of distance is required; we
examined the Euclidean distance and some Manhattan-like distances.

Now the problem can be easily described. Given a list of sales slips, deter-
mine a dimension k such that the model generates those same purchases—up
to a certain error. Here k should be as small as possible. Furthermore, we also
want to find the coordinates of both customers and products. The models and
the exact problem will be described in Section 2 and Section 3.

In Section 4 we will show (i.e., give a proof outline) that the problem
is already NP-complete (see [5]) in special cases. This means that an exact
solution is beyond reach, possibly for many years to come. This theoretical
complexity justifies the use of approximating algorithms, such as neural net-
works (see [9,2]). In Section 5 we describe the neural networks that we have
used in an attempt to find a satisfactory solution to this problem. They are
related to simple competitive neural networks.

In Section 6 we provide some results of experiments on artificial data,
using those neural networks. We pay special attention to the dimension of
the space, and explain a method to find the “true” dimension k. Customer
and product points in k-space were generated randomly, and sales were gen-
erated according to one of the models. Throwing away the original points,
the problem was to retrieve their coordinates. Experiments show that this is
feasible, especially in the case where every customer buys lots of products.

Exploratory experiments on real data are reported in Section 7. Real data
offer more difficulties than artificial data. Motivated by the results on artificial
data we restricted the experiments to those customers who bought at least 40
products. At first it seemed hard to improve upon the so-called naive error:
the system that buys nothing at all has a relatively small error. Fortunately
we had several runs that were promising. The experimental results can be
analysed by, e.g., cluster analysis in order to obtain a better understanding
of the coordinates—and the dimensions.

Finally, in Section 8, we discuss the techniques used, and we mention some
practical applications. In order to use these techniques, it is only necessary
to have the sales lists available. In case of the option model, a field expert
has to divide the products into categories. The results have to be interpreted
by experts, but can also be used directly.

Part of the work presented in this paper was published in [15] and [10].
More details on the NP-completeness issue can also be found in the second
author’s forthcoming PhD thesis.
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2 The Models and the Data

Suppose we are given n different customers x1, x2, . . . , xn and m different
products p1, p2, . . . , pm. We assume that customers buy each product at most
once. Customers buying exactly the same products are identified. We have
to analyse the so-called sales list: for every customer we know exactly the
products he or she bought. We now propose two models to understand the
behaviour of the customers using embeddings in a real vector space.

In Fig. 1 we see a small example with n = 2 and p = 6. The embedding
is realised in a 2-dimensional space.

x1

r1
x2

r2

p5

p2

p3 p4
p1

p6

Fig. 1. Example of an embedding with 2 customers and 6 products. The spheres
are only part of the product model.

2.1 The Option Model

The option model was introduced in [15]. In this model, the products are
divided into c disjoint categories C1, C2, . . . , Cc. In each category we have a
number of products, say cℓ ≥ 2 in category Cℓ (ℓ = 1, 2, . . . , c); these products
are called the options or the alternatives, hence the name option model. Note
that

∑c

ℓ=1
cℓ = m.

Every customer xi has to choose exactly one product from every category.
If both customers and products are represented by points in a k-dimensional
vector space, the customer is supposed to choose (for every category) the
option that is nearest to him/her. We assume that there always is exactly
one option that is the nearest; if not, we slightly disturb the customers’
coordinates. Here we need a certain metric on the space.

For the example in Fig. 1 we can imagine a situation where c = 2, and
the first category consists of products p1, p2, p3 and p4, whereas the second
category consists of products p5 and p6. Here customer x1 will buy p1 and
p5, and customer x2 will buy p2 and p5.

It is also possible—but not obvious—to deal with the concept of non-
buying in this model: an extra option could be added, corresponding to the
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situation where the customer does not want to choose from the original op-
tions. Finally, the division into categories is in principle done by the wholesale
department.

2.2 The Product Model

Secondly, we describe the product model. It was introduced in [10]. Here,
each customer xi also has a radius ri (i = 1, 2, . . . , n), proportional to the
number of products he or she bought. Again, both customers and products are
represented in our model by k-dimensional vectors. There is no subdivision
of products into categories anymore. In this model a client buys all products
within his/her own radius.

