
Determinacy and Rewriting
of Top-Down and MSO Tree Transformations�

Michael Benedikt1, Joost Engelfriet2, and Sebastian Maneth1

1 University of Oxford
first.last@cs.ox.ac.uk

2 LIACS, Leiden University
engelfr@liacs.nl

Abstract. A query is determined by a view, if the result to the query can be re-
constructed from the result of the view. We consider the problem of deciding for
two given tree transformations, whether one is determined by the other. If the
view transformation is induced by a tree transducer that may copy, then determi-
nacy is undecidable, even for identity queries. For a large class of non-copying
views, namely compositions of functional extended linear top-down tree trans-
ducers with regular look-ahead, we show that determinacy is decidable, where
queries are given by deterministic top-down tree transducers with regular look-
ahead or by MSO tree transducers. We also show that if a query is determined,
then it can be rewritten into a query that works directly over the view and is in the
same class as the given query. The proof relies on the decidability of equivalence
for the two considered classes of queries, and on their closure under composition.

1 Introduction

Given a transformation between data structures, a basic question is what sort of in-
formation it preserves. In some contexts, one desires a transformation that is “fully
information-preserving” – one can recover the input from the output. In other cases
it may be acceptable, or even important, to hide certain pieces of information in the
input; but necessarily there is some important information in the input that must be
recoverable from the output. This notion has been studied in the database commu-
nity [29,26]: a query q is determined by another query v if there exists a function f
such that f(v(s)) = q(s) for every input s. The query v is referred to as “view”. Note
that nothing is said about how efficiently f can be computed (or if it can be computed
at all). We can then strengthen determinacy by requiring the function f to lie within a
certain class C; then f is a “rewriting in C”. These notions have received considerable
attention in the database setting [29,26,27,1].

In this paper we study determinacy and rewriting for classes of tree transforma-
tions (or, tree translations). Injectivity is undecidable for deterministic top-down tree
transducers [15,17]; hence, one cannot decide if the identity query is determined by
such a transducer. This holds for transducers that only copy once. We therefore re-
strict our attention to views induced by linear tree transducers. For the same reason we

� Benedikt and Maneth were supported by the Engineering and Physical Sciences Research
Council project “Enforcement of Constraints on XML streams” (EPSRC EP/G004021/1).

K. Chatterjee and J. Sgall (Eds.): MFCS 2013, LNCS 8087, pp. 146–158, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Determinacy and Rewriting of Top-Down and MSO Tree Transformations 147

restrict to a single view (while in database research, normally multiple views are con-
sidered). Our main result is that determinacy is decidable for views that are composi-
tions of functional extended linear top-down tree transducers (with regular look-ahead)
and for queries that are either deterministic top-down tree transducers (with regular
look-ahead) or deterministic MSO definable tree transducers (where MSO stands for
Monadic Second-Order logic). Extended transducers generalize the left-hand sides of
conventional finite-state tree transducers (from one input symbol to an arbitrary “pat-
tern tree”). They were invented by Arnold and Dauchet [3] and have recently been
studied in [24,25,9]. Extended linear transducers are convenient because (1) they are
more powerful than ordinary linear top-down or bottom-up transducers and (2) they
allow to elegantly capture the inverses of translations.

As an example, consider the transformation v taking binary trees as input, with in-
ternal nodes labeled a, b, c, and leaves labeled l. It relabels the b nodes as a nodes, and
otherwise copies the tree as is. A linear top-down transducer implementing this transla-
tion v has a single state p and these translation rules:

p(a(x, y))→ a(p(x), p(y)) p(b(x, y))→ a(p(x), p(y))
p(c(x, y)) → c(p(x), p(y)) p(l()) → l()

Information about the (labels of) b nodes and a nodes is lost in the translation – e.g.,
from the output of v we cannot determine the answer to the identity query q0. In con-
trast, information about the l nodes and their relationship to c nodes is maintained. For
example, the query q1 that removes a and b nodes but keeps c and l nodes is determined
by v. Our algorithm can decide that q0 is not determined and q1 is.

Our decision procedure for determinacy establishes several results that are interest-
ing on their own. For a view v realized by an extended linear top-down tree transducer,
its inverse v−1 is a binary relation on trees. Our approach converts v−1 into a compo-
sition of two nondeterministic translations, a translation τ1 of a very simple form and
a translation τ2 in the same class as v. We then construct uniformizers u1, u2 of τ1, τ2
and compose them to form a uniformizer u of v−1. A uniformizer of a binary relation
R is a function u such that u ⊆ R and u has the same domain as R; thus u “selects”
one of the possibly several elements that R associates with an element of its domain. It
is easy to see that a query q is determined by v if and only if v ◦ u ◦ q = q (where ◦
denotes sequential composition, see the Preliminaries). We show that if q is a determin-
istic top-down or MSO definable tree translation, then so is v ◦ u ◦ q. This is achieved
by proving that u1, u2, and v are deterministic top-down and MSO definable tree trans-
lations. Since our two query classes are closed under composition and u = u1 ◦u2, this
shows that v ◦ u ◦ q is in the same class as q. We then decide v ◦ u ◦ q = q, and hence
determinacy, making use of the decidability of equivalence for deterministic top-down
or MSO definable tree translations ([16,13] or [12]). The same proof also shows that if
q is determined by v, then u ◦ q is a rewriting belonging to the same class as q.

