Pivot and Loop Complementation on Graphs and Set Systems

Robert Brijder Hendrik Jan Hoogeboom

Leiden Institute for Advanced Computer Science

June 7, 2010

Local Complementation

- Complement neighborhood of a vertex p in a graph.
- Here: complement subgraph induced by $\{q, r, s\}$.

Local Complementation

- Complement neighborhood of a vertex *p* in a graph.
- Here: complement subgraph induced by $\{q, r, s\}$.
- Many applications: Transforming Euler circuits in 4-regular graphs (Kotzig, 1968), Quantum Computing, Interlace Polynomial.

Local Complementation

- Complement neighborhood of a vertex *p* in a graph.
- Here: complement subgraph induced by $\{q, r, s\}$.
- Many applications: Transforming Euler circuits in 4-regular graphs (Kotzig, 1968), Quantum Computing, Interlace Polynomial.
- Simple graphs considered.

Theorem (Bouchet, 1988)

Let G be a simple graph with edge $\{u, v\}$. We have G * u * v * u = G * v * u * v.

• Define, in this case, *u * v * u to be *edge complementation* (involution),

Theorem (Bouchet, 1988)

Let G be a simple graph with edge $\{u, v\}$. We have G * u * v * u = G * v * u * v.

- Define, in this case, *u * v * u to be *edge complementation* (involution),
- A goal: Understand nature of this equality (and obtain others like it).

Local Complementation for Graphs with Loops

- Graphs where loops are allowed, called graphs,
- Local complementation on *p* only applicable when loop is present for *p*.

Local Complementation for Graphs with Loops

- Graphs where loops are allowed, called graphs,
- Local complementation on *p* only applicable when loop is present for *p*.
- Original motivation: Gene Assembly in Ciliates (Computational Biology)

Loop Complementation

 Loop complementation on vertex p: if p has a loop, then remove the loop, and if p has no loop, then add a loop.

Loop Complementation

- Loop complementation on vertex p: if p has a loop, then remove the loop, and if p has no loop, then add a loop.
- A main function: Bridge gap between
 1) local complementation on simple graphs, and
 2) local complementation on graphs.

• Identify a graph G = (V, E) with its adjacency matrix,

- Identify a graph G = (V, E) with its adjacency matrix,
- A symmetric V × V-matrix (columns and rows are indexed by V) over F₂ corresponds precisely to a graph.

- Identify a graph G = (V, E) with its adjacency matrix,
- A symmetric $V \times V$ -matrix (columns and rows are indexed by V) over \mathbb{F}_2 corresponds precisely to a graph.
- Choice for 𝔽₂ is important: addition is logical exclusive-or ⊕, and multiplication is logical conjugation ∧.

- Identify a graph G = (V, E) with its adjacency matrix,
- A symmetric $V \times V$ -matrix (columns and rows are indexed by V) over \mathbb{F}_2 corresponds precisely to a graph.
- Choice for 𝑘₂ is important: addition is logical exclusive-or ⊕, and multiplication is logical conjugation ∧.
- Now: consider local complementation as a special case of a general matrix operation.

伺 と く ヨ と く ヨ と

The Bigger Picture: Principal Pivot Transform

Definition

Let A be a
$$V \times V$$
-matrix (over an arbitrary field), and let $X \subseteq V$
with $A[X]$ is nonsingular. If $A = \begin{pmatrix} P & Q \\ \hline R & S \end{pmatrix}$ with $P = A[X]$, then
the *pivot* of A on X is

$$A * X = \left(\begin{array}{c|c} P^{-1} & -P^{-1}Q \\ \hline RP^{-1} & S - RP^{-1}Q \end{array} \right)$$

The pivot is the partial (component-wise) inverse:

$$A\begin{pmatrix} x_1\\ x_2 \end{pmatrix} = \begin{pmatrix} y_1\\ y_2 \end{pmatrix} \text{ iff } A * X\begin{pmatrix} y_1\\ x_2 \end{pmatrix} = \begin{pmatrix} x_1\\ y_2 \end{pmatrix}, \quad (1)$$

where the vectors x_1 and y_1 correspond to the elements of X. Relation (1) forms alternative definition of pivot.

• If A is skew-symmetric, then A * X is too. Hence if G is a graph, then G * X is too.