In Fig. 1 the radiuses r1 and r2 of the spheres are chosen in such a way
that customer x1 will buy p1 and p5 (as above), but customer x2 will buy p2,
p3, p4 and p5.

2.3 The Data

In our analyses the sales lists consisted of lines with numbers: each line rep-
resented one customer and each number represented one product.

Note that a sales list that is generated by customers behaving according
to the option model is of a different type than one generated by customers
behaving according to the product model, because in the latter case there is
no subdivision into categories. This means that the type of sales lists we can
analyse is different for both models. As an example, consider the following
hypothetical supermarket sales list, where names have been added:

john bananas milk

mary donuts milk

harry donuts orange juice

george beer orange juice

If we assume that beverages form one category, this sales list cannot be
generated by customers behaving according to the option model, because
George buys two beverages, while in the option model the alternatives within
one category exclude one another. Using the product model, this sales list
could occur. Also note that in the option model every customer buys the
same number of products.

3 Description of the Problem

Given an embedding of customers and products, the corresponding so-called
virtual sales list can easily be constructed. To do so, we just have to determine
the products that each customer will buy according to the model and the
embedding. We can either use the option model or the product model as a
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model for the customer behaviour when constructing this virtual sales list. We
denote the real sales list by RS , and the virtual sales list by VS . If customer
xi buys product pj in sales list RS , we say that (xi, pj) ∈ RS ; similarly, we
can define (xi, pj) ∈ VS .

Now the problem is the following. Given RS , try to find an embedding
such that VS resembles RS as much as possible, and such that the dimension
k is as low as possible. In fact, it can be shown that if k = m a zero error
solution can be given. To do so for the option model, take the vector pj
(j = 1, 2, . . . ,m), corresponding to product j, to be (0, . . . , 0, 1, 0, . . . , 0) (a
one in coordinate j), and just add the vectors for the products bought in
reality to produce the vector corresponding to customer i (i = 1, 2, . . . , n).
However, in order to hope for some real life interpretation we are interested
in situations where k is in the order of magnitude 5 to 10 or even lower.

The two-sided error that is used for the evaluation of VS with respect
to RS can be defined—for the moment—as the number of products/options
bought by the model, but not by the customers (denoted by E1), added to
the number of products/options bought by the customers, but not by the
model (denoted by E2). More precisely, the total error E is

E = E1 + E2 =

n
∑

i=1

m
∑

j=1

{E1(i, j) + E2(i, j)} ,

where

E1(i, j) =

{

1 if (xi, pj) ∈ VS and (xi, pj) 6∈ RS

0 otherwise

and

E2(i, j) =

{

1 if (xi, pj) ∈ RS and (xi, pj) 6∈ VS

0 otherwise.

So the naive error, where the system buys nothing at all, equals the total
number of sales; in this case E1 = 0.

4 Complexity of the Problem

In this section we shall examine a special case of the option model, and
we shall prove that the corresponding decision problem is NP-complete in
the sense of [5]. These problems are very difficult indeed; up to this mo-
ment nobody has been able to find efficient solutions to any of them. Often
approximating or probabilistic algorithms are used, for instance neural net-
works. Since exact solutions are not feasible, one would be happy to accept
near optimal ones. A famous example is the Traveling Salesman Problem,
where a person is asked to visit a given number of cities using a route as
short as possible. NP-complete problems are usually formulated as decision
problems with a yes/no answer. The most common technique used to show
NP-completeness is called reduction, where a known NP-complete problem is
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reduced—in a very precise way—to the problem at hand. For instance, in [5]
a reduction is given from the Traveling Salesman Problem to the problem of
finding a Hamiltonian circuit in a graph: a closed route connecting all nodes,
visiting them once.

This section is meant for those who are interested in the theoretical back-
ground, and can be skipped on first reading. Instead of giving all details of
proofs, we only provide some ideas underlying them. More details can be
found in the second author’s forthcoming PhD thesis. There the situation for
the product model is also dealt with.

