
Leiden University

Computer Science

Mobile radio tomography:

Autonomous vehicle planning for dynamic sensor positions

Name: Leon Helwerda

Date: August 29, 2016

1st supervisor: Walter Kosters (LIACS)

2nd supervisor: Joost Batenburg (CWI & MI)

MASTER’S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Mobile radio tomography: Autonomous vehicle planning for dynamic sensor positions

Abstract

Radio tomography is a collection of techniques that measures the signal strength
of low-energy radio waves which are exchanged between sensors around an area, and
reconstructs information about objects within that area. We show that it is possible
to replace commonly-used static sensors with a mobile sensor network. Unmanned
vehicles move the wireless sensors around based on routes that visit locations where
they perform measurements, ensuring that they wait for other vehicles along the way.

We investigate planning algorithms that help us to search for routes, and propose
new algorithms that solve problems related to assigning sensor positions to the vehicles
and avoiding collisions between them. We implement a toolchain that is capable of
performing the radio tomographic measurements, with support for rovers, drones and
other vehicles, as well as peripheral sensors for communication and monitoring.

We experiment with the complete toolchain in order to determine the performance
and effectiveness. The results indicate that planning the sensor assignments and routes
is a difficult problem, but an automatically generated mission could compete with a
hand-made one in terms of the quality of the tomographic image.

Keywords: radio tomography, reconstruction, tomographic imaging, autonomous vehicles,
mission planning, search algorithms, assignment problems, sensor positioning problem,
swarms, multi-agent synchronization, collision avoidance, multiobjective optimization.

Contents

1 Introduction 3

1.1 Problem statement . 4
1.1.1 Motivation . 5
1.1.2 Applications . 5

1.2 Approach . 6
1.2.1 Team . 6

1.3 Overview . 7

2 Related work 7

2.1 Routing algorithms . 8
2.2 Autonomous vehicles . 9

3 Definitions 10

3.1 Geometry . 10
3.1.1 Coordinate system . 11
3.1.2 Locations . 12

3.2 Objects . 14
3.3 Vehicles . 14
3.4 Sensors . 16
3.5 Missions . 17

3.5.1 Safe paths . 17

4 Algorithms 18

4.1 Search algorithm . 19
4.2 Planning problem . 21

4.2.1 Sensor position assignment . 21
4.2.2 Collision avoidance . 24
4.2.3 Evolutionary algorithms . 26

1

Leon Helwerda

5 Context 28

6 Implementation 30

6.1 Overview of the components . 30
6.2 Vehicles . 31

6.2.1 Hardware communication . 31
6.2.2 Interfaces . 32
6.2.3 Simulation . 33

6.3 Environmental sensors . 34
6.3.1 Infrared sensor . 34
6.3.2 Line follower . 35

6.4 Missions . 35
6.4.1 Waypoints . 37
6.4.2 Calibration . 38
6.4.3 Fan beam and straight line patterns 39

6.5 Planning . 41
6.5.1 Multiobjective optimization . 41
6.5.2 Positioning problem . 43
6.5.3 Waypoint assignment . 44

6.6 Ground station . 45
6.7 Test coverage . 46

7 Experiments 47

7.1 Setup . 47
7.2 Planning results . 49
7.3 Physical trials . 53

8 Conclusions 56

8.1 Further research . 57

List of figures 59

List of tables 60

List of algorithms 60

References 61

2

Mobile radio tomography: Autonomous vehicle planning for dynamic sensor positions

1 Introduction

Radio tomography is an emerging field of science that deals with the detection of objects
or persons within an area. The techniques employed by radio tomography make use of
sensor measurements in order to perform this detection. There is no need for the objects
themselves to have any form of active sensor device or passive marker tag.

The measurements that radio tomography techniques collect come from wireless sensors.
These sensors send and receive information to each other. For each packet of information
that one sensor receives, the wireless module determines what the signal strength is at
that given moment. This may be the actual transmission power that the wireless antenna
receives or an approximate indication thereof.

Each combination of wireless sensors that communicate in this way form a link. Assuming
that we know the positions of the sensors, then we also know where the links are inside a
network of many sensor links. Figure 1 shows an example of such a network.

Figure 1: A network used in radio tomography. The objects inside the network may be
reconstructed using the signal strength measurements of the links.

The signal strength of one link is affected by the objects that are located in between the
two sensors. There are certain paths that the signal can take, which influences the signal
strength. When the signal passes through objects of different materials, it is attenuated by
the object. This causes the signal to be slightly absorbed. It may also be partially reflected
by the object into different directions. This leads to an observable decreased signal strength
at the receiving antenna.

Using certain radio tomographic models, we make assumptions about how the signal is
attenuated. The signal strength measurements can then reveal some information about
the dimensions and the types of the objects that it crosses. We however need many links
to determine where those objects are located. Additionally, reflection caused by the objects
as well as other types of attenuation may lead to noisy measurements, which we need to
account for as well [21].

3

Leon Helwerda

The reconstruction that we perform in this way allows us to create an image displaying the
objects that are located within the network. These reconstruction methods are a part of
an additional collection of techniques, known as radio tomographic imaging (RTI). Various
algorithms that are used in RTI contribute toward reconstructing the measurements into
a smooth image of the detected objects [36].

Thus, we can use RTI to create such cross-section images, without any other information
than the signal strengths. However, one limitation of current radio tomography solutions
is that they require a large number of wireless sensors that remain in a fixed location. This
means that it is difficult to deploy a sensor network in any random location.

We propose a new approach to the problem of gathering wireless sensor measurements
that overcomes these limitations. We call this version mobile radio tomography. This is a
collection of adapted reconstruction methods, and additional algorithms to make it stable.
The intention is that it can be easily deployed in different settings without much prior
knowledge about the objects within the network as well as the surroundings.

1.1 Problem statement

The main goal of our research is to make it possible to use radio tomography in other
contexts compared to previous work. We want to find out whether it is feasible to use a
network with fewer sensors. Instead of placing these at fixed positions which we do not
alter during the measurements, we move the sensors around to measure different links.

This simple concept does need some more elaboration before we can actually tackle the
reconstruction problem. A dynamic approach also has a number of interesting subproblems
on its own. This includes the question of how to move those sensors around without
disturbing the measurements themselves. We also need to ensure that the sensors are placed
at correct and useful locations. Another issue is to make the collection of measurements
fast enough so that the objects do not need to stand still for an impractically long time.
This also means that we want to receive a reconstructed image relatively quickly, even if
it is only a partial result with missing measurements.

A major novelty within this subject consists of the principle of moving the sensors around.
In this thesis, we primarily focus on this essential part of mobile radio tomography. To
make the placement of sensors precise enough and to remove most of the manual labor
during the measurements, we require the use of autonomous vehicles, especially those that
are completely unmanned. These vehicles can take the wireless sensors along with them,
collect measurements and send these to a remote station for further reconstruction.

The use of autonomously moving vehicles brings some additional complications. We need
to ensure that the vehicles do not collide with objects in the network or with each other.
The vehicles should stay close to the network and not lose track of their position.

In order to increase the efficiency of mobile radio tomography, we should determine how
the vehicles can gather many sensor links as quickly as possible. This means that there
could be an optimal route for each vehicle. Finding such a route is a problem on its own.

In Section 1.1.1, we further explain the reasoning behind the mobile radio tomography
concept, and justify why this is an interesting and novel principle. Section 1.1.2 builds
further upon this by providing possible applications where mobile radio tomography can
help and solve practical problems.

4

Mobile radio tomography: Autonomous vehicle planning for dynamic sensor positions

1.1.1 Motivation

Radio tomography is a relatively new field of science, but it makes use of well-established
algorithms and intuitive tomographic models. It is related to other well-known techniques,
such as radio propagation and telecommunications studies. It also has close similarities
with certain medical specialities, such as radiology and radiation therapy.

In particular, radio tomographic imaging shares core properties with medical imaging
processes, including computed tomography (CT) and magnetic resonance imaging (MRI).
The foundations of these techniques have a common principle, namely that some form
of radiation is emitted by a source. These waves of energy are absorbed, amplified or
otherwise attenuated by some intermediate object of interest. The resulting signal is then
measured at a collector, and combined with many other sensor readings to reconstruct the
(internal) structure of the objects.

Radio tomography is located at an intersection of multiple principal fields of science. It
uses physics to describe the effects of radio frequency energy at an atomic level, and defines
fundamental models that make the reconstruction possible using mathematical methods.
We then put computer science into practice to actually perform the reconstruction in
a reasonable time, and wrap everything together. The full RTI technique can then be
embedded into other fields, such as biology, medicine, archaeology, paleontology, geology,
engineering and social sciences.

There are thus many uses for radio tomography, and it should become accessible to end
users, without requiring them to have an in-depth knowledge of how RTI works. Radio
tomography also provides many research opportunities, since it can be constantly improved
through interpretation of existing results and new experiments.

Mobile radio tomography adds to the usability of this technique, since it requires far
fewer sensors and can be applied in more situations. It also includes certain interesting
areas of computer science, such as vehicle movement dynamics, artificial intelligence and
combinatorial optimization of path routing in graphs.

1.1.2 Applications

We foresee multiple potential settings where mobile radio tomography would work better
than other solutions. Since normal radio tomography requires one to build a network of
sensors, whereas the mobile version should be quick to deploy, the latter may perform well
in situations where time is critical.

One realistic example is the case of a building that is on fire. The local fire department may
deem it to be unsafe to send in firefighters when the structural integrity of the complex is
uncertain. On the other hand, there might still be people inside, who may be unconscious
or otherwise unable to make their presence known. To add insult to injury, the doors may
be locked, and it would take too long to break into all rooms.

Thus, while starting the extinguishing, the fire department could make use of robotic vehi-
cles that either move around the premises or drive into the building, using radio frequency
sensors to measure the objects and the unfortunate individuals. The reconstructed image
can be compared to a floor plan to make a thoughtful decision of whether there are people
to be saved and to risk the firemen’s lives.

5

Leon Helwerda

Other public services may also have applications for autonomous remote detection. The
vehicles could be sent to a dangerous location to perform surveillance or reconnaissance
missions. Mobile radio tomography can be used to determine how many people are inside an
enclosed building during a hostage situation or when a crowd’s size needs to be controlled.
It may also be useful for bomb disposal actions, such as to determine whether a suspicious
item has electronic, explosive or moving parts inside it, or that it is a fake.

Robotics are also increasingly used in healthcare facilities to provide resources and enter-
tainment to patients and elderly people. Robotic vehicles could also observe that someone
trips or falls out of a bed, and alarm staff appropriately.

Conventional techniques that are used in the cases described here often invade someone’s
privacy. Radio tomography, on the other hand, does not make a distinction between people,
who appear as “blobs” within the reconstructed image. This makes it possible to use it in
public places, such as warehouses or festivals. Also, the wireless radio frequencies are not
too intrusive or harmful. Thus, RTI is safe to use in these circumstances.

1.2 Approach

We set up a project dedicated to mobile radio tomography. Within this project, we inves-
tigate the possible steps that we should take, implement a toolchain and perform experi-
ments. In the end, this leads to a fully functional and well-tested result.

The project is split up into multiple phases: planning the missions, operating unmanned
vehicles [19], communicating between the wireless sensors [26], the radio tomographic
reconstruction and the final visualization [27]. Figure 2 provides a high-level overview of
the phases in this project.

Waypoint

planning

Mission

monitoring

Wireless

measurements

Tomography

reconstruction

Tomography

visualization

Figure 2: Flow diagram of the high-level phases of the mobile radio tomography project.

This thesis focuses on the first two phases, related to autonomous vehicle movement. These
involve planning the (order of) positions where we perform tomographic measurements,
and letting the vehicles automatically visit these positions without any problems. In our
research, we determine our requirements, create a model of the subdomain in which we wish
to solve these problems, investigate existing algorithms, implement a software toolchain
that plans and monitors missions, and experiment with the entire setup.

Our main findings of this approach are that the use of search algorithms, collision avoidance
and other planning algorithms can be helpful tools to augment manually created routes,
and that the use of vehicles for the purpose of radio tomography is a viable strategy. These
highlights form the main goal of this thesis.

1.2.1 Team

In order to investigate all the fields related to the mobile radio tomography project and to
divide the tasks among the people responsible for it, we formed a research group consisting
of members from Leiden University as well as CWI Amsterdam.

6

Mobile radio tomography: Autonomous vehicle planning for dynamic sensor positions

The group consists of the following members, in alphabetical order:

• Joost Batenburg (CWI Amsterdam): Supervisor, diverse knowledge of tomography
theory and radio tomography imaging (RTI)

• Folkert Bleichrodt (CWI Amsterdam): Researcher in RTI and interests in embedded
hardware and rovers

• Leon Helwerda (Leiden University): MSc student, focus on autonomous missions and
vehicle planning

• Walter Kosters (Leiden University): Supervisor, diverse knowledge in the field of
artificial intelligence

• Tim van der Meij (Leiden University): MSc student, focus on ZigBee packet stream
and reconstruction visualization

The group is frequently assisted by Willem Jan Palenstijn, Daniel Pelt, Zhichao Zhong and
Xiaodong Zhuge, all from CWI Amsterdam. They supply useful feedback on the theoretical
basis of tomography, antenna properties and other research related to unmanned vehicles.
We also appreciate the suggestions from Alyssa Milburn. Her help allows our research to
make use of, and continue with earlier projects [19, 25, 26, 29].

This master’s thesis is made in association with the Leiden Institute of Advanced Computer
Science (LIACS) of Leiden University, and the Centrum Wiskunde & Informatica (CWI)
at Amsterdam, under the supervision of Walter Kosters and Joost Batenburg.