伺 と く ヨ と く ヨ と

э

- If A is skew-symmetric, then A * X is too. Hence if G is a graph, then G * X is too.
- For graph G, G * {u} is local complementation, and $G * \{u, v\}$ is edge complementation!! Although observed by Geelen, 1997, (and by Bouchet for edge complementation) this observation is almost unknown.

伺 と く ヨ と く ヨ と …

- If A is skew-symmetric, then A * X is too. Hence if G is a graph, then G * X is too.
- For graph G, G * {u} is local complementation, and $G * \{u, v\}$ is edge complementation!! Although observed by Geelen, 1997, (and by Bouchet for edge complementation) this observation is almost unknown.
- Local and edge complementation together define pivot for graphs (they form the elementary pivots).

伺 と く ヨ と く ヨ と

- If A is skew-symmetric, then A * X is too. Hence if G is a graph, then G * X is too.
- For graph G, G * {u} is local complementation, and $G * \{u, v\}$ is edge complementation!! Although observed by Geelen, 1997, (and by Bouchet for edge complementation) this observation is almost unknown.
- Local and edge complementation together define pivot for graphs (they form the elementary pivots).

Theorem (Tucker, 1960)

Let A be a $V \times V$ -matrix, and let $X \subseteq V$ be such that A[X] is nonsingular. Then, for $Y \subseteq V$, $det(A * X)[Y] = det A[X \oplus Y]/det A[X].$

• (A * X)[Y] is nonsingular iff $A[X \oplus Y]$ is nonsingular.

A set system (over V) is a tuple M = (V, D) with V a finite set and D ⊆ P(V) a family of subsets of V.

・ 同 ト ・ ヨ ト ・ ヨ ト

3

- A set system (over V) is a tuple M = (V, D) with V a finite set and D ⊆ P(V) a family of subsets of V.
- Let, for graph G, $\mathcal{M}_G = (V, D_G)$ be the set system with $D_G = \{X \subseteq V \mid \det G[X] = 1\}$ (computed over \mathbb{F}_2).

向下 イヨト イヨト

- A set system (over V) is a tuple M = (V, D) with V a finite set and D ⊆ P(V) a family of subsets of V.
- Let, for graph G, $\mathcal{M}_G = (V, D_G)$ be the set system with $D_G = \{X \subseteq V \mid \det G[X] = 1\}$ (computed over \mathbb{F}_2).
- \mathcal{M}_G is known to be a Δ -matroid. (We will not use this property here.)

向下 イヨト イヨト

•
$$V = \{p, q, r, s\}$$
. For example, $\{p, r\} \in \mathcal{M}_G$ as
 $G[\{p, r\}] = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ is nonsingular over \mathbb{F}_2 .

•
$$V = \{p, q, r, s\}$$
. For example, $\{p, r\} \in \mathcal{M}_G$ as
 $G[\{p, r\}] = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ is nonsingular over \mathbb{F}_2 .

• Define, for $X \subseteq V$, the *pivot* M * X = (V, D * X), where $D * X = \{Y \oplus X \mid Y \in D\}$.

•
$$V = \{p, q, r, s\}$$
. For example, $\{p, r\} \in \mathcal{M}_G$ as
 $G[\{p, r\}] = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ is nonsingular over \mathbb{F}_2 .

- Define, for $X \subseteq V$, the *pivot* M * X = (V, D * X), where $D * X = \{Y \oplus X \mid Y \in D\}$.
- By determinant formula: M_{G*X} = M_G * X (if X ∈ M_G).
 Explicit: Exclusive-or ⊕ "simulates" pivot *.

• $V = \{p, q, r, s\}$. Indeed $\mathcal{M}_{G*p} = \mathcal{M}_G * p$.

- Let M = (V, D) be a set system.
- Define, for $u \in V$, loop complementation of M on u, as M + u = (V, D'), where $D' = D \oplus \{X \cup \{u\} \mid X \in D, u \notin X\}$.

Theorem

Let G be a graph and $u \in V$. Then $\mathcal{M}_{G+u} = \mathcal{M}_G + u$.

Loop Complementation on Set Systems Example

•
$$V = \{p, q, r, s\}$$
.
 $\mathcal{M}_G + p = \mathcal{M}_G \oplus \{\{p\}, \{p, q\}, \{p, r, s\}, \{p, q, r, s\}\}$.
Indeed, $\mathcal{M}_{G+p} = \mathcal{M}_G + p$.