We first describe the special case of the option model we would like to
address. We have n customers, who must choose from only c = 2 categories,
with a total of m products. We identified customers who had bought exactly
the same products. The customer choices are easily represented using a graph
consisting of two horizontal rows of nodes, where the nodes in the first row
correspond to the options from the first category, and the nodes in the second
row to the options from the second category. The edges now correspond to
the choices made: every customer corresponds to a unique edge. So the graph
has m vertices and n edges; we call it a sales graph. We may assume that this
graph is connected. An example, with m = 6 + 5 = 11 and n = 10, is shown
in Fig. 2.

Fig. 2. Example of a sales graph with 10 customers and 6 + 5 = 11 products.

A sales graph is bipartite: the nodes can be split into two nonempty dis-
joint sets, such that every edge is incident with a node from both sets. In fact,
the partition corresponds to the categories. The converse also holds: every
bipartite graph can be viewed as a sales graph.

Now we return to our original problem, and we consider the special case
of dimension k = 1: e.g., “we only look at the price of the products”. Is it
possible to find an exact solution in this case? In other words, is it possi-
ble to attach real numbers to both customers and options (where customers
choose the nearest option), in such a way that the graph represents the cor-
responding real sales? In dimension 1 we should divide the real axis for both
categories into disjoint intervals, the product points lying in the centres of
these intervals; in higher dimensions we get Voronoi cells here.
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One can infer that the two subgraphs from Fig. 3 give rise to problems—
and these are the only ones. If at least one of them occurs as a subgraph in
the given graph, it is impossible to find the proper coordinates.

Fig. 3. Two forbidden subgraphs.

For instance, for the left hand side graph we have to cut the real axis into
two parts—for both categories—in such a way that all four combinations
have a nonempty intersection. This is impossible. In every way we choose the
coordinates for customers and options, at least one customer will be treated
incorrectly. In fact, if for the first category, with options A and B, we choose
real numbers a and b with a < b, and for the second category, with options
C and D, we choose real numbers c and d with c < d, then a customer
corresponding to x chooses A if x < (a + b)/2 and B if x > (a + b)/2, and
similarly for C and D. Now—given real a, b, c and d—it is not possible to
find x1 that buys both A and D, and x2 that buys both B and C.

In general we see that cycles are forbidden, in other words: the sales
graph should be acyclic, i.e., not contain any paths from a node to itself.
It seems that in the example it could be possible to deal with this problem
by allowing nondeterminism, for instance with x’s precisely in the middle of
a and b. However, first of all the model would become more complex, and
secondly this would also fail in the case of cycles with more than four nodes.

Since crossing edges correspond to the fact that customers are treated
correctly or not, they should be avoided. We can conclude that a sales graph
can be realised in the way we want, if and only if it contains no cycles and
no subgraphs isomorphic to the right hand side graph in Fig. 3—let us call it
H. The minimal number of edges that should be omitted in order to obtain a
graph that meets the conditions, is exactly the minimal number of customers
that is treated incorrectly.

So we are motivated to examine the following decision problem, called
SG (Sales Graph). Given a bipartite graph G; does G possess a spanning tree
(a connected subgraph without cycles, containing every node) that does not
have a subgraph isomorphic to H? Stated otherwise, does G have a spanning
tree that looks like a long “spine”, to which several degree one nodes are
attached?

We now arrive at the main result of this section:
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Theorem SG is NP-complete.

The proof proceeds by reducing problem GT39 from [5] to SG. This prob-
lem is: given a bipartite graph G; does G possess a Hamiltonian path, i.e., a
path connecting all nodes without repeated visits to nodes?

Now that we know that SG is NP-complete, we can infer that given cus-
tomers and their choices, it is not feasible to determine the minimal error that
can be reached. If this were possible, the existence of a spanning tree without
subgraphs isomorphic to H would be immanent. It is therefore appropriate
to turn to approximating algorithms, such as neural networks.

