Pivot and Loop Complementation on Graphs and Set Systems

Robert Brijder Hendrik Jan Hoogeboom
Leiden Institute for Advanced Computer Science

June 7, 2010

Local Complementation

- Complement neighborhood of a vertex p in a graph.
- Here: complement subgraph induced by $\{q, r, s\}$.

Local Complementation

- Complement neighborhood of a vertex p in a graph.
- Here: complement subgraph induced by $\{q, r, s\}$.
- Many applications: Transforming Euler circuits in 4-regular graphs (Kotzig, 1968), Quantum Computing, Interlace Polynomial.

Local Complementation

- Complement neighborhood of a vertex p in a graph.
- Here: complement subgraph induced by $\{q, r, s\}$.
- Many applications: Transforming Euler circuits in 4-regular graphs (Kotzig, 1968), Quantum Computing, Interlace Polynomial.
- Simple graphs considered.

Curious Result for Simple Graphs

Theorem (Bouchet,1988)

Let G be a simple graph with edge $\{u, v\}$. We have $G * u * v * u=G * v * u * v$.

- Define, in this case, $* u * v * u$ to be edge complementation (involution),

Curious Result for Simple Graphs

Theorem (Bouchet,1988)

Let G be a simple graph with edge $\{u, v\}$. We have $G * u * v * u=G * v * u * v$.

- Define, in this case, $* u * v * u$ to be edge complementation (involution),
- A goal: Understand nature of this equality (and obtain others like it).

Local Complementation for Graphs with Loops

- Graphs where loops are allowed, called graphs,
- Local complementation on p only applicable when loop is present for p.

Local Complementation for Graphs with Loops

- Graphs where loops are allowed, called graphs,
- Local complementation on p only applicable when loop is present for p.
- Original motivation: Gene Assembly in Ciliates (Computational Biology)

Loop Complementation

- Loop complementation on vertex p : if p has a loop, then remove the loop, and if p has no loop, then add a loop.

Loop Complementation

- Loop complementation on vertex p : if p has a loop, then remove the loop, and if p has no loop, then add a loop.
- A main function: Bridge gap between

1) local complementation on simple graphs, and
2) local complementation on graphs.

Adjacency Matrix

p
q
r
$s$$\left(\begin{array}{llll}p & q & r & s \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0\end{array}\right)$

- Identify a graph $G=(V, E)$ with its adjacency matrix,

Adjacency Matrix

p
p
q
r
$s$$\left(\begin{array}{llll}p & q & r & s \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0\end{array}\right)$

- Identify a graph $G=(V, E)$ with its adjacency matrix,
- A symmetric $V \times V$-matrix (columns and rows are indexed by V) over \mathbb{F}_{2} corresponds precisely to a graph.

Adjacency Matrix

p
q
r
$p$$\left(\begin{array}{llll}p & q & r & s \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0\end{array}\right)$

- Identify a graph $G=(V, E)$ with its adjacency matrix,
- A symmetric $V \times V$-matrix (columns and rows are indexed by V) over \mathbb{F}_{2} corresponds precisely to a graph.
- Choice for \mathbb{F}_{2} is important:
addition is logical exclusive-or \oplus, and multiplication is logical conjugation \wedge.

Adjacency Matrix

p
q
r
$s$$\left(\begin{array}{llll}p & q & r & s \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0\end{array}\right)$

- Identify a graph $G=(V, E)$ with its adjacency matrix,
- A symmetric $V \times V$-matrix (columns and rows are indexed by V) over \mathbb{F}_{2} corresponds precisely to a graph.
- Choice for \mathbb{F}_{2} is important: addition is logical exclusive-or \oplus, and multiplication is logical conjugation \wedge.
- Now: consider local complementation as a special case of a general matrix operation.

The Bigger Picture: Principal Pivot Transform

Definition

Let A be a $V \times V$-matrix (over an arbitrary field), and let $X \subseteq V$ with $A[X]$ is nonsingular. If $A=\left(\begin{array}{l|l}P & Q \\ \hline R & S\end{array}\right)$ with $P=A[X]$, then the pivot of A on X is

$$
A * X=\left(\begin{array}{c|c}
P^{-1} & -P^{-1} Q \\
\hline R P^{-1} & S-R P^{-1} Q
\end{array}\right) .
$$

The pivot is the partial (component-wise) inverse:

$$
\begin{equation*}
A\binom{x_{1}}{x_{2}}=\binom{y_{1}}{y_{2}} \text { iff } A * X\binom{y_{1}}{x_{2}}=\binom{x_{1}}{y_{2}} \tag{1}
\end{equation*}
$$

where the vectors x_{1} and y_{1} correspond to the elements of X. Relation (1) forms alternative definition of pivot.