Related Work. The notion of view-query determinacy was introduced by Segoufin and
Vianu in [29]. They focus on relational queries definable in first-order logic and show
that if such queries are determined over arbitrary structures, then they can be rewritten
in first-order, but that if they are determined over finite structures, they may require a
much more powerful relational query to be rewritten. Nash, Segoufin, and Vianu [26]

148 M. Benedikt, J. Engelfriet, and S. Maneth

summarize a number of other results on the relational case. Due to the differing data
models and notions of equality used in relational queries and tree structures, results
on determinacy for queries in the relational case do not (directly) apply to transducers,
and vice versa. In the context of unranked trees, determinacy is considered in Groz’s
thesis [20] for XML views and queries, see also [21]. Two notions of determinacy are
considered, depending on whether or not the output trees preserve provenance infor-
mation (i.e., node identities) from the input document. It is shown that both notions
of determinacy are undecidable for views and queries defined using a transformation
language that can select subtrees using regular XPath filters. On the positive side, it is
shown that if the views are “interval-bounded” – there is a bound on the number of con-
secutive nodes skipped along a path – then determinacy can be tested effectively. The
most related work is [23], which considers the determinacy problem (and rewriting)
explicitly for tree transducers, and solves it for functional extended linear bottom-up
views and deterministic bottom-up queries. Their approach is to decide determinacy
by testing functionality of the inverse of the view composed with the query. To this
end they generalize the functionality test for bottom-up transducers in [31] to extended
bottom-up transducers with “grafting” (needed for the inverse of the view). Our main
result generalizes the one of [23], and provides an alternative proof of it.

2 Preliminaries

For k ∈ N = {0, 1, . . .} let [k] denote the set {1, . . . , k}. For a binary relation R and
a set A we denote by R(A) the set {y | ∃x ∈ A : (x, y) ∈ R}, and by R(x) the set
R({x}). If R ⊆ B×C for sets B andC, then ran(R) = R(B) and dom(R) = R−1(C).
For two relations R and S we denote the sequential composition “R followed by S” by
R ◦ S, i.e., for an element x, (R ◦ S)(x) = S(R(x)). Note this is in contrast to the
conventional use of ◦. If R,S are classes of binary relations, then R ◦ S = {R ◦ S |
R ∈ R, S ∈ S},R∗ = {R1 ◦ · · ·◦Rn | n ≥ 1, Ri ∈ R}, andR−1 = {R−1 | R ∈ R}.

We define determinacy and rewritability, following [26]. Let Q,V be classes of par-
tial functions and let q ∈ Q and v ∈ V . We say that q is determined by v, if there exists
a function f such that v ◦ f = q. Note that the latter means that the domains of v ◦ f
and q coincide, and that f(v(s)) = q(s) for each s in that domain. Determinacy for
Q under V is the problem that takes as input q ∈ Q and v ∈ V and outputs “yes” if
q is determined by v, and “no” otherwise. Determinacy says that there is a functional
dependency of q on v, with no limit on how complex it is to reconstruct the answer to q
from the answer to v. A finer notion requires that the reconstruction be in a given class:
a classQ′ of partial functions is complete for V-to-Q rewritings, if for every q ∈ Q and
v ∈ V such that q is determined by v, there is an f ∈ Q′ with v ◦ f = q.

Trees and Tree Automata. A ranked alphabet consists of a finite set Σ together with a
mapping rankΣ : Σ → N. We write a(k) to denote that rankΣ(a) = k and define Σ(k)

as the set {a ∈ Σ | rankΣ(a) = k}. The set of (ranked, ordered, node-labeled, finite)
trees over Σ, denoted by TΣ , is the set of words defined recursively as the smallest
set T such that a(s1, . . . , sk) ∈ T if a ∈ Σ(k), k ≥ 0, and s1, . . . , sk ∈ T . For a
tree a() we simply write a. For a set T of trees, we denote by TΣ(T) the set of trees
obtained from trees in TΣ by replacing arbitrary leaves by trees in T . We fix a countably

Determinacy and Rewriting of Top-Down and MSO Tree Transformations 149

infinite set X = {x1, x2, . . . } of variables. For k ∈ N, let Xk be the ranked alphabet

{x(0)
1 , . . . , x

(0)
k }. For k ∈ N, an Xk-context (over Σ) is a tree C in TΣ(Xk) such that

each variable in Xk occurs exactly once in C. For such a contextC and trees s1, . . . , sk,
C[s1, . . . , sk] denotes the tree obtained from C by replacing each xi ∈ Xk by si. Let
T1, . . . , Tn be sets of trees. For trees s1, . . . , sn that are not subtrees of another, we
denote by s[si ← Ti | i ∈ [n]] the set of trees obtained from s by replacing each
occurrence of a subtree si of s by a tree from Ti (where different occurrences of si need
not be replaced by the same tree). For a ranked alphabet Q with Q(1) = Q we denote
by Q(Xk) the set of trees {q(xi) | q ∈ Q, i ∈ [k]}. A deterministic bottom-up tree
automaton (dbta) over Σ is a tuple A = (P,Σ, F, δ) where P is a finite set of states,
Σ is a ranked alphabet, F ⊆ P is the set of final states, and δ is the transition function.
For every a ∈ Σ(k), k ≥ 0, and p1, . . . , pk ∈ P , δ(a, p1, . . . , pk) is an element of P .
The function δ is extended to trees s in TΣ in the usual way; the resulting function from
TΣ to P is denoted δ as well. Thus δ(s) is the state reached by A at the root of s. The
language accepted by A is L(A) = {s ∈ TΣ | δ(s) ∈ F}.
Convention: All lemmas, theorems, etc., stated in this paper (except in Section 4) are
effective.