5 The Neural Network Used

The neural networks we used in our experiments were inspired by simple com-
petitive neural networks (see, e.g., [8,9]). In such neural networks, the weight
vectors associated with the neurons are merely points in a k-dimensional real
vector space if the input data for the network are k-dimensional real vec-
tors. Each time a data vector is presented to a competitive neural network,
a “winning unit” w is determined by calculating which unit has its weight
vector closest to the presented pattern (in a Euclidean sense). Next, this
units’ weight vector is moved towards the presented pattern. This increases
the chance of unit w being the winner if the same input pattern is presented
again later on. This type of neural network is also known as a “winner-
take-all-network” (see [9,6,7]). These networks perform a similar task as the
classical k-means clustering methods (see [13]).

In our case, where we analyse sales lists, all customers and all products
(or options within a category) are represented by a separate competitive unit.
The weight-vectors of the units correspond to the points in a k-dimensional
real vector space describing the customers and products (or options).

Of course, the learning process has to be modified in order to be able
to work with sales lists. The aim of the learning process is to bring weight
vectors of customers and weight vectors of the products bought sufficiently
close to each other, whereas weight vectors of the products the customer has
not bought should be at a sufficient distance.

The meaning of the word sufficient is crucial here, and it is determined by
the model used. In the case where a customer buys everything within a certain
radius of his or her own weight vector, sufficiently close means within this
radius, and sufficiently distant means outside this radius. In the case where
a customer buys the closest one of a number of options within a category,
sufficiently close means closer than all the other options in the category, and
sufficiently distant means at a greater distance than the option the customer
did buy from the category.
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5.1 Training Procedure for the Option Model

The training of our network in the case of the option model roughly proceeds
as follows. First, the network weights are randomly initialized in the [0; 1]k

hypercube. Next, for a predetermined number of iterations the clients and
the purchases they made are presented to the network once in random order.
If client xi chooses product pj , the weight vectors of the units representing
xi and pj were pulled together a little bit. This way, we hoped to increase
the probability that the units representing the products that the customer
has chosen, are the closest units within each product-category in the next
iteration.

The parallel with a simple competitive neural network should be clear.
In a simple competitive neural network the weight vectors of the units are
pulled towards the input vectors. This way a Voronoi tessellation of the input
space is created. In our case, we know in advance that the alternatives within
one set divide the input space in a Voronoi tessellation. We also know which
client should lie in which Voronoi cell for every product category in the choice
process. By means of the “competitive learning” algorithm, we move the
positions of the clients and the alternatives around, and we hope to reach a
state where most of the clients lie in the correct Voronoi-cell for most of the
product-categories in the choice-process.

Unfortunately, there is a problem associated with this learning-scheme.
If we start with random initial weights, the average direction of the weight
updates will be inward. This will cause the neural network to “implode”. We
can prevent this by re-normalising the weight vectors after each iteration.

There is another potential pitfall for our system. Typically, we have data
on several thousands of customers, but there are only a few product cate-
gories, with a few alternatives within them. This causes the alternative co-
ordinates to be updated much more frequently than the client coordinates.
This problem can be solved by updating the weight vectors of the units rep-
resenting the alternatives by a much smaller amount than the weight vectors
of the units representing the customers.

5.2 Training Procedure for the Product Model

The training of our network in the case of the product model is very similar
and roughly proceeds as follows. First, the network weights are randomly
initialized in the [0; 1]k hypercube. Next, the network is trained for a number
of iterations (called cycles). In each iteration, a number (say 5000) of random
customer/product pairs are examined. If the customer and the product are
not sufficiently close, the weight vectors representing them are pulled towards
each other in the k-dimensional hypercube. If they are not sufficiently far
apart, they are pushed away from each other. The amount by which the
weight vectors are altered is determined by a learning rate parameter. At
the end of an iteration the coordinates are renormalised in order to make
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optimal use of the full unit cube. Iterating is stopped if the error (which is
described below) has not decreased anymore for a sufficiently large number
of iterations.