Properties of Pivot

- If A is skew-symmetric, then $A * X$ is too. Hence if G is a graph, then $G * X$ is too.
- If A is skew-symmetric, then $A * X$ is too. Hence if G is a graph, then $G * X$ is too.
- For graph $G, G *\{u\}$ is local complementation, and $G *\{u, v\}$ is edge complementation!! Although observed by Geelen, 1997, (and by Bouchet for edge complementation) this observation is almost unknown.
- If A is skew-symmetric, then $A * X$ is too. Hence if G is a graph, then $G * X$ is too.
- For graph $G, G *\{u\}$ is local complementation, and $G *\{u, v\}$ is edge complementation!! Although observed by Geelen, 1997, (and by Bouchet for edge complementation) this observation is almost unknown.
- Local and edge complementation together define pivot for graphs (they form the elementary pivots).

Properties of Pivot

- If A is skew-symmetric, then $A * X$ is too. Hence if G is a graph, then $G * X$ is too.
- For graph $G, G *\{u\}$ is local complementation, and $G *\{u, v\}$ is edge complementation!! Although observed by Geelen, 1997, (and by Bouchet for edge complementation) this observation is almost unknown.
- Local and edge complementation together define pivot for graphs (they form the elementary pivots).

Theorem (Tucker, 1960)

Let A be a $V \times V$-matrix, and let $X \subseteq V$ be such that $A[X]$ is nonsingular. Then, for $Y \subseteq V$, $\operatorname{det}(A * X)[Y]=\operatorname{det} A[X \oplus Y] / \operatorname{det} A[X]$.

- $(A * X)[Y]$ is nonsingular iff $A[X \oplus Y]$ is nonsingular.

Set Systems

- A set system (over V) is a tuple $M=(V, D)$ with V a finite set and $D \subseteq \mathcal{P}(V)$ a family of subsets of V.

Set Systems

- A set system (over V) is a tuple $M=(V, D)$ with V a finite set and $D \subseteq \mathcal{P}(V)$ a family of subsets of V.
- Let, for graph $G, \mathcal{M}_{G}=\left(V, D_{G}\right)$ be the set system with $D_{G}=\{X \subseteq V \mid \operatorname{det} G[X]=1\}$ (computed over \mathbb{F}_{2}).

Set Systems

- A set system (over V) is a tuple $M=(V, D)$ with V a finite set and $D \subseteq \mathcal{P}(V)$ a family of subsets of V.
- Let, for graph $G, \mathcal{M}_{G}=\left(V, D_{G}\right)$ be the set system with $D_{G}=\{X \subseteq V \mid \operatorname{det} G[X]=1\}$ (computed over \mathbb{F}_{2}).
- \mathcal{M}_{G} is known to be a Δ-matroid. (We will not use this property here.)

Set Systems Example

- $V=\{p, q, r, s\}$. For example, $\{p, r\} \in \mathcal{M}_{G}$ as

$$
G[\{p, r\}]=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) \text { is nonsingular over } \mathbb{F}_{2}
$$

Set Systems Example

p
q
r
s
s\(\left(\begin{array}{cccc}p \& q \& r \& s

1 \& 1 \& 1 \& 1

1 \& 1 \& 0 \& 0

1 \& 0 \& 0 \& 1

1 \& 0 \& 1 \& 0\end{array}\right) \quad\)	

- $V=\{p, q, r, s\}$. For example, $\{p, r\} \in \mathcal{M}_{G}$ as $G[\{p, r\}]=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$ is nonsingular over \mathbb{F}_{2}.
- Define, for $X \subseteq V$, the pivot $M * X=(V, D * X)$, where $D * X=\{Y \oplus X \mid Y \in D\}$.

Set Systems Example

- $V=\{p, q, r, s\}$. For example, $\{p, r\} \in \mathcal{M}_{G}$ as $G[\{p, r\}]=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$ is nonsingular over \mathbb{F}_{2}.
- Define, for $X \subseteq V$, the pivot $M * X=(V, D * X)$, where $D * X=\{Y \oplus X \mid Y \in D\}$.
- By determinant formula: $\mathcal{M}_{G * X}=\mathcal{M}_{G} * X$ (if $X \in \mathcal{M}_{G}$). Explicit: Exclusive-or \oplus "simulates" pivot *.

Set Systems Example

- $V=\{p, q, r, s\}$. Indeed $\mathcal{M}_{G * p}=\mathcal{M}_{G} * p$.

Loop Complementation on Set Systems

- Let $M=(V, D)$ be a set system.
- Define, for $u \in V$, loop complementation of M on u, as $M+u=\left(V, D^{\prime}\right)$, where $D^{\prime}=D \oplus\{X \cup\{u\} \mid X \in D, u \notin X\}$.

Theorem

Let G be a graph and $u \in V$. Then $\mathcal{M}_{G+u}=\mathcal{M}_{G}+u$.