1.3 Overview

The remainder of this thesis is built up as follows. In Section 2, we perform a literature
study concerning existing algorithms and implementations that can help within the context
of mobile radio tomography. Section 3 provides definitions for many concepts related to
autonomous vehicles within an environment where we can perform tomographic sensor
measurements. Then, in Section 4, we describe various algorithms that were adapted or
specifically created for planning missions and operating vehicles autonomously. Section 5
puts the definitions and algorithms into a physical perspective, making it possible to use
them in reality.

We proceed with the introduction of the mobile radio tomography toolchain in Section 6,
which describes how we implement the necessary components in a structured manner.
Section 7 proposes experiments that we perform with this toolchain, and provides the
results found in this way. Finally, we conclude in Section 8 with some remarks about the
usefulness of the techniques, and state potential future work in Section 8.1.

2 Related work

To increase our knowledge and understanding of the problems that we encounter when we
create a mobile radio tomography toolchain, we give an overview of some related literature.

For more information on the principles of the techniques related to radio tomography, we
refer to other papers that focus on the tomographic measurement collection, reconstruction
and imaging problems [25, 36, 21]. In particular, there are some recent investigations into

7

Leon Helwerda

making radio tomography more versatile by rotating sensors [35], moving them for short
distances [20], or placing them in exterior environments [2].

In the remainder of this section, we focus on algorithms, equipment and other techniques
that allow us to really make a mobile variant of radio tomography, using vehicles that
move the wireless sensors around. In Section 2.1, we describe existing algorithms that can
help us plan and optimize the routes that the vehicles take. Section 2.2 shows some ways
how we can make the vehicles move around autonomously, where artificial intelligence (AI)
and swarm communication play a role. We also discuss the benefits and disadvantages of
certain autopilot hardware that can control the propulsion of a vehicle.

2.1 Routing algorithms

It is a well-known problem to find an optimal path between certain locations, using a
restricted set of possible moves. This problem has its roots in AI, where the task is to
improve the path that robots take so that they reach their goal as fast as possible.

There are many variations of this basic problem. These may include additional constraints,
such as only allowing movement between certain pairs of locations or including penalties
for certain paths. Depending on the specific problem that we want to solve, we may use
an algorithm that is adapted for this purpose.

A family of algorithms that is often used to solve these problems, is the group of search
algorithms. These routines accept graphs as input. Such a graph describes the possible
connections between discrete positions. A search algorithm follows the paths between those
positions in the graph, in order to construct a route from one point to another, improving
it whenever possible. We investigate the search algorithms further in Section 4.1.

Another important problem in the field of combinatorial optimization is the traveling
salesman problem (TSP). In this case, each position has a connection to another, but the
connections can have different distances that add up to the length of the route. The goal
is to find the shortest route that visits each position (exactly) once. We can add more
restrictions, such as penalties for “turning” in a certain direction, or having to take a
detour, by augmenting the distance weights [37].

A specialized case is the traveling salesman problem for multiple agents. Here, we have
more than one vehicle that needs to visit certain positions. Possibly, the vehicles all have
the same set of positions that are to be visited by one of them. They could also have their
own sets, where the goal is to optimize each distinct TSP subproblem [9].

We increase the complexity of the problem by requiring each vehicle to visit a certain
position at the same time that another vehicle visits a different position, such that they
can perform measurements between each other. These synchronization problems are also
studied independently, and are related to the use of swarms of agents that cooperate to
solve a problem [11].

There exist various algorithms that attempt to solve TSP and related vehicle routing prob-
lems [23], known as TSP solvers [18]. They may use various combinatorial optimization
algorithms or local minima gradient searches to improve their solution.

A different type of optimization methods are the evolutionary algorithms [6]. Here, we use
not just one solution that we improve, but we have a population of multiple individuals,
consisting of variables that encode a potential solution. The values of those variables can

8

Mobile radio tomography: Autonomous vehicle planning for dynamic sensor positions

be mutated to form a new individual, which is then compared to the individuals in the
existing population using a fitness function. This evaluation allows us to select the worst
individual, which is then removed from the whole population.

The family of evolutionary algorithms includes a variant which is known as multiobjective
optimization algorithms [13]. Here, we have multiple fitness functions, known as objectives,
and also have constraints that denote that a certain individual cannot result in a correct
solution. The use of more objectives allow us to improve in multiple domains, e.g., not
only decreasing the length of the routes, but also enhancing other derivative properties.
We continue our research of these evolutionary algorithms in Section 4.2.3.

2.2 Autonomous vehicles

Recently, there is much interest into self-driving cars. Most of the research concerns large-
scale automobiles that can carry passengers while reducing the need for them to take
action during their normal mode of operation. Such vehicles may even detect dangerous
situations and avoid as much damage as possible. Additional problems are routing a path
to certain locations and adhering to all regulations, such as speed limits and traffic signals.

Our research also focuses on autonomous vehicles, but these are of a different kind. We
do not intend to operate the vehicles on public roads, especially not in the case of certain
types of vehicles that are not allowed nearby such zones, including drones.

The vehicles do not have to carry a pilot or passengers, thus they can be smaller in size.
We do need to carry around sensors and remain stable, also when we stand still. Finally,
we do need to keep track of other unmanned vehicles that we should avoid, and cooperate
with them to solve the tasks at hand.

This requires advanced artificial intelligence to model and implement the robotic movement
patterns that the vehicles make use of. Such models have a intricate theoretical foundation,
which includes concepts such as the degree of freedom of robotic moves, the discrete
representation of the real world within the robot’s memory, and other filters that make
use of sensors [33].

We can also model the way that different vehicles interact as if they are a swarm, a group of
individual robots that attempt to reach the same goal, either by preprogrammed behavior
or through dynamic communication or sensor detection [14]. This communication also
improves the safety of the arrangement of vehicles, since they can tell more easily where
the other vehicles are and avoid them while moving.

Finally, we look into existing hardware and software packages that could aid us in solving
the problems that we describe. We keep in mind that we want to support as many different
types of vehicles as possible, so that the complete toolchain can be used in many contexts.
This includes vehicles that can fly and those that operate on the ground [31].

We can make use of the MAVLink communication protocol, which supports these types
of vehicles [24]. The DroneKit software package allows one to write programs that make
use of this interface, so that they can work with various vehicles, but specifically drones
and other miniature plane-like aircraft [1]. Several hardware autopilots can be controlled
in this way, including the ArduPilot and Navio+ microcontrollers [5, 15].

9

Leon Helwerda

3 Definitions

In this section, we provide definitions for the concepts related to autonomous vehicle
movement and radio tomography. These definitions lay down the theoretical foundations
related to the main problem of visiting sensor positions using vehicles to the benefit of
a tomographic reconstruction. This allows us to express the problems, challenges and
results in a clearly defined manner. This removes ambiguity about the terms, thus helping
in making the goals more concrete and insightful.

Before defining a complicated model for sensor positioning in radio tomography, we first
need to realize that any such model needs to take place in some kind of space. This space
can be defined as some mathematical collection from which we can draw different points.
The space may contain any number of points, or in fact have infinitely many points.

The space is the basis of the model in which we define our autonomously moving vehicles
that collect tomography measurements. We alter and constrain the space according to
certain rules in Section 3.1, fill it with an environment of physical objects in Section 3.2
and give some of those items certain roles, such as the vehicles themselves in Section 3.3,
and their sensing features in Section 3.4. This then allows us to define the missions and
goals in a formal manner in Section 3.5.

3.1 Geometry

The space and the points it contains have certain properties that follow a set of rules
included in a geometry. We define a geometry as a system of axiomatic rule statements.
Such a geometry augments our model of the space, allowing the model to behave similar
to the way the physical world works. This holds at least up to a certain level of precision
and in certain regions of the space.

The geometric model is thus not exactly equal to the physical world, but it is similar
enough to work well for our purposes. Through the use of propositions, we can define the
shape and density of the space, thus constraining its cloud of points.

One type of geometry in this sense is Euclidean geometry [12]. This axiomatic system
defines five postulates that describe the properties of the geometry. The postulates bind
together points, allowing other structures such as lines and circles to be defined. The
postulates are basic necessities for this type of geometry; if a statement follows from the
postulates, then that statement is not a postulate.

(a) Postulates 1, 2, 5: lines

r

(b) Postulate 3: circle radius

90◦

180◦

(c) Postulate 4: angles

Figure 3: Visual representations of the postulates of Euclidean geometry.

In Figure 3, we show some direct results of the postulates. The postulates themselves can
be paraphrased as follows:

10

Mobile radio tomography: Autonomous vehicle planning for dynamic sensor positions

1. We connect points with each other using straight lines or segments of finite length.

2. Such lines can be extended continuously, as long as they remain finite.

3. We describe a circle uniquely by its center point and a scalar radius.

4. When two lines intersect, then there is an angle between the two lines. Lines that
extend in opposing directions yield straight angles, and a line exactly in between those
two directions makes right angles with them. This is summarized in the statement
that right angles are equal to each other.

5. Finally, according to the parallel postulate, two line segments, when we extend them
continuously, must at some point intersect with each other when the angle between
them and a line connecting their start points, the base, is less than a straight angle.

3.1.1 Coordinate system

Within the geometry of Section 3.1, we can define a coordinate system. Each point in our
space receives a unique identifier in this system. This identifier, known as a coordinate tuple
or simply coordinates, is an ordered, fixed-length list of numerical scalars. Each element
of this list is a value from the set of real numbers R.

Such a coordinate value represents the length of a line segment between the point and
another point at which the line segment makes a right angle with a certain line or a
surface defined by multiple lines. A surface is a plane in the space at which each point in
the surface has similar line segments that make right angles with every line in the surface.

These lines must be a part of the set of axes. The lines in this set are at right angles
with each other. The intersection of these axes is at one and the same point, which is the
origin of the space. The axes extend continuously in all directions. A coordinate value of
a certain point can then be defined as the length between the point and a certain surface
of the axes, excluding the axis line related to the coordinate value in question.

The number of axes is the dimensionality of the system. Often, a space is three-dimensional,
which gives us coordinates of the form (e0, e1, e2) ∈ R

3. When the dimensionality is 2, the
coordinate value of one axis is easier to determine than the plane construction: the value
is equal to the length of a line to the other axis which is at a right angle with that axis.
The coordinate values also determine the distance or norm between points: the generic
notation ‖v‖, for a given point v ∈ R

3 from our space, means the norm used within the
space, of which we show examples in Equations 3.1 and 3.2.

The use of real numbers for coordinate values allows us to have infinitely many points.
Thus, a line can keep on extending, and it can always end at a point. Also, the definition
of distance between two points (p0, p1, p2) and (q0, q1, q2) in our space is given using the
L2 norm:

‖(p0, p1, p2)− (q0, q1, q2)‖2 =
√

(p0 − q0)2 + (p1 − q1)2 + (p2 − q2)2 (3.1)

Here, we make use of elementwise subtraction to be able to handle the coordinate tuples.

11

Leon Helwerda

We can constrain the coordinate system to only describe the discrete points of the space.
For example, we restrict the coordinate values to only use integers from Z. This gives
us a grid space where we still have continuous line segments, they just do not always
intersect at points with coordinates. The grid distance can also be defined as the L1 norm
or Manhattan norm:

‖(p0, p1, p2)− (q0, q1, q2)‖1 = |p0 − q0|+ |p1 − q1|+ |p2 − q2| (3.2)

A different type of geometry is spherical geometry. Here, lines may intersect even when
they are at right angles with the base. The coordinate system and its associated norm do
not use straight line distances. Instead, they are based on curves around a sphere at the
same north-south and east-west parallel lines. The upward axis is warped, so that it is at
right angles of these lines at every point.

At a local level, the spherical geometry behaves much like the other geometries, but for
greater distance ranges it can be an approximative model of the Earth’s sphere geoid [17].
This means that spherical geometry is a more applicable model for the physical world at
a global level when navigating a larger distance.

E

N

(0, 0)

(1, 0)

(2, 0)

(3, 0)

(4, 0)

(5, 0)

(0, 1)(0, 2)(0, 3)(0, 4)(0, 5)

45◦

45◦

(a) Normal Euclidean geometry

E

N

(0, 0)

(1, 0)

(2, 0)

(3, 0)

(4, 0)

(5, 0)

(0, 1)(0, 2)(0, 3)(0, 4)(0, 5)

45◦

45◦

(b) Grid geometry

60◦

lat

lon

(c) Spherical geometry

Figure 4: Overview of differences between certain geometries in the first two dimensions,
such as bounds on the usable points and significance of right angles.

Many of the similarities and distinctions between the geometries listed here can also be
represented in a visual manner. We outline some of these characteristics in Figure 4. In
Figure 4a, the first two dimensions of normal Euclidean geometry are shown, where any
point with real-valued coordinate values is allowable.

Figure 4b shows grid geometry, where we only consider points on specified grid lines. All
other properties from Euclidean geometry, such as right angles, still hold. Not each part
of the line is actually a point that we can describe in the coordinate system, but this does
not invalidate the line segment itself.

Finally, Figure 4c shows the curved space of spherical geometry. Note how right angles
might still lead to lines that intersect, unlike in other geometries where this is axiomatically
true. Distances between points follow the great circle distance [12].

3.1.2 Locations

The points in our geometry define locations at which events can take place or objects can
be situated. We often describe locations by the coordinates of the points that they inhabit.

12

Mobile radio tomography: Autonomous vehicle planning for dynamic sensor positions

Locations are distinct from points, because we overlay the coordinate system after defining
points in our space. The locations are thus a restricted subset of all predefined points; not
every point may be a location.

As we have seen in Section 3.1, there exist various geometries and coordinate systems.
Consequently, a location can also be defined in multiple ways. There are more differences
between the coordinate systems than we discuss in Section 3.1.1. The differences mentioned
in this section mostly relate to the meaning of the axes in the system, which are represented
in Figure 5.

A Euclidean geometry usually has three dimensions, respectively labeled as north, east
and up axes. These axes extend into the corresponding intuitive directions as shown in
Figure 5a. The axes are also often given shorthands. In our case, we respectively call them
the y, x and z axes.