3 Extended Top-Down and Bottom-Up Tree Transducers

An extended top-down tree transducer with regular look-ahead (ETR transducer) is a
tuple M = (Q,Σ,Δ, I, R, A) where Q is a ranked alphabet of states all of rank 1, Σ
and Δ are ranked alphabets of input and output symbols, respectively, I ⊆ Q is a set
of initial states, A = (P,Σ, F, δ) is a dbta called the look-ahead automaton, and R is
a finite set of rules of the form q(C) → ζ 〈p1, . . . , pk〉, where q ∈ Q, C �= x1 is an
Xk-context over Σ, k ≥ 0, ζ ∈ TΔ(Q(Xk)), and p1, . . . , pk ∈ P . For an input tree
s ∈ TΣ , the q-translation [[q]]M (s) is the smallest set of trees T ⊆ TΔ such that for
every rule q(C) → ζ 〈p1, . . . , pk〉 and all s1, . . . , sk ∈ TΣ , if s = C[s1, . . . , sk] and
δ(si) = pi for every i ∈ [k], then T contains the set of trees ζ[q′(xi) ← [[q′]]M (si) |
q′ ∈ Q, i ∈ [k]]. The translation [[M]] realized by M is the binary relation {(s, t) ∈
TΣ × TΔ | s ∈ L(A), t ∈ ∪q∈I [[q]]M (s)}. The class of all translations realized by ETR

transducers is denoted ETR (and similarly for other transducers). The transducer M is
linear, if the right-hand side ζ of each rule is linear in the set of variables X , i.e., each
variable xi occurs at most once in ζ. We use “L” to abbreviate “linear”, i.e., ELTR is the
class of [[M]] where M is a linear ETR transducer. Transducers without look-ahead are
defined by transducers with a trivial one-state look-ahead automaton (accepting TΣ);
this is indicated by omitting the superscript “R” for transducers and classes. Extended
top-down transducers are studied in, e.g., [3,24,25,9]. 1

An extended linear bottom-up tree transducer (ELB transducer) is a tuple B =
(Q,Σ,Δ, F,R) where Q is a ranked alphabet of states all of rank 1, Σ and Δ are
ranked alphabets of input and output symbols, respectively, F ⊆ Q is a set of final
states, and R is a finite set of rules of the form C[q1(x1), . . . , qk(xk)] → q(ζ), where

1 The class ELT is denoted l-XTOPef in [24], where “ef” denotes epsilon-freeness, meaning the
left-hand sides of rules are not of the form q(xi).

150 M. Benedikt, J. Engelfriet, and S. Maneth

k ≥ 0, C �= x1 is anXk-context overΣ, q1, . . . , qk, q ∈ Q, and ζ ∈ TΔ(Xk) is linear in
Xk. If ti ∈ [[qi]]B(si) then [[q]]B(C[s1, . . . , sk]) contains the tree ζ[xi ← {ti} | i ∈ [k]].
The translation realized by B is [[B]] = ∪q∈F [[q]]B . Extended linear bottom-up trans-
ducers are studied in, e.g., [3,9,23]. In [9,23], the left-hand side of a rule is allowed
to be of the form q(xi), and the corresponding (larger) class of translations is denoted
l-XBOT. It is easy to show that such rules can effectively be removed from a transducer
B when it is known that [[B]] is a function.

As we show in Section 4, determinacy is undecidable if the view transducers copy.
We therefore define views using linear transducers. We first show that for linear ex-
tended transducers, top-down (with look-ahead) gives the same translations as bottom-
up, just as for non-extended transducers (see Theorem 2.8 of [7]). The following result
was already pointed out below Proposition 5 in [9] (see also Theorem 3.1 of [19]).

Theorem 1. ELTR = ELB.

Proof. ⊆: Let M = (Q,Σ,Δ, I, R, (P,Σ, F, δ)) be an ELTR transducer. We construct
the ELB transducer B with the set P ∪ (Q × P) of states and the set I × F of final
states. Its rules are defined as follows. For the first set of rules let d0 be a fixed ele-
ment of Δ(0). Let p1, . . . , pk, p ∈ P and a ∈ Σ(k) such that δ(a, p1, . . . , pk) = p.
(1) We add a(p1(x1), . . . , pk(xk)) → p(d0) as a rule of B. This rule outputs d0 and
changes the state to p, but recursive calls to it will only make use of the computed
state, not the output. (2) If M has the rule q(C) → ζ 〈p1, . . . , pk〉, then we add
C[state(x1), . . . , state(xk)] → 〈q, p〉(erase(ζ)) as a rule of B, where erase(ζ) is ob-
tained from ζ by replacing every q′(xi) by xi, while state(xi) = 〈q′, pi〉(xi) if q′ is the
unique state such that q′(xi) occurs in ζ and state(xi) = pi(xi) if no such q′ exists.
The correctness of the construction follows from the following claim (for q ∈ I and
p ∈ F), which can be proved by a straightforward induction on the structure of s. Let
s ∈ TΣ , q ∈ Q, and p ∈ P .

Claim. (1) δ(s) = p if and only if [[p]]B(s) �= ∅. (2) If s ∈ dom([[〈q, p〉]]B), then
p = δ(s). (3) [[〈q, δ(s)〉]]B(s) = [[q]]M (s).

⊇: By the proof of Lemma 6 of [9], ELB is included in the class of all tree trans-
lations {(f(s), g(s)) | s ∈ L} where f is a linear non-deleting non-erasing tree ho-
momorphism, g is a linear tree homomorphism, and L is a regular tree language. By
Theorem 17 of [24], ELTR is equal to this class. ��

We now give a useful property of the composition closure of ELTR.

Lemma 2. If τ ∈ (ELTR)∗ and R is a regular tree language, then dom(τ), ran(τ),
τ(R), and τ−1(R) are regular tree languages.