At the end of each run we in particular have three significant figures:

“Both bought”: number of purchases that are correctly modeled.
“Only model bought”: number of purchases only performed in the model,

but not in reality; this is E1.
“Only reality bought’: number of purchases only performed in reality, but

not in the model; this is E2.

As we remarked before, the error E is defined as the sum of “only reality
bought” and “only model bought”: E = E1+E2. Note that the sum of “both
bought” and “only reality bought” always equals the total number of sales.

6 Results on Artificial Data

In this section we present the results we obtained in several experiments
with artificial data. The artificial data were generated by randomly assigning
values in the [0; 1]k hypercube to the weight vectors representing a set of
customers and a set of products. Subsequently, the product model or the
option model was used to generate a sales list. Thus, these sales lists were
generated by customers known to behave exactly as the model specifies. After
generating these sales lists the customer and product embedding coordinates
were thrown away, and it was attempted to recover them (or at least the
relative coordinates) using the neural networks described in Section 5.

The experiments that were performed for the option model were aimed
towards finding the best dimension for the embedding space (as reflected in
the title of [15]). The results for the product model are more general.

6.1 Results on Artificial Data Using the Option Model

As stated above, the experiments with the option model neural networks were
geared towards finding the “best” embedding dimension for a given sales list.
We hope that the dimensions we find can be interpreted by a domain expert,
revealing hidden motives underlying customer behaviour.

In Section 5 we explained how the neural networks could be used for
finding embedding coordinates. During this discussion it was assumed that
the correct embedding dimension k was given. However, in real situations k
is unknown. How should we determine the best value for k?

This problem can be solved by making a “fit vs. number of dimensions”-
plot. As fit measure for this plot we use the error function E from Section 3.
Now we can construct a graph by running the neural network with dimension
D = 1, . . . , N + 5, where N is an educated guess about the true number of
underlying dimensions. This “fit vs. number of dimensions”-plot will show an
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elbow at the right number of dimensions. An example of a “fit vs. number of
dimensions”-plot clearly showing an elbow is given in Fig. 4.

A very similar procedure for obtaining the number of underlying dimen-
sions is often used in Multidimensional Scaling (MDS; see, e.g., [3]) and Prin-
cipal Component Analysis (PCA; see, e.g., [12]). In the context of the latter
technique, the “fit vs. number of dimensions”-plot is often called “scree plot”.

In total we performed experiments on eight datasets this way, where the
underlying number of dimensions was varied from two to five. Four out of
the eight datasets had 10 products, and 10 alternatives per product. The
remaining four datasets had 15 products, and 5 alternatives per product.
The number of customers was set to 150 in all datasets.

In Fig. 4 and Fig. 5 the resulting plots of fit vs. number of dimensions are
shown. Elbows are clearly visible for each problem instance.
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Fig. 4. The “fit vs. number of dimensions”-plots for the datasets with 10 product
categories and 10 options per category.

We may conclude that the neural network is capable of discovering the
dimension of the embedding space in the case of artificial data.

6.2 Results on Artificial Data Using the Product Model

In this subsection we shall describe several experiments that were performed
on artificial data using the product model. We shall also draw some conclu-
sions for the real situation. Let us now first restrict our attention to dimension
k = 2 in the product model. In this case results can be easily visualised. We
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Fig. 5. The “fit vs. number of dimensions”-plots for the datasets with 15 product
categories and 5 alternatives per category.
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Fig. 6. Resulting customer and product coordinates of example run 1.
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chose n = 500 customers and m = 3, 000 products, so experiments took little
time. As a good run we present example run 1: a situation where 116,638
products were sold, whereas the total error was a mere 8,928, with 7,122
“only model bought”. In this case every customer bought at least about 200
products. Fig. 6 shows both customer and product coordinates; customers
correspond to small squares, products to small +’s.
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Fig. 7. Resulting embedding of example run 2.