Although an ordering of (x, y, z) would be more aesthetically pleasing, the (y, x, z) order
stems from the two-dimensional coordinate system. Usually, the y axis is directed to the
top and x rightward on a flat surface. The z axis just adds a third dimension. We then
have coordinates of the form (ey, ex, ez) ∈ R

3.

Note that the names and order of the axes may differ in systems used in other fields,
such as aeronautics and flight dynamics [34], or completely different applications such as
computerized imaging.

A grid geometry is similar to the normal Euclidean geometry, with coordinates from the
Cartesian product Z3. If the grid is two-dimensional, then we leave out the z component.
However, when we do use the z component, then it is actually a down axis extending
downward, rather than extending upward in the space. This means that in comparison to
the normal Euclidean geometry, the final coordinate value ez becomes its additive inverse
−ez. The effect of this operation on the axes can be witnessed in Figure 5b.

north

east

up (6.5, 6, 5.5)

(−
5,
0,
0)

(0,−5, 0)

(0, 0,−5)

(5
, 0
, 0
)

(0, 5, 0)

(0, 0, 5)

(a) Normal Euclidean geometry

north

east

down

(−
5,
0,
0)

(0,−5, 0)

(5
, 0
, 0
)

(0, 5, 0)

(0, 0, 5)

(0, 0,−5)

(b) Geometry with down axis

lat

lon

alt

(−
5,
0,
0)

(0,−5, 0)

(0, 0,−5)

(5
, 0
, 0
)

(0, 5, 0)

(0, 0, 5)

(c) Spherical geometry

Figure 5: Axes of the three-dimensional coordinate systems in certain geometries. There
are differences in axis directions.

The spherical geometry in Figure 5c also has coordinates with three components, named
after latitude, longitude and altitude [30]. The latitude and longitude axes curve around
a spheroid, while the altitude extends upward perpendicular to the current point. This
means that the direction of the upward “axis” changes along with the curvature of the first
two axes.

13

Leon Helwerda

3.2 Objects

As mentioned in Section 3.1.2, a location may be the host of an object or an event which
is directly caused by such an object. An object is a unique entity that exists within the
space. Objects come in various types and shapes. They are physical objects, meaning that
no other object can coincide with it at the same time.

(a) Cube (b) Cylinder (c) Sphere (d) Cone (e) Other polygon

Figure 6: Examples of various object shapes that exist within the space.

Large objects can take up multiple locations, and they may not be constrained by, e.g.,
grid coordinates. We can model them as cubes, spheres, boxes, cones and cylinders, to
give a few examples. We can also construct objects from combinations of these shapes. We
transform the object by placing the shapes at specific translation coordinates from their
center location. Figure 6 shows some of these shapes.

Another way to define objects is through the use of polygons, which are cut-outs from
planes in the space. A polygon can be described by an ordered sequence of coordinates
P = p1, p2, . . . , pm. The edges of the polygon are the line segments between each point
and its successor (pi, pi + 1) for i < m, as well as the final point and the first point in the
sequence (pm, p1). The polygon itself is the area within these m edges. For coherency, we
only consider polygons that do not have edges that intersect with each other.

An object can then be defined as a set of polygons {P1, P2, . . . , Pn}. Note that spherical or
other circular shapes cannot be defined with a finite number of polygons. We can create a
large subset of possible objects using polygons, such as the object in Figure 6e.

We use polygons to model real-world objects. We can often leave out some of the large
amount of details, since these do not influence the large-scale distances between objects.

3.3 Vehicles

One specific type of object within the space is a vehicle. Unlike most objects that we
introduce in Section 3.2, a vehicle can move in the space defined by our model. This allows
it to change its current location and orientation. Thus, the vehicle has properties that
define its current state.

The orientation or attitude of the vehicle defines the rotational transformation applied
on the object, i.e., the angle direction that the front end of the vehicle is pointing to,
compared to each axis.

Often, the attitude axes are called pitch, roll and yaw, corresponding to rotations around
the axes in the coordinate system, instead of using the various coordinate axis names of
the geometries directly. This is because we may consider the attitude axes inside a local
frame, after applying transformations and attitudes of parent objects. This plays a role in
the sensors that may depend on multiple attitudes, as described in Section 3.4.

14

Mobile radio tomography: Autonomous vehicle planning for dynamic sensor positions

The vehicles are under the control of the creator of the model, so we are able to choose
how it moves. There are however constraints to its movement patterns, determined by
properties of the vehicle. The vehicle cannot just change its location to any other location
instantaneously. Instead, it has a variable but limited speed at which we are able to move
to other locations. The speed is a vector of components for every axis. The speed values
are measured in coordinate values per time unit.

(a) Caterpillar track robot

(b) Rover with wheels (c) Flying quadcopter drone

Figure 7: Physical vehicle types

Vehicles have different types. We consider a number of vehicle types, some of which are
depicted in Figure 7. If we have a land vehicle such as a caterpillar track shown in Figure 7a,
a bipedalic robot, or a rover with wheels in Figure 7b, then it always moves on a ground
surface in the space. It cannot change the altitude or down component of its initial location.

15

Leon Helwerda

Other vehicles might be able to fly, such as the drone in Figure 7c. A flying vehicle may
still be affected by gravity, an acceleration property of the space that attempts to increase
downward speed.

Depending on the vehicle type, the possible values of the speed vector may depend on
the vehicle’s attitude. For example, a vehicle with wheels can only move forward or turn
around a certain turning radius. Tracked wheels can operate faster, but are more limited
in turning.

In addition to the speed limitations and external influences, there are also constant physical
constraints. Vehicles cannot move through other objects, including vehicles; they can only
change the coordinates of their own parts.

Although the vehicles are under our control, we may provide the vehicle with restricted
knowledge about the space it operates in. This may mean that the vehicle knows details
about the bounded size and geometry of the space, but it cannot make any assumptions
about the objects and their locations in order to avoid them more easily. In Section 5, we
not only restrict this knowledge, but factor in uncertainty of information.

3.4 Sensors

Our model contains sensors that detect other parts of the model and interact with them.
There are various types of sensors, but we first look at sensors that are of use for radio
tomography. These tomographic sensors are able to send and/or receive signals that are
attenuated by objects in between them, resulting in a detectable weaker or stronger signal.
They can thus have a sender or receiver role. They can also have both roles at the same
time or cycle between the two transmitter roles over time, depending on the type of sensor.

All sensors are objects, or are a part of them. A distinguishing feature of sensors is that
they can be static or dynamic. A sensor that is part of a vehicle as described in Section 3.2
is called dynamic, i.e., its location can change. Otherwise, the sensor object is static.
Moving a vehicle thus changes the point at which a dynamic sensor is at as well. For some
sensors, we may only be interested in locations where the vehicle’s speed is zero, or where
the vehicle is at an actual grid location. The sensor can receive feedback about the vehicle
state, as well as its own conditions.

The state of a tomographic sensor can be active or passive. In the active mode, the sensor
performs signal measurements with other sensors. Through these measurements, it may
learn the locations of those sensors and the signal strength of the link. In passive mode,
the sensor can also send or receive packets of limited information, but the communication
can contain other data than that which it sends in active mode.

Aside from tomographic sensors, there also exist other types of sensors that do not interfere
with the radio tomography. One of these sensors is the infrared sensor, which can receive
a small-sized command from the creator of the model at any time.

Another type of sensor is the distance sensor. This sensor detects nearby objects. In case
there is an object in a line segment starting from the sensor position in the current attitude,
the distance sensor determines the intersection point of the line at the object, which is the
first point that is a part of the object. It then provides the distance to the detected point,
using the L2 norm from Equation 3.1.

16

Mobile radio tomography: Autonomous vehicle planning for dynamic sensor positions

These sensors are part of vehicles, thus they inherit their location and attitude angles.
However, it is possible to change this inheritance by associating a servo to the distance
sensor, for example. The servo has a certain angle range in which it can freely rotate. The
servo always rotates in a certain attitude axis relative to the vehicle. The servo’s current
angle is added to this axis to result in the sensor’s current attitude.

There are also other sensors that allow a vehicle to know more about its environment and
current situation, such as location sensing. Also, the vehicle may have a clock that sets a
time limit on the vehicle’s lifetime. For example, a battery limits the amount of time that
the vehicle can move and make use of its sensors. A battery monitor can be used to know
how long this takes. These sensors are put in a more practical context in Section 5.

3.5 Missions

A vehicle may have a mission that determines what it should do inside the space during
its lifetime. This mission can be defined in different ways, including specifying the vehicle’s
speed at each time unit.

We can describe a mission in a simple but still powerful form using waypoints. The way-
points are an ordered sequence of locations that the vehicle should visit, in that order.
The way the vehicle reaches those locations does not need to be specified, in which case it
should attempt to reach them in the fastest and safest way possible.

This gives some freedom to adjust the mission while the vehicle is following it, for example
to avoid collisions with other vehicles or modeled objects that are not explicitly known
to the mission beforehand. The mission can receive online adjustments to add additional
intermediate waypoints, or remove ones that end up to be unreachable.

Waypoints may also let the vehicle wait at a specific location in order to let the sensor
perform measurements. This can allow us to delay the continuation of the mission until
we have successfully exchanged signals with at least a specific set S of sensors, determined
by unique identifiers.

Using this construction, the vehicles can operate in the space using missions to perform
measurements with their tomographic sensors at specific locations. The resulting set P of
sensor positions contains information about the measurements, most importantly pairs of
locations. In addition, a sensor position may have a time unit in order to provide unique
timestamps to the measurements.

A measurement (E,F) from location E to F is inside the set P if and only if there are
active tomographic sensors at both locations at the same time, and the sensor at E sends
a signal that the sensor at F successfully receives. This means that, in order to add more
viable sensor positions to P , we can alter the missions of the vehicles in such a way that
they visit more locations and synchronize with each other. If both sensors can send and
receive, then we obtain both measurements (E,F) and (F,E) in the sensor positions P .

3.5.1 Safe paths

The vehicles from Section 3.3 can move around, but they cannot move through objects.
Instead, they collide with objects, which might have serious real-world implications, such
as damaging the objects and causing the vehicle to malfunction. In Section 5, we take these

17

Leon Helwerda

implications into consideration. At the very least, the missions from Section 3.5 could be
considered failed when they are obstructed, since they are unable to finish visiting all
points that they should have.

Obviously, the model from Section 3.2 gives us the freedom to define objects in such a
way that a predetermined mission never collides with them. The same applies to avoiding
collisions with other vehicles. We can simply make sure that the missions never send
vehicles to the same point at the same time, taking the size of the vehicle’s object into
account, with a suitable padding for the region of influence of the object.

In some missions, as well as in the practical world mentioned in Section 5, we might not
know beforehand where each vehicle is located at every time unit of each vehicle’s lifetime.
For example, defining the missions as waypoints means the vehicles have a degree of
freedom of moving around to such a waypoint. We could restrict this freedom to ensure that
there are no concurrent intersections between the vehicles’ waypoints. This also restricts
the possible missions that we can have.

Another option is to remove such restrictions, and avoid impending collisions during the
mission, shortly before they are about to happen. We can use the distance sensor from
Section 3.4 to detect any vehicles or objects that are in the way, or even use the location
information from an active sensor to determine other object’s behavior.

Using this proximity information, we can then stop the vehicle, which should prevent the
collision if all vehicles behave in this way. However, this strategy does not ensure that a
vehicle can continue later on. This means that the mission might still fail.

When we detect an object close to us, we want to find a way to get around this obstacle
and leave its region of influence, apart from the passive solution of waiting or stopping
until the other object is gone. However, finding such an escape route may be nontrivial, or
in some cases, impossible. A safe path is a sequence of locations that does not enter any
known regions of influence that are caused by other objects or vehicles. In Section 4.1, we
discuss the details of various methods of finding safe paths.

4 Algorithms

Using the definitions that we state in Section 3, we can use a higher level of abstraction for
modeling our problems and their solutions as search spaces and algorithms, respectively.

We outline some of the problems related to autonomous vehicle movement and sensor
position planning in this section. In Section 4.1, we delve into the functionality of existing
search algorithms, and describe them in a formal manner using our model. We also describe
a new problem that needs a similar but novel kind of algorithm to solve. In Section 4.2,
we return to the problem of finding as many sensor positions as possible within certain
limitations, and describe a class of evolutionary algorithms that might give approximate
solutions to this problem in Section 4.2.3.

We propose new algorithms that solve specific problems in a specialized manner. The
same applies to the problems themselves, which may either be well-known in other fields
of science, or novel approaches within the topics of radio tomography.

18

Mobile radio tomography: Autonomous vehicle planning for dynamic sensor positions

4.1 Search algorithm

There is a need of actively avoiding collisions with objects and vehicles to allow completing
missions, as seen in Section 3.5.1. This requires an algorithm that searches for a new, safe
path to the next waypoint. Such a search algorithm can be any program that, given the
current location and target location, as well as any environmental information such as
unsafe regions, returns a path that is safe according to the current information.

The safety of the given path cannot be guaranteed for the time that it takes to follow
that path. We can detect previously unseen objects, or another vehicle may move onto the
path. An obvious solution is to use the search algorithm again to find a new safe path,
once an impeding object is detected.

The search algorithm might not provide an “optimal” safe path, neither in the sense of
its total length nor in the probability that it remains safe. Of course, an algorithm that
provides certain guarantees about its degree of optimality is helpful.

In the remainder of this section, we recite a number of search algorithms, demonstrate
their similar structure as well as their differences, and explore the use of search algorithms
in the context of our geometries and missions. The algorithms involved are breadth first
search (BFS), Dijkstra, A*, iterative deepening and bidirectional search [33].

The algorithms mentioned here share the property that their input is usually a graph, where
the possible locations are modeled as nodes with edges that indicate a direct connection
between those points. The overall structure of these algorithms is shown in Algorithm 4.1.