Proof. We consider ELB translations, which suffices by Theorem 1. By Lemma 6 of [9],
every ELB translation is of the form {(f(s), g(s)) | s ∈ L} where f, g are linear tree
homomorphisms and L is a regular tree language. From this it follows (as stated in
Corollary 7 of [9]) that ELB translations preserve regularity. This implies that ran(τ) is
regular. The above form means that inverse ELB translations are also of that form and
hence preserve regularity. This implies that dom(τ) is regular. ��

Determinacy and Rewriting of Top-Down and MSO Tree Transformations 151

Functionality Test. Later when we prove determinacy results, we restrict our views to
classes of transducers that realize functions. In particular, we use the class (fu-ELTR)∗

of compositions of functional translations in ELTR, which properly contains fu-ELTR by
the proof of Theorem 5.2 of [25]. It is therefore important to know the next proposition.

Proposition 3. For an ELTR transducer M it is decidable whether [[M]] is functional.

Proof. By Theorem 4.8 of [25], ETR = TR. The result follows because functionality is
decidable for TR transducers by [16] (see the sentence after Theorem 8 of [16]). ��

We note that it can be shown, using a variation of the Lemma of [8], that our class
(fu-ELTR)∗ is equal to the class fu-(ELTR)∗ of functional compositions of ELTR transla-
tions. However, we do not know whether functionality is decidable for such composi-
tions. Note also that it was recently shown in [18] that ELTR ◦ ELTR ◦ ELTR = (ELTR)∗.

Ordinary Top-Down Tree Transducers. The ETR transducer M is an (ordinary, not
extended) top-down tree transducer with regular look-ahead (TR transducer) if the left-
hand side C of each of its rules contains exactly one symbol in Σ, i.e., each rule is of the
form q(a(x1, . . . , xk)) → ζ 〈p1, . . . , pk〉 with a ∈ Σ(k) and k ≥ 0. A TR transducer
is deterministic if it has exactly one initial state and for each q, a, and 〈p1, ..., pk〉 it has
at most one rule as above. Determinism is denoted by the letter “D”, thus we have DTR

and DLTR transducers. A TR transducer M is finite-copying (a TR
fc transducer) if each

input node is translated only a bounded number of times. Formally this means there
exists a number K such that for every p ∈ P , s ∈ TΣ({�}), and t ∈ [[Mp]](s), if �
occurs exactly once in s, then � occurs ≤ K times in t; here we assume that � is a
new input and output symbol of rank 0, and that Mp is M extended with the look-ahead
transition δ(�) = p and the rules q(�) → � for every state q. A DTR

fc transducer is a
deterministic TR

fc transducer. Note that LTR ⊆ TR
fc and that translations τ in TR

fc are of
linear size increase [11], i.e., there is a number N such that the size of t is at most N
times the size of s for every (s, t) ∈ τ .

We later need the following four results. Let DMSOTT be the class of deterministic
(or, parameterless) MSO definable tree translations (see, e.g., Chapter 8 of [5]).

Proposition 4. (1) DTR
fc ◦ DTR

fc ⊆ DTR
fc, (2) DTR

fc ⊆ DMSOTT, (3) DTR ◦ DTR ⊆ DTR, and
(4) DMSOTT ◦ DMSOTT ⊆ DMSOTT.

For result (4) see, e.g., [5]. Results (1) and (2) follow from Proposition 2 of [4] and The-
orem 7.4 of [10]. Result (1) is already mentioned in Theorem 5.4 of [14]. Result (3) is
in Theorem 2.11 of [7]. It is not difficult to prove (1) and (3) directly via straightforward
product constructions.

4 Undecidability Results

Let HOM denote the class of tree homomorphisms, i.e., translations realized by total (see
next paragraph) one-state DT transducers. As observed in [23], a function v is injective if
and only if q is determined by v, where q is the identity on dom(v). Since the injectivity
problem for HOM is undecidable by [17], one obtains (as stated in Theorem 17 of [23])

152 M. Benedikt, J. Engelfriet, and S. Maneth

undecidability of the determinacy problem for ID under HOM, where ID is the class of
identity translations on TΣ , for any ranked alphabet Σ.

We show that determinacy is undecidable for ID under total copy-once DT transduc-
ers (tot-DTco transducers). A DT transducer is total if for each state q and input symbol
a, it has a rule with left-hand side q(a(x1, . . . , xk)). It is copy-once if for every rule
q(a(x1, . . . , xk)) → ζ the initial state q0 does not occur in ζ, and ζ is linear in X if
q �= q0. Thus the transducer copies at most once, at the root node of the input tree. The
undecidability of injectivity for non-total DTco transducers was proved by Ésik in [15],
and in his PhD thesis (in Hungarian). Our proof for total DTco transducers (deferred to
the full version) is a slight variation of Ésik’s proof.

Theorem 5. Determinacy for ID under tot-DTco is undecidable.

Since, obviously, every DTco transducer is a DTfc transducer, and DTfc is (effectively)
included in DMSOTT by Proposition 4(2), this immediately gives undecidability of de-
terminacy for ID under DMSOTT (which slightly strengthens Theorem 19 of [23]).

One often considers determinacy for a query q under a set of views V . The extended
definition states that if two inputs give the same output for each view in V , then they
give the same output for q. In this case one has undecidability even when the views are
deterministic finite-state word transformations. Thus, in what follows we consider only
a single non-copying view.