As a second example (see Fig. 7) we consider a situation where we achieved
a total error of 21,015, with 20,773 “only model bought”. The total number
of sales was 117,997. This example shows the importance of repeated runs—
the parameters were exactly the same as in the previous example, but this
time the unit square was only partially used. The result is not really bad,
but if one fills the whole square, as in the previous example, a better result is
possible. Note that the coordinates found are situated in a rectangular shape,
suggesting that the regained coordinates have almost the same positions rel-
ative to each other as the original ones. This illustrates the fact that there
are some degrees of freedom (i.e., rotations and scaling) in the behaviour of
the model.

As a final example for dimension k = 2 we present example run 3. This
was an experiment with few sales. In this case only 14,985 products were sold.
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The total error was 24,094, with 20,850 “only model bought”. Fig. 8 is rep-
resentative for many experiments: the final error is large, whereas customers
and products are not evenly distributed in space, contrary to the artificially
generated ones.
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Fig. 8. Resulting embedding of example run 3.

From the experiments we concluded that the best results were obtained
when customers bought very many products. Intuitively customers that buy
only a few products are not representative, and from a marketing point of
view, these customers are perhaps not the most interesting ones. In the sequel
we therefore restrict our attention to customers buying at least 40 products.

In Table 1 we give some results in the case of artificial data for higher
dimensions, where every customer bought about 50 products. The number
of customers considered was near to 200. The experiments are labeled A
through I. As an illustration the number of cycles is also tabulated. Here the
experiments G, H and I had slightly different parameters. Some runs were
almost perfect. Again we may conclude that the neural network is capable of
fitting the coordinates in the case of artificial data.

In Table 2 we present some simple theoretical values. We denote by “k-
wrong” a situation where the total number of products bought matches the
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name dimension number “both “only reality “only model
of cycles bought” bought” bought”

A 4 2,820 6,868 493 83
B 5 2,460 12,323 1,294 267
C 6 2,400 12,348 1,768 331
D 7 2,000 13,422 1,648 345
E 8 2,060 12,072 356 207
F 9 1,480 10,956 338 91
G 10 1,680 6,695 25 12
H 10 1,760 6,115 38 17
I 10 1,320 24,426 4,259 1,042

Table 1. Results for some experiments on artificial data.

corresponding number from the sales list exactly, but precisely k products
are replaced by incorrect ones. Of course, perfect is 0-wrong.

name dimension “both “only reality “only model
bought” bought” bought”

naive any 0 t 0
perfect any t 0 0
k-wrong any t− k k k

Table 2. Some theoretical values.

7 Results on Real Data

In this section we present some exploratory results from experiments on real
data. Again, first the results are given for the option model and then the
results for the product model. In the case of the option model the aim was
to discover the most suitable dimension of the underlying space, whereas the
aim in the case of the product model was merely minimization of the error,
and studying the behaviour of the model.

7.1 Results on Real Data Using the Option model

After a positive result was obtained with the option model on artificial data,
we considered real data. The real data were obtained from a wholesale de-
partment. The subdivision of products into product categories was performed
by domain experts from the wholesale department.

From each original dataset available we selected only the customers that
actually bought a product from each product category, so we did not have to
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deal with the non-buying problem mentioned in Section 2. This left us with
approximately 150 customers per dataset, about the same number as in the
artificial datasets. The number of product categories was 11 for each dataset.
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Fig. 9. The “fit vs. number of dimensions”-plots for the five real datasets — option
model.

The “fit vs. number of dimensions”-plots resulting from these experiments
are shown in Fig. 9. On first sight, it seems that the results of these exper-
iments are not as good as the results with the artificial data. However, in
some of the plots there is a vague elbow visible. An interpretation of the
dimensions that were obtained by a domain expert could shed more light on
these results. Furthermore, it may be the case that in other application areas
more convincing results are obtained because customers in these other areas
behave more similar to the model-customers, but this is speculative.
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7.2 Results on Real Data Using the Product Model

We now turn our attention to the product model. As a running example we
use a real sales list consisting of n = 1, 368 customers, who bought 32,523
products. The number of different products was m = 10, 381. We restricted
our attention to customers buying at least 40 products. These n = 228 cus-
tomers (17% of the total number of customers) bought t = 11, 769 products
(36% of the total number of products sold). As this example will show, rea-
sonable results can be obtained.