Algorithm 4.1 Generic structure of most graph-based search algorithms.

Let G = (V,E) be a graph with an operation to find a node’s neighbors and an indication
of the size of V . Let s ∈ V be the starting node and e ∈ V the end node.

1: procedure Search(G, s, e)
2: initialize state variables and distance functions, if necessary
3: allocate memory for paths, maps, sets or queues based on graph size
4: while not all nodes have been visited do

5: select v∗ from unvisited nodes according to a selection procedure, initially s
6: if v∗ = e then

7: return the (reconstructed) path from s to v∗

8: end if

9: update state variables, mark v∗ expanded
10: for each neighbor v of v∗ according to G do

11: if v has not been expanded before then

12: add v to the collection of unvisited nodes
13: determine distance of the current path from s to v
14: if there is no earlier path from s to v with lower distance then

15: add edge (v∗, v) to a path from s to v, using the path from s to v∗

16: update state variables, including distances
17: end if

18: end if

19: end for

20: end while

21: return an empty sequence
22: end procedure

19

Leon Helwerda

For certain geometries in Section 3.1, it may be difficult to describe the space as finite sets
of nodes and edges. One exception is grid geometry, where it is trivial to convert points
and grid lines to a graph.

Either way, we do not need to provide the search algorithm with the full graph in one go.
Instead, when an algorithm takes a step of “expanding” a node, that is to say finding its
incidental edges or following an edge, we can generate the next part of the graph on the
fly. It is helpful to know the size of the space, the number of nodes, or bounds on each
dimension’s axis in advance, so that the search algorithm can allocate auxiliary memory.

Finally, we leave out nodes from the graph when they are too close to unsafe regions.
This can also be determined just before expanding a node. Using this construction, we can
describe the location points in the way they were meant to in Section 3.1.2, and only have
an implicit graph during the algorithm.

We can also limit the number of edges of each node in our dynamic graph. We only consider
a point to be a neighbor if it is the closest point to the current point in a certain direction.
The neighbor must be in one of the (inter)cardinal directions, i.e., the axis directions and
line segments that have diagonal angles, precisely between the right-angled axes.

When the search algorithm completely expands the end node e during its path creation
from the starting node s, it can stop its search. We then have a safe path from s to e.
However, some algorithms might not generate the fastest path possible. Even if they do,
they might provide paths that never end up going to e quickly anyway. These differences
often stems from the order in which an algorithm expands its nodes.

For example, BFS expands nodes in the order that it finds them, using a queue to expand
nodes found earlier before newly expanded nodes. There is thus an implicit range search
that slowly expands the search outward from s. There is no explicit relationship with the
distance to e, thus the BFS algorithm is not a guided search method.

Another difference between the search algorithms is the degree of heuristics that they use
to speed up the search. The A* search algorithm uses a tentative distance function h(v),
which calculates the norm between any given node v and e. The norm may be the one
used in the space, for example Equation 3.1, or any other distance measure.

One condition for this heuristic is that distance function is monotone, i.e., h(v) is not
greater than the actual path distance to any intermediate node v′ plus h(v′). Also, h(e) = 0.
During the selection phase, the A* search algorithm expands an unvisited node whose
distance from s plus the tentative distance to e appears to be minimal.

Some of these algorithms are designed for weighted graphs, where each edge indicates its
distance. If all points are spread out in a grid-like manner, with a distance of c between
points on one line, then this distance is c in the cardinal directions and

√
2c2 in intercardinal

directions when Equation 3.1 is used in normal geometry, for example. The distance weight
might be helpful information for some search algorithms, e.g., Dijkstra’s algorithm, but it
does not necessarily lead to a better path or a faster algorithm.

In summary, we can use search algorithms to provide the vehicles with an option to avoid
collisions and take a different action when it is inside the region of influence of another
object. The safe paths that may be provided by a search algorithm may not be optimal,
but are safe for a while and can bring the vehicle back to its original mission quickly.

20

Mobile radio tomography: Autonomous vehicle planning for dynamic sensor positions

4.2 Planning problem

While we may be able to use algorithms to find safe paths as shown in Section 4.1, another
problem is whether we can design an algorithm that plans which waypoints we want to visit
in our mission. Such a mission includes various waypoints, as mentioned in Section 3.5. At
these waypoints, we can perform tomographic measurements. This helps in increasing the
number of sensor positions, which is vital for making tomographic reconstruction possible
in the first place, as well as improving its accuracy.

The ultimate goal is thus to find a mission that optimizes the set of sensor positions. This
goal can be defined into more detail, as it can be split up into multiple, possibly conflicting,
subgoals. This is because we do not only want to have more sensor positions, but also keep
the mission duration as low as possible.

Other aims during the mission planning are to cover as much of the space of interest
as possible, have many intersecting measurement links, decrease the length of the links
themselves and improve reconstruction in certain areas of the space. These aims stem from
the reconstruction algorithm [27], which has some preconditions to be able to function and
can be improved by following these guidelines. These desirabilities directly influence the
usefulness of the chosen mission.

We design different missions for multiple vehicles, operating in a swarm-based manner to
move to the necessary sensor positions. When a certain measurement link (E,F) is desired,
then one vehicle needs to be at position E, and another at F , at the same time.

It might be possible to plan the timing of the vehicles so that they are at those positions up
to a certain degree, but we should still allow for dynamic adjustments during the mission,
when safe paths from Section 3.5.1 need to be recalculated.

These goals and restrictions limit which missions are of use for the tomographic recon-
struction, but also provides interesting challenges in allocating the work of moving and
waiting at waypoints to the vehicles.

In Section 4.2.1, we delve into the problem of assigning a collection of requested sensor
links to the available vehicles, and provide a greedy algorithm which is able to solve this
problem. Section 4.2.2 augments this algorithm with a collision detection and avoidance
algorithm. Finally, in Section 4.2.3, we introduce a family of evolutionary algorithms that
can help in optimizing multiple goals, and provide an overview of the complete algorithm
that attempts to optimize the sensor link positions for our purposes.

4.2.1 Sensor position assignment

As mentioned in Section 3.5, we can describe a mission by the sequence of waypoints that
it should visit. Usually, this sequence of locations is already ordered when we provide it
to the vehicle, so that it consecutively moves from A to B, and then to location C, if
those are provided in that order. However, what do we need to do if we already have the
sequence of waypoints we want to visit, but not yet the order in which to visit?

The problem statement here implies that we receive the sequence as if it were an unordered
set. This means that there is probably no need to follow any specific order. Some orderings
may be helpful for the tomographic reconstruction, but this is not the issue at this point.

21

Leon Helwerda

Instead, we can rearrange the waypoints such that the mission takes less time, by visiting
waypoints closer to each other before moving on to distant points.

This principle is similar to the traveling salesman problem (TSP), where we want to visit
each node of a graph exactly once. Each edge in that graph has a weight, a numeric value
indicating the distance between the nodes. We can then optimize the selected path to
have the smallest total distance. This structure also shares similarities with the search
algorithm’s graph from Section 4.1.

In our case, the input is not just a sequence of waypoints for one given vehicle, but a
set of sensor points. In fact, we have pairs of such sensor locations, originating from
predetermined sensor positions that make up measurement links. Thus we cannot simply
use a TSP solving algorithm to find the shortest path, since a vehicle cannot be at both
endpoints to perform a measurement.

On the other hand, the additional constraints related to synchronizing those pairs of way-
points pave the way for us to solve the problem using a simple algorithm. Before we
demonstrate this algorithm, we discuss what input it receives, and explain some conse-
quences of the problem statement.

Assume that the vehicles are each at a given starting location, i.e., the location where
they are placed before the mission begins. Consider the vehicles to be elements from the
set V = {v1, v2, . . . , vn}, where n is the number of vehicles at our disposal. Their starting
locations are grouped in a sequence of coordinate tuples S1, . . . , Sn, where Si is the location
of vehicle vi. Later on, we update these locations to track the current location based on
which waypoints the algorithm assigns to the vehicle.

The sensor positions are given as a set of pairs

P = {(p1,1, p1,2), (p2,1, p2,2), . . . , (pm,1, pm,2)}, (4.1)

with m desired measurement links in total.

Then we determine U , a specific subset of the Cartesian product of the vehicles:

U = {(u, v) |u ∈ V, v ∈ V, u 6= v}
= V 2 \ {(v, v) | v ∈ V }. (4.2)

These are all the permutations of length 2 of the vehicles, i.e., all the ways we can combine
one vehicle with another vehicle (excluding itself). In the case of n = 2, we have the
vehicle pairs U = {(v1, v2), (v2, v1)}. Thus, a vehicle pair ϑ = (va, vb) from U adheres to
the precondition that either a < b or a > b.

Next, we take each vehicle pair ϑ = (va, vb) ∈ V and each waypoint pair ρ = (pc,1, pc,2) ∈ P
and calculate the distance of each part of the pair. This gives us d1 = ‖Sa − pc,1‖ and
d2 = ‖Sb − pc,2‖, the distances that the selected vehicles would need to take if they are
assigned the chosen sensor positions in this selection order. We use the norm related to
the target space’s coordinate system described in Section 3.1.

Because the vehicles have to wait for each other before they can perform the measurements
at these locations, the actual cost of the selection is the maximum of d1 and d2. Afterward,
the new locations of the two vehicles Sa, Sb become the selected sensor positions. We then
perform the same steps to calculate the cost of the remaining positions, excluding ρ.

22

Mobile radio tomography: Autonomous vehicle planning for dynamic sensor positions

Since the cost of a selection depends on the current location of the involved vehicles, it is
difficult to determine which sequence of selections provides the minimal total cost. We do
not want to calculate every possible selection for every permutation of the vehicle pairs at
every step. A greedy algorithm in this case can find a solution that is possibly non-optimal
but still has a low cost.

At each step where the greedy algorithm needs to choose a selection of a vehicle pair and
a sensor pair, it selects the ones that we find to minimize the following:

argmin
(ϑ,ρ)∈U×P

(

max(d1(ϑ, ρ), d2(ϑ, ρ))
)

(4.3)

The definitions for ρ, ϑ, d1 and d2 are as given before, but in Equation 4.3, they are shown
in their dependent form, using whichever pairs ϑ = (va, vb) and ρ = (pc,1, pc,2).

We select the pairs ϑm = (va, vb)m and ρm = (pc,1, pc,2)m that are the result of the
minimization within Equation 4.3. If there is more than one possible selection, then the
greedy algorithm chooses the ones with the lowest vehicle or sensor indices, i.e, the first
ones it finds when searching in and ordered fashion.

The greedy algorithm then applies this selection by updating the current locations Sa to
pc,1 and Sb to pc,2 and removing the sensor position pair from P . It then continues with
the next step with this new state. In Algorithm 4.2, we provide an overview of the greedy
algorithm, where we show one method to find the vehicle and sensor pairs that minimize
the norms, equivalent to Equation 4.3.

Algorithm 4.2 Structure of the greedy waypoint assignment algorithm.

Let S1, S2, . . . , Sn be the starting locations of n vehicles, and P a set of m pairs of sensor
positions given as in Equation 4.1.

1: procedure Assign(S1, S2, . . . , Sn, P)
2: initialize a sequence of waypoints Ai for each vehicle vi, with i = 1, 2, . . . , n
3: determine the vehicle permutation pairs U as in Equation 4.2
4: while P 6= ∅ do

5: let δm ←∞
6: initialize ϑm and ρm
7: for all (ϑ, ρ) ∈ U × P do

8: note: we have ϑ = (va, vb) and ρ = (pc,1, pc,2)
9: let d← max(‖Sa − pc,1‖, ‖Sb − pc,2‖)

10: if d < δm then

11: δm ← d, ϑm ← ϑ and ρm ← ρ
12: end if

13: end for

14: note: we now have ϑm = (va, vb)m and ρm = (pc,1, pc,2)m as per Equation 4.3
15: add pc,1 to the assignment Aa for vehicle va
16: add pc,2 to the assignment Ab for vehicle vb
17: Sa ← pc,1 and Sb ← pc,2
18: remove ρm from the set P
19: end while

20: return the assignments A1, A2, . . . , An
21: end procedure

23

Leon Helwerda

4.2.2 Collision avoidance

When vehicles are moving between their assigned waypoints, they could come across other
objects that impede their progress. Even if we assume that the vehicles operate within an
area of the space where there are no fixed obstacles, they could still hinder each other due
to conflicting routes by crossing each other or blocking another vehicle’s waypoint.

We could leave the vehicles to detect potential collisions on their own during the mission,
as mentioned in Section 3.5. However, we want to know beforehand whether a certain
planned mission can be completed safely and successfully, and avoid deadlock situations
where vehicles block the waypoints of each other. Thus we integrate a form of collision
avoidance into the objectives of the planning problems that we wish to solve.

In Section 3.5.1, the concept of a safe path is introduced. This notion allows us to define
beforehand whether a route from one waypoint to another likely leads to an unsafe state.
It does not provide certainty that a safe path always remains safe. In controlled situations,
where there are no moving objects other than the vehicles, we assume that it is safe.

Since there might be multiple possible paths that a vehicle could take, we want to be able
to deduce which one leads to the least conflicts and can be considered the “safest”. We also
want to know how long the chosen routes are, so we can receive a measure of mission length
of the vehicles. The search algorithm from Section 4.1 helps in solving these problems, but
the algorithm does not state how we keep track of the concurrent routes or how to make
use of the resulting path, if it can be found.

We propose a collision avoidance planning algorithm which tracks the possible locations,
delegates the safe path problem to a search algorithm and finalizes the routes of the
vehicles. This algorithm keeps the synchronization points of the vehicles in mind. The
current information of which vehicle has synchronized with another determines which
routes we need to take into account. These are the concurrent routes which could conflict
with a path toward a certain waypoint.