5 Inverses and Uniformizers of Linear Extended Transducers

As Theorem 5 shows, determinacy cannot be decided under view transducers that copy,
not even for a single initial copy at the input root node. Let us therefore restrict our
attention to classes induced by linear view transducers. The results in this section hold
for arbitrary linear extended transducers. When we want to decide determinacy in Sec-
tion 6, we restrict the views to functional linear translations.

5.1 Inverses of Extended Linear Bottom-Up Transducers

Given an ELB transducer B, we would like to construct a transducer realizing its in-
verse [[B]]−1. Since B can translate the set of all input trees in TΣ to a single output
tree, a transducer realizing [[B]]−1 may need to translate a tree back to any tree in TΣ .
This is not possible by our extended top-down or bottom-up tree transducers because
the height of an output tree is linearly bounded by the height of the input tree. The
next, easy lemma “factors out” this problem by decomposing an ELB transducer into
a component that can be inverted as an extended top-down transducer, and a compo-
nent of a very simple form – a “projection mapping”. Let n-ELB denote the class of
non-deleting non-erasing ELB transducers: those in which every rule is of the form
C[q1(x1), . . . , qk(xk)] → q(ζ), such that each variable in Xk occurs in ζ and ζ �= x1.
The phrase “non-deleting” indicates that we do not drop an input xi, thus removing an
entire subtree from the input. Non-erasing indicates that we do not have a rule such as
q(a(x1, b))→ q′(x1), which “erases” the symbols a and b. Let Δ be a ranked alphabet
and H a set of symbols disjoint from Δ each of rank at least 1. The projection mapping

Determinacy and Rewriting of Top-Down and MSO Tree Transformations 153

from Δ ∪ H to Δ is the tree homomorphism πΔ,H = π : TΔ∪H → TΔ defined as:
π(h(s1, . . . , sk)) = π(s1) for h ∈ H(k) and π(d(s1, . . . , sk)) = d(π(s1), . . . , π(sk))
for d ∈ Δ(k), for all s1, . . . , sk ∈ TΔ∪H . We denote by PROJ the class of all projection
mappings.

Lemma 6. ELB ⊆ n-ELB ◦ PROJ.

Proof. Let B = (Q,Σ,Δ, F,R) be an ELB transducer and let m be the maximal
number of variables that occur in the left-hand side of any rule of B. We define the
ranked alphabet H = {#(n+1)

n | 0 ≤ n ≤ m} and the n-ELB transducer B′ =
(Q,Σ,Δ ∪ H,F,R′). For every rule C[q1(x1), . . . , qk(xk)] → q(ζ) in R we let the
rule C[q1(x1), . . . , qk(xk)]→ q(#n(ζ, xi1 , . . . , xin)) be in R′, where xi1 , . . . , xin are
all the variables from Xk that do not occur in ζ. Clearly, [[B′]] ◦ πΔ,H = [[B]]. ��

As shown in [3] (TIA−1 ⊆ TID), the inverse of an n-ELB can be converted to an ELT by
just “inverting the rules”.

Lemma 7. n-ELB−1 ⊆ ELT.

Proof. Let B = (Q,Σ,Δ, F,R) be an n-ELB transducer. We construct the ELT trans-
ducer M = (Q,Δ,Σ, F,R′) realizing B’s inverse. For every rule C[q1(x1), . . . ,
qk(xk)] → q(ζ) in R let the rule q(ζ) → C[q1(x1), . . . , qk(xk)] be in R′. It should
be clear that [[M]] = [[B]]−1. ��

These two lemmas imply that ELB−1 ⊆ PROJ−1 ◦ ELT.

5.2 Uniformizers

Let τ ⊆ A × B be a translation and u a function from A to B. We say that u is a
uniformizer of τ if u ⊆ τ and dom(u) = dom(τ). For classes T ,U of translations we
say that T has uniformizers in U if for every τ ∈ T we can construct a uniformizer u
of τ such that u ∈ U . We say that the sequence τ1, . . . , τn of translations is compatible,
if for i ∈ [n− 1], ran(τi) ⊆ dom(τi+1 ◦ · · · ◦ τn). It is easy to see that if u1, . . . , un are
uniformizers of τ1, . . . , τn, respectively, and τ1, . . . , τn is compatible, then u1 ◦ · · ·◦un

is a uniformizer of τ1 ◦ · · · ◦ τn. Our goal is to show that ((ELTR)∗)−1 and (ELTR)∗

have uniformizers in DTR
fc. We do this by decomposing into compatible translations,

constructing uniformizers in DTR
fc for them, and then obtaining a uniformizer in DTR

fc
through Proposition 4(1). A similar idea was used in [8] to obtain uniformizers for
compositions of top-down and bottom-up tree translations in DTR.

Lemma 8. ELTR has uniformizers in DTR
fc.

Proof. By Theorem 4.8 of [25], ETR = TR. For a TR transducer M with [[M]] ∈ ELTR,
we construct a dbta A recognizing its domain (cf. Corollary 2.7 of [7]). We now change
M so that the look-ahead automaton checks M ’s domain (by building a product au-
tomaton with A and changing the rules of the transducer appropriately). The resulting
transducer can be decomposed (by an obvious variant of Theorem 2.6 of [7]) into a finite
state relabeling B with the same domain as M , followed by a top-down tree transducer

154 M. Benedikt, J. Engelfriet, and S. Maneth

T . Note that [[B]] is a function; for the notion of finite-state relabeling see Definition 3.14
in [6]. It follows that ran([[B]]) ⊆ dom([[T]]). Thus, [[B]], [[T]] are compatible. A finite
state relabeling can be seen as a top-down tree transducer, so by the Lemma in [8] we
obtain uniformizers for [[B]] and [[T]], both in DTR. Since DTR is closed under composi-
tion by Proposition 4(3), the composition of these uniformizers is a uniformizer of [[M]],
in DTR. Obviously, ELTR translations are of linear size increase, and so this uniformizer
is of linear size increase. We obtain the desired result because DTR translations of linear
size increase are in DTR

fc by Section 7.1 of [11] (in fact, by the obvious generalization
of the latter result to partial transducers: introduce output dummies for undefined rules
and remove them later). ��

Note that there is an alternative proof to Lemma 8 which avoids the last step (of applying
linear size increase): First, it follows from the construction in the proof of Theorem 4.8
of [25] that ELTR ⊆ TR

fc. Second, the proof of the Lemma in [8] can easily be modified
into a proof that every TR transducer has a uniformizer in DTR, and the proof preserves
the finite-copying property.