In Table 3 we show results from interesting runs using real data. Note
that “both bought” and “only reality bought” always add to t = 11, 769. The
error is a combination of the columns “only reality bought” and “only model
bought”. As an illustration two experiments, X and Y , in dimension 9 have

name dimension number ‘both ‘only reality ‘only model
of cycles bought’ bought’ bought’

X 9 2,340 6,468 5,301 1,211
Y 9 1,360 5,512 6,257 668

A 10 1,820 7,072 4,697 1,138
B 10 1,440 6,010 5,759 499
C 10 1,760 7,990 3,779 5,700

Table 3. Results for some experiments.

been added. The results arise from slightly different settings of parameters,
and from repeated experiments with the same parameters. Experiment A
shows a relatively good result. An average customer buys 52 products and
the model correctly buys 31 of these, where instead of the remaining 21 it
buys 5 incorrect products. For experiment B this last number is lowered to
2, but only 26 products are properly handled on average. In experiment C
we see that on average even 35 products out of 52 are correctly predicted by
the model; raising “both bought” seems only possible at the cost of raising
“only model bought” too.

As a visualisation of experiment A we plot the error against the number
of cycles. In Fig. 10 we show the “relative error”: the sum of “only reality
bought” and “only model bought” divided by “both bought”.

From the experiments we noticed that the best results were achieved

when using the Euclidean distance d, defined by d(x, y) =
√

∑k

ℓ=1
(xℓ − yℓ)2

for vectors x = (x1, . . . , xk) and y = (y1, . . . , yk) in k-space. We also ex-
perimented with Manhattan-like distances (taking the sum of the absolute
values of xℓ−yℓ), but results were not very promising in that case: the errors
obtained were much larger.
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Fig. 10. Relative error vs. number of cycles.

As in the case of the option model, results are not as good as those for
artificial data. We feel however that the results are promising, and may even
be better for certain special application areas.

8 Summary and Conclusions

In this paper we described two models, the option model and the product
model, to understand and analyse customer choices. The theoretical com-
plexity of special cases of these models was addressed and the corresponding
decision problems were shown to be NP-complete.

Using techniques from neural networks, we were able to obtain good re-
sults for artificial data using both the option model and the product model.
For real data, the results were less convincing, but in the case of the product
model where customers buy lots of products, the results were still reasonable.

At the moment it is not possible to conclude whether or not these models
reflect real life customer choices. Of course, it would be unrealistic to expect
customers to behave exactly as in a model, but we do hope to discover under-
lying trends. Feedback from domain experts may reveal the possible meaning
of the dimensions.

Similar techniques have been used in the following situation. If one tries to
understand customer behaviour in the case of different shops or products, 2-
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dimensional plots showing their relative positions might be useful. These plots
can be generated quite easily with the methods described above. In fact, once
a notion of distance between shops/products has been introduced, the neural
networks quickly discover reasonable embeddings in 2-space. The distance
function is usually taken to be some sort of Hamming-distance, counting the
number of absolute differences between vectors. In the shop case the vectors
might consist of the week sales; in the product case the distances can be
based on the number of times the products have been bought together. Note
that the resulting networks resemble those using gravity from [14].

Finally, we would like to discuss the practical use of the methods discussed
so far. One should not expect the answers to be precise and rigid. On the con-
trary, they rather give insights and ideas. One might think, for instance, that
customers that are near to one another in k-space show similar behaviour.
This is not necessarily true, but in many situations these customers do re-
semble each other. This property can be used in marketing situations. Not
only is it possible to reveal interesting dimensions, also interesting customers
or clusters of customers can be detected. Due to the randomness of the algo-
rithms involved repeated runs might give somewhat or even totally different
results. This does not mean that the methods are not sound, but it shows
the difficulty of the problem at hand, reflected in the enormous number of
solutions of acceptable quality.
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