When two vehicles perform a measurement, they need to take separate routes to two
locations. The routes should not cross each other. Afterward, their prior routes no longer
conflict with any later route. Of course, a vehicle’s route does not conflict with any earlier
part of its own route. However, if there are more than two vehicles, a prior route may still
conflict with some other route until each vehicle has synchronized with all other vehicles.

The collision avoidance algorithm integrates with the greedy sensor position assignment
algorithm from Section 4.2.1. Whenever the assignment algorithm selects the vehicles to
move to some positions, we check whether this is safe. The norm used in the greedy
selection can also be augmented to use a more realistic distance, keeping detours in mind.
The collision avoidance algorithm takes one step each time to accomplish this.

In between the calls to the collision avoidance algorithm, we keep track of the routes,
locations and synchronization states of the vehicles. These global states persist between
calls to the algorithm, so that a next step can continue from the previous state without
having to do a lot of initialization again.

The graph of possible locations often needs to be altered during the algorithm. We track
which locations are potentially dangerous, by removing the edges to them. Due to this,
the search algorithm from Section 4.1 skips the dangerous areas. When a vehicle is not yet
synchronized with the vehicle, then we mark its previous route as dangerous.

24

Mobile radio tomography: Autonomous vehicle planning for dynamic sensor positions

Note that synchronicity is not a symmetric relation. Thus, one vehicle may not have
followed its entire route when the current vehicle is synchronizing with it. Therefore, we
check whether the current vehicle has waited for other vehicle, not the other way around.

When we have found a route, then we start tracking this new route as well as the new
location of the vehicle. If no route could be found by the search algorithm, then the visit to
the given waypoint is potentially unsafe. The planning algorithm still continues, ignoring
the vehicle’s route, but we can mark the entire assignment invalid in some use cases.

To end this step, we place the graph back to the way it was before. The current vehicle’s
location becomes unreachable. The algorithm detects which vehicles are fully synchronized.
Their prior routes as well the sets of vehicles they synchronized with are then forgotten.

The collision avoidance algorithm ensures that an assignment of waypoints is safe enough
to put into practice. It copes with vehicles and missions that cannot avoid obstacles by
themselves, and improves performance otherwise. We can thus still allow conflicting routes
and predict problematic situations. The complete algorithm is shown in Algorithm 4.3.

Algorithm 4.3 The collision avoidance planning algorithm.

Let S1, S2, . . . , Sn be the current locations of n vehicles, initially their starting locations.
Let vp be the vehicle that we currently assign the location Np to, and vq a vehicle that
synchronized with it there.

1: let V ← {v1, v2, . . . , vn}
2: let W1,W2, . . . ,Wn be sets, where Wi ← {vi} are vehicles with which vi synchronized
3: initialize a graph G where each node corresponds to (the area around) a location
4: remove edges from G for node pairs that enter forbidden areas
5: remove incoming edges from G for nodes corresponding to S1, . . . , Sn
6: initialize sequences R1, . . . , Rn
7: procedure Avoid(S1, S2, . . . , Sn, vp, vq, Np)
8: for all vi ∈ V do

9: if vi /∈Wp then

10: remove the edges for nodes in Ri from G
11: end if

12: end for

13: let r ← Search(G,Sp, Np)
14: append r excluding the goal point to Rp
15: readd the edges for Sp to G
16: remove incoming edges for the node corresponding to Np

17: Sp ← Np and Wp ←Wp ∪ {vq}
18: for all vi ∈ V do

19: if vi /∈Wp then

20: readd the edges for nodes in Ri to G
21: end if

22: if vi 6= vp ∧Wi = V then

23: clear the sequence Ri
24: Wi ← {vi}
25: end if

26: end for

27: end procedure

25

Leon Helwerda

4.2.3 Evolutionary algorithms

In order to obtain a safe and well-ordered assignment of mission waypoints, we first need
to find a good set of positions in the first place. In other words, we want to deduce which
sensor positions are helpful for the reconstruction algorithm, and optimize toward a better
result without increasing the mission length too much.

For this purpose, we design an evolutionary algorithm, which is based on a family known as
multiobjective optimization algorithms (MOOAs) [13]. The process flow of such a MOOA
is similar to the normal evolutionary strategy [6]:

1. Initialize a random population, where each individual represents a potential solution
to the problem.

2. Pick one of the individuals and mutate it to create another individual.

3. As a final step of one iteration, select an inadequate individual and remove it from
the population, so that it remains the same size.

This continues from step 2 for a given number of iterations tmax. When the algorithm ends,
we select one of the individuals objectively or subjectively, and output it as the solution.
In the remainder of this section, we look into more detail how each step works, in which
ways a MOOA differs from other evolutionary algorithms, and what the implications are
for our purpose.

We create a population of µ individuals X1, X2, . . . , Xµ, where a single individual Xi is
represented by an ordered sequence of variables. We have η variables per individual Xi,
namely αi,1, αi,2, . . . , αi,η. The variables receive values that are generated using a uniform
random distribution over a given domain [8]. The domain may differ per variable, but its
parameters are shared between individuals. Therefore, each variable αi,j may receive real
numbers from an interval [aj , bj) ⊆ R, or they can be limited to the integers from Z. A
variable can also be binary, thus receiving a uniform random value from {0, 1}.
After the population has been generated, we determine whether each individual adheres to
all constraints and calculate the objective values. For this purpose, the planning problem
from Section 4.2 needs to provide a number of constraints and objective functions that can
be evaluated to provide a score for a given individual. A constraint determines whether
the individual is feasible, i.e., it is an acceptable solution, whereas an objective function
can be evaluated to receive an indication whether one individual is better in reaching a
certain goal than another individual.

In our case, the variables of an individual are a representation of a certain selection of
sensor positions, and the function evaluations, if necessary, convert this representation to
an assignment of waypoints for each vehicle and resulting fitness values. Using the greedy
assignment algorithm in Section 4.2.1, we can determine such waypoints, and also obtain
an objective value for the mission duration, which we want to minimize.

We use similar approaches to determine whether the positions are valid for a tomographic
reconstruction, and deduce additional constraints and objectives. This provides for each
individual Xi the feasibility value fi ∈ {0, 1}, which is 1 if and only if all constraints are
met. We also determine the values of β objective functions gk : Rη → R with 1 ≤ k ≤ β,
so β function evaluations per individual. These resulting feasibility values fi and objective
values gk(Xi) play important roles during step 3, when we select an individual to remove.
However, we first need to perform a mutation in step 2.

26

Mobile radio tomography: Autonomous vehicle planning for dynamic sensor positions

The mutation step randomly selects one of the individuals Xs = (αs,1, αs,2, . . . , αs,η), using
a discrete uniform distribution over the µ-sized population. We apply mutation operators
to the values of all variables. This operator can have different effects on the variables. One
common mutation operator uses a normal distributionNj(αi,j , σj) with standard deviation
σj , to slightly shift a real-valued variable αi,j . This may cause the value to leave the interval
[aj , bj). We can reject such mutations using constraints. Another simple operator bit-flips
a binary variable with a specific probability ρj [7].

We can also use problem-specific operators that use knowledge about the relationships
between dependent variables, such as trying to put one sensor point on the other side of
the area of interest. In any case, we should attempt to keep the values within the interval
constraints, otherwise the mutated individual is immediately infeasible and thus useless.
The constraints and objectives are also evaluated for this new individual, after which we
enter the selection step with µ+ 1 individuals.

Similar to a normal evolutionary algorithm, we attempt to remove infeasible individuals,
so if there are any that fail some constraints, we randomly select one. Otherwise, we have
to select an individual to remove from a population that contains only feasible individuals.
Now, because we have multiple objective functions, we cannot simply decide to remove
a feasible individual based on one function evaluation. Instead, we factor in all objective
functions by grouping the resulting individual solutions.

−1000 −950 −900 −850 −800 −750
Objective 1 (intersections)

270

280

290

300

310

320

330

340

O
b
je

ct
iv

e
 2

 (
d
is

ta
n
ce

s)

Pareto front with SMS-EMOA, t=1000

Figure 8: Example of a Pareto front with objective functions as axes.

We consider an individual Xa dominated if there is another feasible individual Xb, with
1 ≤ b ≤ µ that is strictly better in all objectives, i.e.,

gk(Xa) > gk(Xb) for all k with 1 ≤ k ≤ β. (4.4)

27

Leon Helwerda

An individual is nondominated if there is no such individual that dominates it, according
to Equation 4.4. We assume that all objectives are to be minimized. If a function g should
be maximized, then we convert it to an objective by negating it, i.e., g′ = −g.
We group the individuals into dominated and nondominated layers; the latter group is also
called the Pareto front. If there are no infeasible individuals, but we do have dominated
individuals in the population, then we randomly select and remove one of them.

When the MOOA has a population containing only feasible, nondominated individuals,
then it uses a different selection mechanism, which removes the individual that contributes
the least to the current population. Such heuristics keep individuals whose neighboring
points are the furthest away, using specialized distance or contribution calculations [16]. In
addition, we keep the nondominated individuals that have one currently minimal objective
value, i.e., the endpoints if the objective values of this front were plotted, as shown in the
example in Figure 8.

Thus, in each iteration, we perform one mutation and one selection. The aim is to converge
toward some feasible, optimal individual, whose objective values cannot be improved in
any way. The rate of convergence of the evolutionary algorithm is highly dependent on the
problem’s constraints and objectives as well as the mutation operators that we use.

Due to this, the MOOA might accidentally create a mutated individual that is infeasible
or dominated in every iteration. This causes the Pareto front to remain motionless, even
though the optimal solution has not been found. We need to formulate the problem and
perhaps create specialized mutation operators to prevent such a standstill.

Once the MOOA reaches the maximum number of iterations tmax, we do not have just one
solution, but at most µ feasible, nondominated individuals. Each of them provides a useful
set of sensor measurement positions and corresponding missions for the vehicles. Some
individuals may be better in one objective, while others are relatively good in another.

If we only want one solution instead of a range of possibilities, then we need to make
a final selection from the Pareto front. This can be done subjectively by comparing the
solutions manually and taking the preferred one. Another selection strategy is to use a
knee point [10], which is a nondominated solution that is average in all the objectives.

In the end, the resulting individual solutions heavily depend on a number of properties
that we can tune: the initial population, the mutation operators and the parameters of the
random distributions that they use, the selection strategy, the number of iterations that
we let the algorithm run, and of course the constraints and objectives themselves.

We must thus determine whether the solutions are suitable, and if so select one to use for
the final missions. If the result is unsatisfying, then we can optionally tweak the algorithm
and see what another run provides. The nondeterministic nature of the stochastic process
means we may receive widely different results from a new run.

5 Context

In the model that we defined in Section 3, we include certain assumptions about the space
that we are in. This plays a role when we take a more practical approach and apply
the model to a physical mission with actual vehicles. This allows us to get to a working
implementation in Section 6.

28

Mobile radio tomography: Autonomous vehicle planning for dynamic sensor positions

In this section, we outline the differences between the defined model and the reality. These
differences spark the need to make assumptions for the model to work reliably, or create
practical solutions so we can actually make use of the system of elementary definitions.

We propose changes to our model that make it reflect reality better. This includes physical
challenges related to movement and location detection. We state some possible reasons for
the resulting inaccuracies and uncertainties. Finally, we create a contingency plan that
provides solutions for overcoming these challenges in some cases.

As mentioned in Section 3.3, a vehicle may have limited information about the space it
is in. This applies to positions that the objects are at. Also, the current location of the
vehicle itself might not be directly accessible. The model tracks the precise location of
each vehicle, but the vehicle cannot determine it with the same accuracy.

Similar to the other sensors in Section 3.4, the vehicle has a location sensor that deter-
mines a position using previously collected information and live data, such as an external
positioning system, a projected grid on the ground surface of the space, or the measured
speed of the vehicle. All these data sources may be inaccurate, which propagates to the
quality of the location sensor and results in a fuzzy position.

It is important to keep the accuracy of the location sensor within acceptable bounds.
A sensor that provides erratic results makes it difficult to know whether the vehicle has
reached a certain waypoint. If the error or difference between the model location and
detected point increases through time, then the usefulness of the location sensor decreases.

Time is also an impeding factor for sensors. A sensor could spend some time units to process
the data sources. Due to this, the location sensor detects the location of an earlier time
unit while moving, and the distance sensor might not detect a nearby object immediately.
Certain distance sensors use the echo of an ultrasound signal to calculate the distance, for
example. Thus, timing is an essential part of the model.

Another problem is when there is an oncoming vehicle with an angle that is not exactly
a straight angle, or even if a sideways collision is imminent. A servo can be used to scan
the surroundings to mitigate this problem. Servo angle changes are rather instantaneous
in practice, but again the distance sensor takes time to process.

We need to take care that such problems, as well as other characteristics of the mission,
do not make the mission needlessly long. The vehicles have a lifetime in which they can
operate. This lifetime is limited by the power consumption of the vehicles. They need to
use batteries to operate freely in the real world. A larger space means the vehicles need a
longer range. This is only possible if the battery’s capacity and current allows for a longer
lifetime or a higher motor speed.

All these problems mean that we need a sort of contingency plan. We need to detect
when the location sensor becomes inaccurate or when the battery charge of a vehicle
is approaching critical levels, and take appropriate action to keep the vehicle in a safe
location. Some of these problems can be solved through the use of additional sensors or
heuristics, and some need a human touch to stop the vehicle remotely using a command
via the infrared sensor.

The contingency plan alters the mission mentioned in Section 3.5. It adds new waypoints
when the vehicle strays, or stops the mission early. The plan independently monitors
external influences as well as the mission itself. Thus, there is a sort of watchdog that
oversees the sensor data and accuracy, and acts immediately when it detects issues.