Pivot and Loop Complementation on Graphs and Set Systems

Theorem (Commutation on different elements)

Let M be a set system and $u, v \in V$ with $u \neq v$. Then M * u * v = M * v * u, M + u + v = M + v + u, and M + u * v = M * v + u.

Proof is by considering both pivot and loop complementation as special cases of a more general operation (called *vertex flip*), and proving that vertex flips commute on different elements.

Theorem (S₃ on single elements)

Let M be a set system and $u \in V$. Then M * u + u * u = M + u * u + u.

Proof is by showing that +u and *u generate the group S_3 of permutations on three elements.

- 4 同 6 4 日 6 4 日 6

Interplay Loop Complementation and Pivot for Graphs

- Define for $X = \{u_1, \ldots, u_n\}$, $M + X = M + u_1 \cdots + u_n$ (in any order). Similarly for M * X.
- We have: 1) [S₃] M + X * X + X = M * X + X * X, and 2) [commutative] for $Y \cap X = \emptyset$, M + X * Y = M * Y + X.

Interplay Loop Complementation and Pivot for Graphs

- Define for $X = \{u_1, \ldots, u_n\}$, $M + X = M + u_1 \cdots + u_n$ (in any order). Similarly for M * X.
- We have: 1) [S₃] M + X * X + X = M * X + X * X, and 2) [commutative] for $Y \cap X = \emptyset$, M + X * Y = M * Y + X.
- Identities must hold for graphs as well. However, G * X is only defined when $X \in \mathcal{M}_G$.
- For graph G, G + X * X + X = G * X + X * X when both sides are defined. Turns out: right-hand side defined, implies left-hand side defined.

A > < B > < B > _ B

Consequences for Simple Graphs

Remember:

Theorem (Bouchet,1988)

Let G be a simple graph with edge $\{u, v\}$. We have G * u * v * u = G * v * u * v.

In this case, *u * v * u is edge complementation (for simple graphs)

Theorem

Let F be a graph with edge $\{u, v\}$ with no loops for u and v. We have $F * \{u, v\} = F + u * u + u * v * u + u = F + v * v + v * u * v + v.$

 So "modulo loops", "F * {u, v} = F * u * v * u = F * v * u * v". Hence alternative proof of result for simple graphs.

Proof

Theorem

Let F be a graph with edge $\{u,v\}$ with no loops for u and v. We have

 $F * \{u, v\} = F + u * u + u * v * u + u = F + v * v + v * u * v + v.$

Proof.

 $\mathcal{M}_F * \{u, v\} + u * u * v + u * u + u = \mathcal{M}_F * u * v + u * u * v + u * u + u = \mathcal{M}_F * u + u * u + u * u + u * v * v = \mathcal{M}_F.$ Both sides are applicable by the figure. \Box

Robert Brijder, Hendrik Jan Hoogeboom Pivot and Loop Complementation on Graphs and Set Systems

Theorem

Let G be a simple graph, and let $u, v, w \in V(G)$ be such that the subgraph of G induced by $\{u, v, w\}$ is a complete graph. Then $G(*\{u\} * \{v\} * \{w\})^2 = G * \{v\}.$

Theorem

Let G be a simple graph, and let φ be a sequence of local complementation operations applicable to G. Then $G\varphi \approx G + X * Y$ for some $X, Y \subseteq V$ with $X \subseteq Y$.

・ 同 ト ・ ヨ ト ・ ヨ ト

• Interplay pivot and loop complementation is S₃ on identical vertices.

□ > < E > < E >

э

- Interplay pivot and loop complementation is S₃ on identical vertices.
- Bridges gap between simple graphs and graphs with loops.

同 ト イ ヨ ト イ ヨ ト

- Interplay pivot and loop complementation is S₃ on identical vertices.
- Bridges gap between simple graphs and graphs with loops.
- Nature of classic result G * u * v * u = G * v * u * v for simple graphs explained.

- Interplay pivot and loop complementation is S₃ on identical vertices.
- Bridges gap between simple graphs and graphs with loops.
- Nature of classic result G * u * v * u = G * v * u * v for simple graphs explained.
- Characterization of sequences of local complementation on simple graphs.

伺 と く ヨ と く ヨ と

- Interplay pivot and loop complementation is S₃ on identical vertices.
- Bridges gap between simple graphs and graphs with loops.
- Nature of classic result G * u * v * u = G * v * u * v for simple graphs explained.
- Characterization of sequences of local complementation on simple graphs.
- Framework setting is set systems in general.

伺 と く ヨ と く ヨ と