An FTA transducer is a dbta A, seen as a tree transducer realizing the translation
[[A]], which is the identity function on L(A); composing a tree translation τ with [[A]]
amounts to restricting the range of τ to L(A): τ ◦ [[A]] = {(s, t) ∈ τ | t ∈ L(A)}.

Lemma 9. PROJ−1 ◦ FTA has uniformizers in DLTR.

Proof. Let τ = π−1 ◦ [[A]] where π ∈ PROJ and A is an FTA transducer. Thus, π =
πΣ,H for disjoint ranked alphabets Σ and H such that H(0) = ∅, and A is a dbta
(Q,Σ ∪ H,F, δ). Let C be the set of all X1-contexts C over Σ ∪ H such that the
left-most leaf of C has label x1 and all the ancestors of this leaf have labels in H . For
every a ∈ Σ(k) and q, q1, . . . , qk ∈ Q, let C(a, q, q1, . . . , qk) be the set of C ∈ C
such that δ(C[a(t1, . . . , tk)]) = q for all t1, . . . , tk ∈ TΣ∪H with δ(ti) = qi for every
i ∈ [k]. Let C0(a, q, q1, . . . , qk) be one (fixed) such C – since the set C(a, q, q1, . . . , qk)
is effectively regular, one can always compute such an element C if the set is nonempty.
If there does not exist such a C then C0(a, q, q1, . . . , qk) is undefined.

Since the construction in the proof of the Lemma of [8] preserves linearity, LT has
uniformizers in DLTR. Hence, it suffices to construct an LT transducer M with [[M]] ⊆ τ
and dom([[M]]) = dom(τ). We define M = (Q,Σ,Σ ∪ H,F,R′) where R′ consists
of all rules q(a(x1, . . . , xk)) → C0(a, q, q1, . . . , qk)[a(q1(x1), . . . , qk(xk))] such that
C0(a, q, q1, . . . , qk) is defined. Intuitively, for s ∈ TΣ , M simulates top-down the state
behavior of A on some tree t in π−1(s) and, at each node of s, outputs a context in
C on which A has the same state behavior as on the context in C that is “above” the
corresponding node in t. Formally, the correctness of the construction follows from the
following claim (for q ∈ F), which can easily be proved by structural induction on s
and induction on the size of t, respectively. Let q ∈ Q, s ∈ TΣ , and t ∈ TΣ∪H .

Claim. (1) If t ∈ [[q]]M (s), then π(t) = s and δ(t) = q. (2) If δ(t) = q, then π(t) ∈
dom([[q]]M).

In both proofs one uses that π(C[t]) = π(t) for every C ∈ C. In the proof of (2)
one uses that t is of the form C[a(t1, . . . , tk)] with C ∈ C, k ≥ 0, a ∈ Σ(k) and
t1, . . . , tk ∈ TΣ∪H , and one applies the induction hypothesis to t1, . . . , tk. ��

Determinacy and Rewriting of Top-Down and MSO Tree Transformations 155

Lemma 10. ELB−1 has uniformizers in DTR
fc.

Proof. Let τ ∈ ELB−1. By Lemmas 6 and 7, τ ∈ PROJ−1 ◦ ELT. The domains of
translations in ELT are effectively regular by Lemma 2, thus we obtain τ = τ1 ◦ τ2 such
that the translations τ1 ∈ PROJ−1 ◦ FTA, τ2 ∈ ELT are compatible (by definition of the
FTA transducer). For τ1, τ2 we obtain, by Lemmas 9 and 8, uniformizers u1, u2 ∈ DTR

fc.
Then u1 ◦ u2 is a uniformizer for τ ; it is in DTR

fc by Proposition 4(1). ��

Theorem 11. ((ELTR)∗)−1 has uniformizers in DTR
fc.

Proof. Let T1, . . . , Tn be ELTR transducers. We change the Ti so that the sequence of
translations [[T1]]

−1, . . . , [[Tn]]
−1 is compatible, i.e., ran([[Ti]]

−1) ⊆ dom([[Ti+1]]
−1 ◦

· · · ◦ [[Tn]]
−1): We change the domain of Ti to be included in the range of [[Tn]] ◦

· · · ◦ [[Ti+1]]. This range is regular by Lemma 2. The domain of Ti is changed using
look-ahead, as in the proof of Lemma 8. Using Theorem 1 and Lemma 10 we obtain
uniformizers in DTR

fc for the [[Ti]]
−1. This proves the theorem, by Proposition 4(1). ��

Theorem 12. (ELTR)∗ has uniformizers in DTR
fc.