29

Leon Helwerda

6 Implementation

As a part of the research within the mobile radio tomography project, we create a toolchain
that plans missions, operates vehicles, performs and collects measurements and creates a
reconstructed image using radio tomographic imaging [28].

In this section, we describe our contributions to this mobile radio tomography toolchain,
which includes a control panel for planning and monitoring missions from a ground sta-
tion, as well as the autonomous vehicle movement which can act upon information from
environmental sensors. The definitions from Section 3 form a useful basis that already
describes a large portion of the implementation details.

We provide an overview of the components created for these purposes in Section 6.1. We
then focus on the types of autonomous vehicles in Section 6.2. The functionality of the
sensors is outlined in Section 6.3. We show various kinds of missions that help to position
the tomography sensors at specific locations in Section 6.4.

Section 6.5 then studies optimization algorithms for creating waypoint-based missions.
These algorithms should solve the problem of sensor positioning. We focus upon the details
of the specific planning problem and relationships to the reconstruction problem as well
as properties of the geometry.

6.1 Overview of the components

We implement a toolchain that consists of multiple parts. A major part is the vehicle’s
environment, which provides mission control and runs as a service on the vehicle’s central
computer without direct user interaction.

Independent of the vehicle part, we have a control panel, which is a graphical user interface
on a ground station, e.g., a desktop or laptop computer. The researcher can find out various
status information before and during a mission, or use planning and reconstruction tools.
These tools satisfy different needs within the phases of the mobile radio tomography project
mentioned in Section 1.2. Parts of the ground station are described in Section 6.6.

Environment
(Section 6.3)

Infrared sensor (6.3.1)

Distance sensor (3.4)

Servo (3.4)

RF sensor (3.4)

Mission (6.4)

Monitor (5)

Geometry
(3.1)

Memory map

Search (4.1)

Vehicle (6.2)

Dronekit
Mock
Raspberry Pi

Zumo·Arduino

Line follower (6.3.2)

Reconstruction components
Weight matrix [27]

Snap to boundary [27]

Buffer [27]

Vehicle components

Positioning
problem (6.5.2)

Multiobjective
algorithm (6.5.1)

Waypoint
assignment (6.5.3)

Planning components

Figure 9: Diagram of components in the toolchain. The numbers refer to sections where
the components are described in detail. An arrow indicates that the component at the
starting end makes use of the far end component.

30

Mobile radio tomography: Autonomous vehicle planning for dynamic sensor positions

The overall toolchain consists of a number of components that each part can make use
of. These may be related to the distance sensor, determination of the current location,
the missions, the vehicle and its environment. There is also a planning component for the
control panel. Each component may be used in simulation or inside the control panel, as
well as have a function in a physical environment with the actual vehicle hardware.

For these components, there is often a main purpose for which it was created. For example,
sensor and other vehicle-based components are mostly used in the vehicle part, while
reconstruction and planning components are useful for the ground station control panel.
However, some components depend on the functionality of another component, such as
the planning problem making use of reconstruction and geometry details. This is possible
within the cohesive structure of the toolchain. We provide a diagram of the components
and the dependencies between them in Figure 9.

The components often have a well-tested basis and specialized versions for different uses.
Thus, it is easy to replace one version with another. This also means that we reduce the
risk of one version not working, since the common code already behaves as expected.
Section 6.7 describes how we make use of tests to ensure that the code works correctly.

A component can depend on another component even when the latter is a member of a
different part, e.g., a planning component using a vehicle or reconstruction component.
Because the component has an accessible interface and works well in its own part, it is
easy to reuse that component elsewhere. This makes our toolchain solid as well as reusable,
which is essential for using it in multiple contexts.

6.2 Vehicles

An important component of the mobile radio tomography toolchain is the vehicle interface.
This component makes it possible to provide instructions to a physical vehicle in order
to make it arm its motors, move, rotate, lift off, adjust its settings, travel to a certain
waypoint, and so on. These instructions are collected and converted to signals that the
specific vehicle is capable of understanding. Additionally, we can request the vehicle’s
status, e.g., its current mode, position and orientation, and act upon problems such as low
battery power when they are detected by the vehicle’s control circuit.

The vehicle component consists of several implementations for different types of vehicles,
which are introduced in Section 3.3. Each version supports a compatible interface. This
makes it possible to use the same missions on different hardware platforms.

6.2.1 Hardware communication

The communication between the high-level mission components and the physical hard-
ware is established by the vehicle component. This means that the other components can
send requests to the vehicle component in order to take a certain action, retrieve status
information or update it. The vehicle interface processes the action specification, such as
moving to a given location at a specific speed. We convert the information so that it is
understandable for a lower-level hardware device. This can mean that we enable some sort
of motors for a certain amount of time. The exact process differs between the vehicle types.

As an example, many simple rover vehicles have a motor speed controller that receives
a number of input signals. These signals determine how fast it should turn its motors,

31

Leon Helwerda

and if so whether each of them should turn forward or backward. The latter type of
signal can be easily provided using logic level signals, where there are two possible signal
voltages: a high value and a low value. Often, the motor speed is provided as a pulse width
modulation (PWM) signal, which uses signals at high and low power at specific durations
to signify the PWM value. A Raspberry Pi [32] has no hardware PWM support, but can
provide PWM signals using fairly accurate software timers.

In some cases, it might be desirable or necessary to use intermediary hardware. This can
be the case when the motor speed controller uses different logic level voltages than the
Raspberry Pi does, for example. The intermediary hardware may simply be a conduit to
convert the logic level voltage, or it might be programmable so that it can provide a more
sophisticated backend interface to the vehicle component.

Such middle man hardware might make it easier to develop the vehicle component. The
Zumo shield [31], for example, can be programmed using an Arduino [4] with an existing
library, thus we only need to create a communication interface between that and the vehicle
component, and perform the right actions based on the corresponding commands.

The intermediary hardware may also be a full-fledged autopilot, such as the ones described
in Section 2.2. This means that it already has some intelligence in choosing a path to reach a
location, and fixing the location when it is imprecise. The autopilot hardware may provide
the needed support for battery monitoring, connecting additional peripherals and sending
PWM values to the motors.

6.2.2 Interfaces

From the software perspective, the vehicle component is an interface that allows other com-
ponents to exchange status information with the vehicle. This means that all components
can share the same location and related elements of the vehicle’s state.

For this reason, the vehicle interface must either provide its own location based on some
internal inference system, or it can use another component, such as the line follower in
Section 6.3.2 to retrieve a location. The location can be represented as a coordinate tuple
from the coordinate system in Section 3.1.1. Some interfaces may add in more or less
details in the location, such as excluding the altitude component or tracking the location
using multiple coordinate systems at once.

The same applies to other properties of the interface, which the vehicle must always have
some knowledge about. The vehicle has a home location where it starts its mission, and
may provide an automated way to return to this home location at any point. The vehicle
has different modes in which it can operate. This includes an automated mode where the
vehicle follows a sequence of commands, such as waypoints, and a guided mode where the
mission component presents actions on the go. The vehicle must be armed before it can
do anything, and it can be disarmed whenever it would be safer to stop all motors than it
is to continue.

We can also access live information from the interface, including the vehicle’s speed. The
speed can either be provided as one unit in the current direction of the vehicle, or as a
velocity in the three components of the coordinate system. The speed is the approximate
distance that the vehicle travels in one time unit. The attitude of the vehicle, i.e., the
direction in which it would travel, is also provided as rotations compared to the three
components, known as the roll, pitch and yaw.

32

Mobile radio tomography: Autonomous vehicle planning for dynamic sensor positions

Each vehicle interface has some way to provide commands. The vehicle should eventually
follow these in the order that they are given, unless they are cleared by some other com-
mand. At the very least, the vehicle must be able to go to a specific waypoint and wait
at that waypoint until a different command arrives. Depending on the type of vehicle, we
can take off to a specific altitude or rotate at one point.

Figure 10 demonstrates the various interfaces that we support. The group of MAVLink
vehicles support a specific internal communications protocol for receiving commands [24].
They are more geared towards flying drones, although rover vehicles are also supported.
An internal autopilot determines the best way to process a certain command.

The group of robot vehicles are interfaces to rovers that can follow lines on the ground.
The coordinate system is based on the grid geometry from Section 3.1, so only discrete
points can be provided in the waypoint commands. The guided mode allows some more
freedom, but the main mode of operation is following lines, arriving at intersection points
and rotating to different directions.

Vehicle

Robot vehicle

Arduino conduit

Arduino intermediary

Direct Raspberry Pi

MAVLink vehicle

Mock vehicleDroneKit vehicle

Figure 10: Inheritance diagram of the vehicle interface.

6.2.3 Simulation

Some of the vehicle interfaces support simulation. In simulation mode, the interface does
not actually communicate with actual hardware as mentioned in Section 6.2.1, but instead
allows an external simulator to follow what the vehicle is doing.

This makes it possible to enact mission and determine its likely outcome, without actually
sending a vehicle into a physical environment. The vehicle is then an “engine” for the
simulator, keeping track of what happens based on external commands and configurable
environmental hazards. Thus we can find out how a mission would act in certain situations.

While the simulator itself is not a part of the vehicle, it is tightly connected to its state.
The simulator can show a map of the current vehicle’s location, or provide a first-person
display of the space. This takes into account which direction the vehicle is facing. We can
build in additional safety checks to see if the vehicle would lose track of its location, or
detect whether it collides with another object.

Some vehicles may behave randomly or erratically in some situations. During simulation,
it is sometimes helpful to make this behavior more deterministic. This allows us to test
the missions without variations between test runs. The mock vehicle in Figure 10 reflects
the behavior of complicated autopilot, but it is only dependent on timing, not on other
sources of randomness. This gives us a solid foundation for testing missions, which we
expand upon in Section 6.7.

33

Leon Helwerda

6.3 Environmental sensors

The vehicle has a number of sensors with various types. We need to control these sensors
through standard interfaces, so that we may replace the hardware with similar sensors
if necessary, or use simulated versions of the sensors. Additionally, we want to keep the
interfaces of the sensors in one place, so that it is easy to use them from the mission
components.

For this reason, we initialize the sensors within an environment, which is a software layer
that provides access to information from the space that the vehicle exists in. It provides
a convenience access to the vehicle’s interface, including some functions that perform
distance and angle calculations.

The environmental sensors interact with the space in different ways, which we introduced
in Section 3.4. The tomographic sensor, also known as radio frequency (RF) sensor, makes
it possible to exchange packets of information with other RF sensors at the ground station
of Section 6.6, as well as with the other vehicles. They also provide a received signal
strength indication (RSSI), which can differ due to attenuation and absorption by objects
of different materials that lie in between the sensors [27]. A standardized interface gives us
the possibility to change between different modes, such as sending and receiving specialized
packets, or continuously measuring the RSSI. Internally, the packets are forwarded to the
physical sensor device.

The distance sensor has an interface to measure the distance to the first object along a line
segment starting from the vehicle’s location at its current attitude. A physical distance
sensor might work using ultrasound signals. It then measures the time t between such a
signal and the corresponding echo signal, and converts this to a distance d = t · ca, where
ca is the speed of sound in air.

We can simulate the behavior of a distance sensor for experimental purposes. We define
a number of simulated objects, such as the ones from Section 3.2. We then calculate the
minimal distance to the intersection point at each object for the line segment, if there exists
such an intersection. This requires some geometric models for detecting intersections of
lines with polygons, planes, other lines, as well as the different base types of objects [19].

The distance sensor usually points in the same direction as the attitude of the vehicle.
However, it is possible to alter the behavior of this sensor using a servo. This object
cannot sense anything from the environment, except its own rotational angle. Often, the
servo has a limited range or duty cycle in which it can quickly rotate between. The servo
receives a PWM value that corresponds to the requested angle. When combined with a
distance sensor, we can detect nearby objects in different directions, without having to
rotate the entire vehicle.

6.3.1 Infrared sensor

The infrared (IR) sensor is similar to an RF sensor in that it can receive a packet from
another source. An IR sensor cannot send any data, and it loses the whole signal when it is
blocked due to scattering, rather than receiving it at reduced power. Because it operates in
a separate light spectrum and works independently from the other sensors, the IR sensor
does not interfere with measurements of the RF sensor or the distance sensor.

34

Mobile radio tomography: Autonomous vehicle planning for dynamic sensor positions

IR sensors are simple hardware accessories, that do not need much more than pass through
the light pulses that it receives. These can be converted back to specific code sequences,
which may or may not correspond to button presses on a remote control. We load the
configuration of code sequences for one remote type, so that the vehicles listen to commands
from that remote.

The commands that we send to the IR sensor include starting and stopping the mission.
This is important, since we need a safe way to stop a mission remotely, without interference
of RF sensor measurements. We can also send commands to go to specific waypoints or
follow a certain mission. This is mostly for experimenting with new missions or tuning
the line follower in Section 6.3.2. The button presses are limited to simple commands, so
actual data transmission must fall back to the RF sensor.

6.3.2 Line follower

The robot vehicles from Section 6.2.2 can track their location using an additional sensor
called the line follower. This sensor is actually an array of infrared emitters and light-
sensitive diodes. The light sensors detect how much of the light is reflected from beneath
the sensor, which is mounted on the front of the rover, facing downward.

A darker surface absorbs more light compared to a light surface. Thus, a reflectance sensor
above a black line receives a detectable lower intensity compared to another sensor above
a white background. Internally, this detection works similar to the distance sensor’s echo
detection: a charge in the circuit decays based on the light intensity received on the diode,
and we can time how long it takes before the charge appears to be lost. This gives us an
approximate grayscale value of the surface.

We combine the values of the sensors, which gives us a way to detect where there is a
line, compared to a background. This edge detection may work in any situation where
we have a surface with grayscale color differences, but it works better in the restricted
case of thick, black lines on a white background. We can determine a threshold where any
grayscale value below this threshold is not a line, while every value above it is considered
to be a line.