Loop Complementation on Set Systems Example

$$
\begin{aligned}
& V=\{p, q, r, s\} \\
& \mathcal{M}_{G}+p=\mathcal{M}_{G} \oplus\{\{p\},\{p, q\},\{p, r, s\},\{p, q, r, s\}\} \\
& \text { Indeed, } \mathcal{M}_{G+p}=\mathcal{M}_{G}+p
\end{aligned}
$$

Interplay Loop Complementation and Pivot

Theorem (Commutation on different elements)

Let M be a set system and $u, v \in V$ with $u \neq v$. Then $M * u * v=M * v * u, M+u+v=M+v+u$, and $M+u * v=M * v+u$.

Proof is by considering both pivot and loop complementation as special cases of a more general operation (called vertex flip), and proving that vertex flips commute on different elements.

Theorem (S_{3} on single elements)

Let M be a set system and $u \in V$. Then $M * u+u * u=M+u * u+u$.

Proof is by showing that $+u$ and $* u$ generate the group S_{3} of permutations on three elements.

Interplay Loop Complementation and Pivot for Graphs

- Define for $X=\left\{u_{1}, \ldots, u_{n}\right\}, M+X=M+u_{1} \cdots+u_{n}$ (in any order). Similarly for $M * X$.
- We have: 1) $\left[S_{3}\right] M+X * X+X=M * X+X * X$, and 2) [commutative] for $Y \cap X=\emptyset, M+X * Y=M * Y+X$.

Interplay Loop Complementation and Pivot for Graphs

- Define for $X=\left\{u_{1}, \ldots, u_{n}\right\}, M+X=M+u_{1} \cdots+u_{n}$ (in any order). Similarly for $M * X$.
- We have: 1) $\left[S_{3}\right] M+X * X+X=M * X+X * X$, and 2) [commutative] for $Y \cap X=\emptyset, M+X * Y=M * Y+X$.
- Identities must hold for graphs as well. However, $G * X$ is only defined when $X \in \mathcal{M}_{G}$.
- For graph $G, G+X * X+X=G * X+X * X$ when both sides are defined. Turns out: right-hand side defined, implies left-hand side defined.

Consequences for Simple Graphs

Remember:

Theorem (Bouchet,1988)

Let G be a simple graph with edge $\{u, v\}$. We have
$G * u * v * u=G * v * u * v$.

- In this case, $* u * v * u$ is edge complementation (for simple graphs)

Theorem

Let F be a graph with edge $\{u, v\}$ with no loops for u and v. We have

$$
F *\{u, v\}=F+u * u+u * v * u+u=F+v * v+v * u * v+v
$$

- So "modulo loops", " $F *\{u, v\}=F * u * v * u=F * v * u * v$ ". Hence alternative proof of result for simple graphs.

Proof

Theorem

Let F be a graph with edge $\{u, v\}$ with no loops for u and v. We have

$$
F *\{u, v\}=F+u * u+u * v * u+u=F+v * v+v * u * v+v
$$

Proof.

$\mathcal{M}_{F} *\{u, v\}+u * u * v+u * u+u=\mathcal{M}_{F} * u * v+u * u * v+u * u+u=$ $\mathcal{M}_{F} * u+u * u+u * u+u * v * v=\mathcal{M}_{F}$. Both sides are applicable by the figure.

New Results for Simple Graphs

Theorem

Let G be a simple graph, and let $u, v, w \in V(G)$ be such that the subgraph of G induced by $\{u, v, w\}$ is a complete graph. Then $G(*\{u\} *\{v\} *\{w\})^{2}=G *\{v\}$.

Theorem

Let G be a simple graph, and let φ be a sequence of local complementation operations applicable to G. Then $G \varphi \approx G+X * Y$ for some $X, Y \subseteq V$ with $X \subseteq Y$.

Discussion

- Interplay pivot and loop complementation is S_{3} on identical vertices.

Discussion

- Interplay pivot and loop complementation is S_{3} on identical vertices.
- Bridges gap between simple graphs and graphs with loops.

Discussion

- Interplay pivot and loop complementation is S_{3} on identical vertices.
- Bridges gap between simple graphs and graphs with loops.
- Nature of classic result $G * u * v * u=G * v * u * v$ for simple graphs explained.

Discussion

- Interplay pivot and loop complementation is S_{3} on identical vertices.
- Bridges gap between simple graphs and graphs with loops.
- Nature of classic result $G * u * v * u=G * v * u * v$ for simple graphs explained.
- Characterization of sequences of local complementation on simple graphs.

Discussion

- Interplay pivot and loop complementation is S_{3} on identical vertices.
- Bridges gap between simple graphs and graphs with loops.
- Nature of classic result $G * u * v * u=G * v * u * v$ for simple graphs explained.
- Characterization of sequences of local complementation on simple graphs.
- Framework setting is set systems in general.