Proof. Let T1, . . . , Tn be ELTR transducers. We change the Ti so that [[T1]], . . . , [[Tn]] is
compatible, i.e., restrict Ti’s range to D = dom([[Ti+1]] ◦ · · · ◦ [[Tn]]), which is regular
by Lemma 2. The range of Ti can be restricted to D as follows. As mentioned in the
proof of Theorem 1, ELTR is the class of all translations of the form τ = {(f(s), g(s)) |
s ∈ L} where f is a linear non-deleting non-erasing tree homomorphism, g is a linear
tree homomorphism, and L is a regular tree language. The restriction of the range of
τ to D is {(f(s), g(s)) | s ∈ L, g(s) ∈ D} = {(f(s), g(s)) | s ∈ L ∩ g−1(D)}.
Since L ∩ g−1(D) is regular, this translation is again of the above form and hence in
ELTR. We obtain uniformizers in DTR

fc for the [[Ti]] by Lemma 8, and a uniformizer for
[[T1]] ◦ · · · ◦ [[Tn]] by Proposition 4(1). ��

6 Decidability of Determinacy and Rewriting

Consider a query q, a view v, and a uniformizer u of v−1, each of them a partial func-
tion. Clearly, q is determined by v if and only if v ◦ u ◦ q = q. For queries in DTR

or DMSOTT, equivalence is decidable [13,12], and they are closed under left compo-
sition with DTR

fc by Proposition 4. Thus, if v and u are in DTR
fc, then we can decide

determinacy. We will show that this holds for the views in the class (fu-ELTR)∗ of com-
positions of functions in ELTR. If v is in this class, then v−1 has a uniformizer u in DTR

fc
by Theorem 11. As the next corollary states, v itself is also in DTR

fc. The inclusion is
a direct consequence of Theorem 12; it is proper by Lemma 2 (because DTR

fc contains
translations that do not preserve regularity).

Corollary 13. (fu-ELTR)∗ � DTR
fc.

The main results of this paper are presented in the next two theorems.

Theorem 14. Determinacy is decidable for DTR and DMSOTT under (fu-ELTR)∗.

156 M. Benedikt, J. Engelfriet, and S. Maneth

Proof. Let v ∈ (fu-ELTR)∗. According to Corollary 13 and Theorem 11 we construct
DTR

fc transducers M1,M2 such that [[M1]] = v and [[M2]] = u is a uniformizer of v−1. If
a query is given as a DTR (DMSOTT) transducer N , then DTR (DMSOTT) transducers N ′

and N ′′ can be constructed with [[N ′]] = u ◦ [[N]] and [[N ′′]] = v ◦ [[N ′]] = v ◦ u ◦ [[N]].
This follows from Proposition 4. We can decide if [[N ′′]] = [[N]] because equivalence is
decidable for DTR and DMSOTT transducers ([16,13] and [12]). ��
The proof of Theorem 14 also proves Theorem 15.

Theorem 15. Let V = (fu-ELTR)∗, v ∈ V , and let N be a DTR (DMSOTT) transducer
such that [[N]] is determined by v. A DTR (DMSOTT) transducer N ′ can be constructed
such that v ◦ [[N ′]] = [[N]]. That is, DTR (DMSOTT) is complete for V-to-DTR (V-to-
DMSOTT) rewritings.

Since the class fu-B of functional bottom-up translations is included in DTR by [8], it
is immediate from Theorems 14 and 1 that determinacy is decidable for fu-B under
fu-ELB, as proved in Theorem 16 of [23]. In Theorem 21 of [23] it is shown to be
decidable for q ∈ fu-B and v ∈ fu-ELB whether there exists f ∈ fu-B such that q = v◦f .
Theorem 15 shows that such an f can always be found in DTR.

Weakly Determined Queries. A query q is determined by a view v if there exists a
function f such that (1) dom(v ◦ f) = dom(q) and (2) f(v(s)) = q(s) for every
s ∈ dom(q). For practical purposes, condition (1) could be weakened to dom(v ◦ f) ⊇
dom(q). For a given element s, one first checks if s ∈ dom(q), and if so, obtains q(s) as
f(v(s)). We say that q is weakly determined by v if there exists f with f(v(s)) = q(s)
for every s ∈ dom(q). As an example consider q = {(1, 1)} and v = {(1, 1), (2, 1)}.
Then q is not determined by v, but is weakly determined. Let Q,V ,Q′ be classes of
partial functions. We say that Q′ is complete for weak V-to-Q rewritings, if for every
q ∈ Q and v ∈ V such that q is weakly determined by v, there is an f ∈ Q′ with
f(v(s)) = q(s) for every s ∈ dom(q). For a function τ : A → B and a set L let
τ � L denote the restriction of τ to inputs in L. Then q is weakly determined by v if
and only if q is determined by v � dom(q), with the same functions f . For q ∈ DTR or
q ∈ DMSOTT, dom(q) is effectively regular. And if v ∈ (fu-ELTR)∗ then v � L is in
(fu-ELTR)∗ for every regular tree language L (simply by adding it to the look-ahead of
the first transducer). Hence Theorems 14 and 15 also hold for weak determinacy.

Corollary 16. Let V = (fu-ELTR)∗. Weak determinacy is decidable for DTR and for
DMSOTT under V . The classes DTR and DMSOTT are complete for weak V-to-DTR and
weak V-to-DMSOTT rewritings, respectively.

Future Work. We would like to know the complexity of deciding determinacy. The
complexity of our algorithm is dominated by that of the equivalence tests in [13,12]:
double exponential time for DTR, non-elementary for DMSOTT (and nondeterministic
exponential time for streaming tree transducers [2]). Can we find subclasses of tree
transducers for which determinacy is polynomial-time testable (cf. [13,22,30])? Can
our results be extended to larger classes of tree transducers, such as deterministic macro
tree transducers (see, e.g., [10,11])? For those transducers, decidability of equivalence
is a long-standing open problem. It is interesting and practically important (for XML)
to study determinacy for unranked tree transducers, e.g., those of [28].