This allows the robot vehicle to follow lines, detect intersections, and rotate to one of the
cardinal directions on a surface with a printed line grid. If the vehicle is not moving exactly
straight on a line, then it can detect that it is diverging from the line and slightly adjust
the motor speeds. Once the reflectance sensor detect only black values, then we consider
the location to be an intersection, which corresponds to a discrete coordinate tuple. At
an intersection, we can perform stable measurements, or rotate the vehicle into another
direction, for example to move to the next waypoint.

6.4 Missions

The vehicle’s normal mode of operation is to follow the instructions provided by the
mission component. This component takes the status of the vehicle into account and sends
commands to move toward certain points in succession. In this section, we describe how
the component is set up, which modes it supports and how we make use of different kinds
of missions to reach our goals.

35

Leon Helwerda

Before the vehicle can move around, the mission undergoes its first phase of verifying the
automated preflight checks. The mission must ensure that the vehicle is ready to arm
before it starts flying or driving. This can include waiting for a signal from the ground
station, via the RF or IR sensor from Section 6.3. If the mission has a fixed sequence of
waypoints, then we must wait until the waypoints are loaded and any old data is cleared.

The mission can then arm the vehicle, which should be a simple phase of powering and
starting up the motors. Depending on the type of the vehicle, the mission then takes off
to the altitude where we want to start the actual mission. This optional phase can also
be used for other purposes, for example to calibrate its line follower sensor of the robot
vehicle from Section 6.3.2.

The mission can work in different modes that alter the vehicle’s mode and state. In guided
mode, the mission works in steps: at a scheduled interval, the mission checks whether the
vehicle’s location is correct, and alters its speed, attitude and other properties, if necessary.
This gives the mission a lot of control over the vehicle, which gives us more freedom in
designing the mission but removes the focus away from visiting specific sensor positions.

The auto mode still allows us to frequently monitor the mission, but the vehicle component
is fully responsible for moving to predetermined waypoints. We can detect when we are
close to a waypoint or alter the sequence in case of unexpected safety problems, for example
to avoid collisions. Thus we can easily design a fixed mission and still allow some leeway.

During the actual mission, the RF sensor enters its active state, where it continuously
gathers measurements. Thus we can only use the measurement packets for communicating
between the vehicles and the ground station. Other packets for configuring the mission
and the other components must be provided during the passive state of the RF sensor.
This means we can only alter the mission before the arming phases.

Mission

Auto mode

Squares

Fan beams (6.4.3)

Calibration (6.4.2)

RF waypoints (6.4.1)

Guided mode

IR commands (6.3.1)

IR waypoints

Browse

Free search

Path search (4.1)

Figure 11: Inheritance diagram of the mission components.

Some of the missions that we implement are included in the overview in Figure 11. The
IR sensor missions are described in Section 6.3.1. The simplest guided mission browses the
surroundings of the vehicle, by holding it at the same position but rotating the vehicle or
its distance sensors.

Since we do want to move around with the vehicle, another mission uses the browsing
mission as a building block: the search mission moves in one direction and browses its
surroundings when the vehicle is within the region of influence of another object. It then
chooses the safest direction to move toward, while trying to stay close to the objects. This
allows us to scan the objects with the distance sensor and the RF sensor.

36

Mobile radio tomography: Autonomous vehicle planning for dynamic sensor positions

We can replace this heuristic approach with a mission that uses a search algorithm from
Section 4.1. It follows a certain list of waypoints, but when it is too close to another vehicle
or object, then it uses the search algorithm to find a new path to the next waypoint.

The missions that use the automated mode usually assume that there is a safe zone around
the area of interest, but using safe paths is also an option. The sequence of waypoints are
designed to improve the RF sensor measurements for the reconstruction algorithm. We
look into more detail how these waypoints work in Section 6.4.1, and present a number of
waypoint sequences in implemented missions in Sections 6.4.2 and 6.4.3.

6.4.1 Waypoints

A waypoint is a location which should be visited by the vehicle it is assigned to, during its
mission. It is a core element of all automated missions and some of the guided missions.
We define waypoints in this context in Section 3.5. In this section, we look into more types
of waypoints, which are specifically helpful when collecting RF sensor measurements.

The reconstruction algorithm requires measurements for links between sensors. During the
mission, we visit these sensor positions such that there is a vehicle at each end of the link.
This imposes restrictions on how we design the mission of the individual vehicles.

Firstly, the reconstruction algorithm assumes that the positions in all sensor links are
on the same altitude. This is because the reconstruction creates a “slice” of the area of
interest. In this slice, we need a large number of intersections between a dense network of
links. We thus want to have the links to be on the same plane. A flat plane is the simplest
and most useful to have in our use cases.

This means that we should make the vehicles operate on the same altitudes. For flying
vehicles, we can take off to the desired level, and potentially chain the same mission on
different altitudes. For other vehicles, we skip this part of the mission which occurs after
arming the vehicle. However, one could alter the composition of the vehicle so that the
sensors are mounted at the required altitude.

During the mission, we want to gather reliable measurements. This helps the reconstruction
algorithm to generate a radio tomographic image that clearly reflects the physical objects
inside the network. Thus, RF sensor measurements while the vehicle is moving can be
considered unstable. Additionally, we need to synchronize with other vehicles to ensure we
actually measure at the requested sensor link positions.

We can let a vehicle wait for the other vehicles once it reaches a waypoint. The RF sensor
can send a packet containing enough data to synchronize the vehicles in this way. However,
sometimes we just want to provide a waypoint to the vehicle so that it follows a certain
path, such as a safe path from Section 3.5.1.

There are thus multiple types of waypoints, including ones that cause the vehicle to wait
once it reaches such a waypoint, and ones that allow the vehicle to pass, without taking
concurrent vehicles into account for the purposes of collecting measurements.

A mission can consist of a combination of these types of waypoints. A frequent pattern in
some of the missions discussed here is to move the vehicle along a straight line or a more
complicated path, and perform measurements at regular distance intervals. We can then
have waypoints where the vehicle waits, mixed with passable waypoints.

37

Leon Helwerda

If the series of waiting waypoints are at a fixed, evenly spaced linear interval between the
starting point and the final waypoint, then we call these points a range. We can implement
a range by only stating the final waypoint and the total number of waiting points in the
range, assuming we know the previous location. Note that waiting at the same location a
number of times is also considered to be a range.

6.4.2 Calibration

Certain reconstruction algorithms make use of baseline measurements. This means that we
need to perform measurements for all possible links beforehand, while the area of interest
is devoid of the objects that we want to detect eventually.

During the baseline measurements, the area may contain uninteresting objects, such as
walls or other static objects, which are then ignored during the reconstruction phase. This
is done through a comparison between the baseline measurement and the actual measured
link strengths when the area is filled.

In some cases, we may be able to perform the same mission twice for this purpose, first
to collect the baseline measurements, then the actual mission of gathering link strengths.
However, if we want to compare the influence of different missions, or reuse a stable set of
baseline measurements later on, then this limited collection sweep may not be sufficient.
For completion, we should measure every possible link that we could ever have, to ensure
that the reconstruction has a full set of baseline measurements.

This brings us to the design of a calibration mission. This mission works in a grid-like
space by visiting each position that we could perform measurements at. It makes use of
two vehicles, that each swap roles between two kinds of cycles: a movement cycle and a
stationary cycle. Each time, one vehicle moves clockwise from its current location around
the area of interest. The other vehicle stands still on the location just one grid cell away
from the first vehicle, when seen counterclockwise.

E

N

(0, 0)

(1, 0)

(2, 0)

(3, 0)

(4, 0)

(5, 0)

(6, 0)

(7, 0)

(8, 0)

(9, 0)

(0, 1)(0, 2)(0, 3)(0, 4)(0, 5)(0, 6)(0, 7)(0, 8)(0, 9)

v1 v2

path of v1

(a) Cycle with v1 from (0, 0) through (0, 2)

E

N

(0, 0)

(1, 0)

(2, 0)

(3, 0)

(4, 0)

(5, 0)

(6, 0)

(7, 0)

(8, 0)

(9, 0)

(0, 1)(0, 2)(0, 3)(0, 4)(0, 5)(0, 6)(0, 7)(0, 8)(0, 9)

v1v2

path of v2

(b) Cycle with v2 from (0, 1) through (0, 3)

Figure 12: Examples of calibration cycles with two vehicles, where one vehicle remains
stationary and generates measurements with all other grid edge points.

38

Mobile radio tomography: Autonomous vehicle planning for dynamic sensor positions

The first vehicle ends its cycle one cell away from the second vehicle’s location. An example
of this cycle for a 10 by 10 grid with starting locations (0, 0) and (0, 1) for the two vehicles,
respectively, is shown in Figure 12a. After this, the second vehicle starts its movement cycle,
with the first vehicle playing the stationary role. Such a cycle is shown in Figure 12b.

These cycles measure different links. However, once we start repeating this for the whole
network, continuing along with the clockwise cycles as if it is a relay race, then this may
result in duplicated measurements. This is because a measurement from one location to
the other automatically gives us the measurement in the other direction as well.

However, the baseline measurements may have a use for these twin measurements. This
is because the vehicle at each sensor point may differ during the calibration mission. If
the vehicles are equipped with RF sensors that have slightly different antenna properties,
then the reconstruction algorithm can account for this if it has sufficient measurements
from both vehicles in all permutations.

Time is not a huge factor during the calibration, although we do want to limit the time
needed per measurements and the total number of measurements. The mission duration
can grow quadratically for larger network dimensions, thus we ensure that the performance
of the calibration mission is adequate.

6.4.3 Fan beam and straight line patterns

During the design of missions for the purpose of collecting measurements for tomographic
reconstruction, there are some patterns that appear to be useful. Such patterns provide a
large volume of different measurements within a small time period. Such patterns often let
the vehicles travel some distance, while being on, e.g., opposite sides of the network, and
the resulting measurements are spread out in such a way that they cover a large portion
of the network.

A mission may be built up from a combination of such patterns. One problem is that
going from one pattern to another might waste time, in case that they do not fit together
exactly. We could move the vehicles at full speed between these positions, or we can make
use of certain other patterns that bridge the gap and provide link coverage in other parts
of the network.

In this section, we look into two specific patterns, as well as describe some related patterns
that augment them. The first and simplest pattern that we present is the straight line
pattern. Here, two vehicles move in the same direction along opposing edges of the network.
They move from one end point of such an edge to the other, synchronizing with the other
vehicle at each sensor point in between.

This results in measurements that cross the network. These links are parallel to one of
the first two dimensions of the space, or at least relative to the area of interest. If the
vehicles move northward and southward, then we receive measurement links parallel to
the eastward axis, and vice versa for eastward or westward movement. Movement that is
not in one of the cardinal directions results in angled lines, which may also be an option.
An example of northward movement providing straight lines is shown in Figure 13a.

A related pattern makes the vehicles move from one corner of the network, across distinct
edges, to the corner on the far end of a diagonal. This works quite differently from the
straight line pattern, but results in measurement links that are laid out like diagonal lines.

39

Leon Helwerda

Straight line patterns are quite simple, and they are fairly similar to the waypoint ranges
discussed in Section 6.4.1. A straight line pattern can be defined by two waypoint ranges,
where there is one range for each vehicle. The waypoints are of the waiting type, and the
start and end points of each range only differ in one coordinate value. Waypoint ranges
can thus be useful as a building block for patterns involving multiple vehicles, even more
complicated patterns that still involve some straight lines or stationary points.

E

N

(0, 0)

(1, 0)

(2, 0)

(3, 0)

(4, 0)

(5, 0)

(6, 0)

(7, 0)

(8, 0)

(9, 0)

(0, 1)(0, 2)(0, 3)(0, 4)(0, 5)(0, 6)(0, 7)(0, 8)(0, 9)

v1 v2

(a) Lines, v1: (0, 0)→ (9, 0), v2 : (0, 9)→ (9, 9)

E

N

(0, 0)

(1, 0)

(2, 0)

(3, 0)

(4, 0)

(5, 0)

(6, 0)

(7, 0)

(8, 0)

(9, 0)

(0, 1)(0, 2)(0, 3)(0, 4)(0, 5)(0, 6)(0, 7)(0, 8)(0, 9)

v1 v2

(b) Fan beam with v1 from (9, 0) through (0, 9)

Figure 13: Examples of straight line and fan beam cycles. Two vehicles move forward in a
parallel fashion. Then, one moves along the sides that the stationary vehicle is not on.

In Section 6.4.2, an example of a more sophisticated pattern is shown, where calibration
cycles lead to a fan-like form starting from a stationary sensor point. We can adjust such a
fan beam pattern to include fewer links. The links that cross an edge on which the vehicles
move around is not very relevant for the tomographic reconstruction, so we can start the
movement cycle from a corner instead. When we put the stationary vehicle in the other
corner of that edge, then we can stop the movement cycle when the vehicle has reached
the start of the other connected edge.

This movement pattern leads to a fan beam which intersects with many grid cells, and has
a high density in one corner. Figure 13b provides an example of this. We can also place
the stationary vehicle in the middle of an edge, and let the other vehicle move along the
three other edges, which provides yet move fan beam patterns. We can sometimes skip
parts of those edges when they provide few different measurement.

A fan beam pattern can often be joined together with other fan beams, or we can alternate
it with a straight line pattern before performing yet another pattern. The order in which
we perform certain patterns can determine how quickly we obtain enough intersecting links
in the entire network for the reconstruction algorithm to function well.

If we want to combine such patterns with a fan beam where the stationary vehicle is in
the middle of an edge, then we can perform certain corner patterns. Two vehicles moving
on perpendicular edges result in some more unique intersecting links around that corner.
We can also skip these measurements and quickly move into the correct positions for the
fan beam pattern.