Determinacy and Rewriting of Top-Down and MSO Tree Transformations 157

References

1. Afrati, F.N.: Determinacy and query rewriting for conjunctive queries and views. Theor.
Comput. Sci. 412(11), 1005–1021 (2011)

2. Alur, R., D’Antoni, L.: Streaming tree transducers. In: Czumaj, A., Mehlhorn, K., Pitts, A.,
Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 42–53. Springer, Heidel-
berg (2012)

3. Arnold, A., Dauchet, M.: Bi-transductions de forêts. In: ICALP (1976)
4. Bloem, R., Engelfriet, J.: A comparison of tree transductions defined by monadic second

order logic and by attribute grammars. J. Comput. Syst. Sci. 61(1), 1–50 (2000)
5. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic, a Language-

Theoretic Approach. Cambridge University Press (2012)
6. Engelfriet, J.: Bottom-up and top-down tree transformations - a comparison. Math. Systems

Theory 9(3), 198–231 (1975)
7. Engelfriet, J.: Top-down tree transducers with regular look-ahead. Math. Systems Theory 10,

289–303 (1977)
8. Engelfriet, J.: On tree transducers for partial functions. Inf. Proc. Lett. 7(4), 170–172 (1978)
9. Engelfriet, J., Lilin, E., Maletti, A.: Extended multi bottom-up tree transducers. Acta

Inf. 46(8), 561–590 (2009)
10. Engelfriet, J., Maneth, S.: Macro tree transducers, attribute grammars, and MSO definable

tree translations. Inf. Comput. 154(1), 34–91 (1999)
11. Engelfriet, J., Maneth, S.: Macro tree translations of linear size increase are MSO definable.

SIAM J. Comput. 32(4), 950–1006 (2003)
12. Engelfriet, J., Maneth, S.: The equivalence problem for deterministic MSO tree transducers

is decidable. Inf. Proc. Lett. 100(5), 206–212 (2006)
13. Engelfriet, J., Maneth, S., Seidl, H.: Deciding equivalence of top-down XML transformations

in polynomial time. J. Comput. Syst. Sci. 75(5), 271–286 (2009)
14. Engelfriet, J., Rozenberg, G., Slutzki, G.: Tree transducers, L systems, and two-way ma-

chines. J. Comput. Syst. Sci. 20(2), 150–202 (1980)
15. Ésik, Z.: On decidability of injectivity of tree transformations. In: Les Arbres en Algèbre et

en Programmation, Lille, pp. 107–133 (1978)
16. Ésik, Z.: Decidability results concerning tree transducers I. Acta Cybern. 5, 1–20 (1981)
17. Fülöp, Z., Gyenizse, P.: On injectivity of deterministic top-down tree transducers. Inf. Proc.

Lett. 48(4), 183–188 (1993)
18. Fülöp, Z., Maletti, A.: Composition closure of ε-free linear extended top-down tree transduc-

ers. In: Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS, vol. 7907, pp. 239–251. Springer,
Heidelberg (2013)

19. Fülöp, Z., Maletti, A., Vogler, H.: Weighted extended tree transducers. Fundam. In-
form. 111(2), 163–202 (2011)

20. Groz, B.: XML Security Views: Queries, Updates, and Schemas. PhD thesis, Université
Lille 1 (2012)

21. Groz, B., Staworko, S., Caron, A.-C., Roos, Y., Tison, S.: Static analysis of XML security
views and query rewriting. Inf. Comput. (to appear, 2013)

22. Gurari, E.M., Ibarra, O.H.: A note on finite-valued and finitely ambiguous transducers. Math.
Systems Theory 16(1), 61–66 (1983)

23. Hashimoto, K., Sawada, R., Ishihara, Y., Seki, H., Fujiwara, T.: Determinacy and subsump-
tion for single-valued bottom-up tree transducers. In: Dediu, A.-H., Martı́n-Vide, C., Truthe,
B. (eds.) LATA 2013. LNCS, vol. 7810, pp. 335–346. Springer, Heidelberg (2013)

24. Maletti, A.: Compositions of extended top-down tree transducers. Inf. Comput. 206(9-10),
1187–1196 (2008)

158 M. Benedikt, J. Engelfriet, and S. Maneth

25. Maletti, A., Graehl, J., Hopkins, M., Knight, K.: The power of extended top-down tree trans-
ducers. SIAM J. Comput. 39(2), 410–430 (2009)

26. Nash, A., Segoufin, L., Vianu, V.: Views and queries: Determinacy and rewriting. ACM
Trans. Database Syst. 35(3) (2010)

27. Pasailă, D.: Conjunctive queries determinacy and rewriting. In: ICDT (2011)
28. Perst, T., Seidl, H.: Macro forest transducers. Inf. Proc. Lett. 89(3), 141–149 (2004)
29. Segoufin, L., Vianu, V.: Views and queries: determinacy and rewriting. In: PODS (2005)
30. Seidl, H.: Single-valuedness of tree transducers is decidable in polynomial time. Theor. Com-

put. Sci. 106(1), 135–181 (1992)
31. Seidl, H.: Equivalence of finite-valued tree transducers is decidable. Math. Systems The-

ory 27(4), 285–346 (1994)

	Determinacy and Rewriting of Top-Down and MSO Tree Transformations
	1 Introduction
	2 Preliminaries
	3 Extended Top-Down and Bottom-Up Tree Transducers
	4 Undecidability Results
	5 Inverses and Uniformizers of Linear Extended Transducers
	6 Decidability of Determinacy and Rewriting
	References