40

Mobile radio tomography: Autonomous vehicle planning for dynamic sensor positions

6.5 Planning

The vehicles can move around using hand-crafted missions, but we also want to automate
the planning part. The planning problem from Section 4.2 can be solved using algorithms
that we demonstrate there. There are some more details that we need to make explicit in
order to present a full implementation of the planning component. We slightly alter some
of the algorithms to obtain information that can be used elsewhere. We also state the
precise objectives and constraint functions that we use. Finally, we discuss performance
considerations that help make the implementation viable to run.

We divide the implementation details into specific sections. In Section 6.5.1, we describe
the novel mutation operators, constraints and objective functions that we use within the
evolutionary multiobjective algorithm. The evaluation of the individuals and generation of
sensor positions is explained in Section 6.5.2. We then discuss the assignment of waypoints
while trying to avoid collisions in Section 6.5.3.

6.5.1 Multiobjective optimization

We make use of an evolutionary multiobjective optimization algorithm to evaluate, mutate
and select a population of individual solutions. The iterative nature of the algorithm means
that we might converge toward certain optimal or nondominated solutions using such an
algorithm. This does greatly depend on several factors, such as how we limit our search
space, how we design our objectives and which operators we use for mutation and selection.

The constraints and objectives are tightly related to the problem that we wish to solve; a
different problem would need other evaluation functions. There are some basic constraints
that ensure that the variables of one individual remain within the bounds of their domains
when we mutate them, as mentioned in Section 4.2.3.

Additional constraints help the algorithm so that it searches in the right direction of
a large search space. The constraints reject individuals that are clearly infeasible. The
reconstruction algorithm provides us with a weight matrix containing information about
sensor links that intersect with certain pixels: this weight matrix Wi of an individual Xi

is an ℓi×ψ matrix, where ℓi is the number of links from the individual that actually cross

the network, and ψ is the number of “pixels” within the network. Furthermore, w
(i)
j,k is the

value in row j and column k of the weight matrix Wi as provided by the reconstruction
algorithm [27]. We then have the following predicate:

Q1,i : ∃j : ∀k : w
(i)
j,k 6= 0 (6.1)

If some pixels are not intersected at all, then the reconstruction cannot determine a suitable
pixel value, which we avoid with the constraint in Equation 6.1. Each column corresponding
to some pixel has at least one link that crosses it.

Another constraint is that we need enough links to consider the mission feasible. It may
occur that the algorithm misplaces many links along the edges of the network so that they
do not intersect with the network. It is acceptable to discard some of the measurements, but
the number of correct measurements should be above a certain threshold γ, dependent on
the total number of links that we want. This gives us the second constraint in Equation 6.2
and the combined feasibility value in Equation 6.3:

41

Leon Helwerda

Q2,i : ℓi ≥ γ (6.2)

fi =

{

0 if ¬Q1,i ∨ ¬Q2,i

1 if Q1,i ∧Q2,i

(6.3)

The objectives of the reconstruction planning problem are similar to the constraints. Many
of the pixels in the weight matrix should be intersected by multiple links, otherwise the
reconstruction algorithm would not be able to determine whether a signal strength for one
link actually influences such a pixel. We can wrap this into an objective function by taking
the sums of the filled weight matrix entries as the function value in Equation 6.5:

h(x) =

{

0 if x = 0

1 if x > 0
(6.4)

g1(Xi) = −
ℓi
∑

j=1

ψ
∑

k=1

h(w
(i)
j,k) (6.5)

The second objective focuses more on link distances and the traveling distances during
the mission. We want the links to be short, because long sensor links result in RSSI values
that are less meaningful for the large volume of pixels that they intersect. The sensor link
positions are provided to us in a set of pairs P = {(p1,1, p1,2), (p2,1, p2,2), . . . , (pℓi,1, pℓi,2)}.
We also desire a short mission, which we determine from the distance Ti provided by an
adapted greedy assignment algorithm from Section 4.2.1. We weigh these two distances
into one objective using a parameter δ with 0 ≤ δ ≤ 1:

g2(Xi) = δ ·

ℓi
∑

j=1

‖pj,1 − pj,2‖

+ (1− δ) · Ti (6.6)

We describe in more detail how the domain constraints and sensor positions are defined in
Section 6.5.2, and how we obtain the traveling distance for Equation 6.6 in Section 6.5.3.

There are multiple reasons for having exactly two objectives instead of more. One reason
is that it is easier to visualize a Pareto front for two objectives. Also, we have conflicting
objectives that optimize toward different kinds of missions. The first objective can be
improved with individuals that have lots of measurements with long-distance sensor links.
The second objective attempts to reduce these instead.

Another reason is that the selection process requires more processing time when we have
more than two objectives. To determine the solutions that are nondominated within the
current population, we use the Kung, Luccio and Preparata (KLP) algorithm, which finds
the maxima or minima of a set of vectors [22]. The complexity of the KLP algorithm for
the two-dimensional problem is lower, compared to the three-dimensional variant.

Similarly, the selection for a population consisting of only nondominated solutions is also
simplified. NSGA-II [13] and SMS-EMOA [16] are evolutionary multiobjective algorithms
that determine a contribution measure of each individual toward the Pareto front. The
implementations for both algorithms is simplified when only using two objectives.

42

Mobile radio tomography: Autonomous vehicle planning for dynamic sensor positions

6.5.2 Positioning problem

While we can describe the constraints and objectives in a simple manner in Section 6.5.1,
we do need to transform the variables within the individuals so that we can actually
calculate the weight matrix and the waypoint assignment. To do so, we also define what
our variables actually mean and how they influence the result.

We consider two types of reconstruction planning problems: one continuous version where
sensors can be positioned anywhere along the edges of the network, and a discrete variant
where the sensors are placed at certain points that are evenly spread out around the edges.

In the continuous problem, we describe a sensor link with two variables: the distance of
the link’s line from the origin of the network, and the angle or slope that the line makes
compared to the eastward axis.

Thus, if we want at most λ measurements and the network dimensions are p × q, then
each individual Xi has variables b1, b2, . . . , bλ with domain [−

√

p2 + q2,
√

p2 + q2), and
a1, a2, . . . , aλ with domain [0, π) in radians. Using one bj and one aj , we can define a line
yj = tan(aj)x+ bj . We consider two points on the line that intersect with the edges of the
network to be the sensor points of the link. When aj = 1

2π, the line extends northward
and bj is the eastward coordinate value of the points.

If the two sensor points do not have correct positions, for example when the vertical offset
is negative and the slope is more than 1

2π, then this sensor link is unsnappable. If there
are many unsnappable links, then the solution becomes infeasible. To help finding stable
solutions, we add a binary variable cj for each link in Xi. When the angle aj is close to a
cardinal direction and cj = 1, then the line’s angle becomes equal to that direction.

0 1 2 3 4 5 6 7 8 9 10 11121314 1516 17181920
x coordinate

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

y
 c

o
o
rd

in
a
te

Sensor positions for solution #7/15 (index 3)
f1 (intersections): -5112.0, f2 (distances): 1024.29075349

Figure 14: Example discrete solution with some padding.

43

Leon Helwerda

The discrete problem uses four variables per link instead of three. There are two variables
per sensor point, paired with another point to form a link. The variables encode northward
and eastward coordinates from the origin, which are natural numbers within the domain
of the network sizes. This includes any padding around the edges where we can also per-
form measurements. If a point ends up inside the network, then we attempt to place this
point along the same line of the link outside the network, which may or may not end up
somewhere within the padding. If the resulting points are not discrete, then we consider
the link to be unsnappable.

In Figure 14, we show a discrete solution generated by the evolutionary algorithm, which
makes use of padding. The resulting links appear to be quite chaotic, but they intersect
with practically every pixel.

We can make the result more orderly by creating a mutation operator that works similar to
the additional variable of the continuous version. This operator causes the links to prefer
certain kinds of angles by moving one of the sensor points to another edge of the network.

6.5.3 Waypoint assignment

After we have deduced the positions of sensors as mentioned in Section 6.5.2, we can
use them as input for other algorithms to find out how well the sensors perform. This
includes passing the sensor pairs to the reconstruction algorithm to find out how much the
reconstructed image pixels will be intersected. This intermediate step also makes use of
the greedy waypoint assignment algorithm from Section 4.2.1 and the collision avoidance
algorithm in Section 4.2.2 to find out how the vehicles can reach these sensor positions.

The implementation of these components does not differ much from the representation of
the algorithms specified in those sections, but the data structures do. We do not make use
of graphs to describe the area where the vehicles are located.

Instead, this map of obstacles is implemented using a matrix, known as the memory map.
Each cell within the matrix describes a point in the space, so we can have one cell to an
actual location for grid-based geometry defined in Section 3.1. For other geometries with
a much larger volume of points within the physical space, we can adjust the resolution of
the map. The resolution determines how many cells we have per meter for one dimension,
and thus per square meter within one slice of the space. We can also define a region of
influence for each cell that contains an object, marked with a nonzero value within the
matrix. When the distance of a vehicle to such an object is less than the radius of a circular
region of influence, then we consider it to be unsafe.

The unsafe areas in the memory map are removed from the possibilities that the search
algorithm from Section 4.1 considers. During the collision avoidance algorithm, we also
mark the inner edge of the network to be disallowed, so that the vehicles have to take a
detour if they wish to move to another side of the network. The algorithm removes and
reinserts the routes that unsynchronized vehicles traverse in a slightly different order, in
an attempt to reduce the number of alterations to the memory map.

The collision avoidance planning algorithm adjusts the distance that the greedy waypoint
assignment algorithm associates with a selected vehicle pair and sensor position pair. This
however happens after the greedy algorithm has selected the pairs that minimize the greedy
distance, i.e., when we have ϑm and ρm in Algorithm 4.2. Thus it will not improve the
order of the assignment in which the vehicles move to the waypoints.

44

Mobile radio tomography: Autonomous vehicle planning for dynamic sensor positions

Still, the distance information is of use for the evolutionary algorithm from Section 6.5.1.
The adapted greedy algorithm not only provides the assignment of waypoints, but also
the total traveling distance, which is an indication of the duration of the entire mission.
Such a measure is used for the objectives of the algorithm, so that we can improve our
solutions to take less time or have fewer conflicting movements.

6.6 Ground station

A large portion of this thesis focuses on how the vehicles operate in the environment in
order to collect measurements, with the goal of reconstructing what objects exist within
some area of interest. The vehicles send signals to each other in order to achieve this
goal. However, some parts of these intentions simply cannot be accomplished with just a
few vehicles. For example, the planning algorithms of where the vehicles can be resource
intensive, and thus needs a full computer to run.

For this purpose, we implement a part of the toolchain which operates on the ground
station, a machine that coordinates the collection of measurements. It provides an interface
to a researcher to alter the state of the vehicles and track the progress of the reconstruction.

(a) Planning view, showing current state

(b) Waypoints view (c) Settings view

Figure 15: Graphical user interface of the control panel on the ground station, showing
the planning and configuration displays.

45

Leon Helwerda

One part of this control panel is to manage a large volume of settings. The settings influence
how the vehicles act in certain situations, or how the implementation of a certain algorithm
is tuned. All settings are grouped by the component they belong to, and the control panel
displays these in a sorted manner as shown in Figure 15c. We then store the revised settings
locally or send them using the RF sensors to the vehicles.

Similarly, we can plan the missions using the control panel. There are in fact two methods
with which we choose which waypoints we add to the mission. The planning algorithm
is one of them. The interface in Figure 15a allows reviewing and tuning the parameters
before starting the execution of the evolutionary algorithm. While this process is running,
we regularly receive updates of the current status of the population that we are mutating.
This includes the Pareto front of the nondominated solutions, as well as other statistics.
Once the maximum number of iterations has been reached, we can compare the solutions
visually by inspecting which sensor links are used in them. We can then choose one of the
solutions to assign waypoints to the vehicles.

We can also manually assign waypoints, for example when we want to adapt an existing
mission or perform other experiments. Similar to the settings, we can store the waypoints
on the ground station for later use, and send ranges of waypoints in a compressed form to
the vehicles when we are done assigning them. Figure 15b shows this interface.

6.7 Test coverage

In order to ensure that the vehicles operate in a way that is expected according to the initial
design of the framework, we extensively test the implementations. This includes free-form
experiments and high-level reliability checks, but also unit-based automated tests.

The testing framework consists of the tests themselves as well as a test bench, which
evaluates the tests and provides statistics. We design the unit tests so that they correspond
to parts of components in the framework. Our implementation is based on a object oriented
programming (OOP) structure, where classes are the implemented parts. Each test class
has an analogous actual class, whose interface is tested by individual test units.

The test units are separated in such a way that each one tests some part of the behavior
of the actual class. The output is compared to the expected outcome of this behavior. The
test unit can then fail if the result is not similar (enough), which means there is either a
problem with the actual class, or with the test unit itself.

The test bench loads all the test units, executes them and reports the results. It can also
include statistics about running time, code quality and code coverage. The coverage of a
set of test units is a measure of how well much of the behavior of the actual class is tested
by this set. The code coverage can be defined in multiple ways, and they usually take more
details of the interface of a class into account.

The class interface consists of several methods, which are a means for other parts of the
same component or other components to communicate with that class. This causes the
class to change some state or take an action, such as ordering the vehicle to move in a
certain way or calculating the outcome of a certain algorithm.

A method is made up of several statements, similar to (but usually more expansive than)
the lines of an algorithm. The statements tell the computer which instructions it should
perform, which should lead to the expected outcome of the method.

46

Mobile radio tomography: Autonomous vehicle planning for dynamic sensor positions

We consider two variants of code coverage: statement coverage and method coverage. In
statement coverage, we look at each line of each method and see whether it is executed
during a test. The coverage percentage is then the number of executed statements divided
by the total number of statements. In method coverage, we attempt to match each test
unit to one or more specific methods, and divide the number of matched methods by the
total, including the unmatched ones. Aside from the coverage measure, the code coverage
techniques can also determine which statements or methods are not yet covered. This
allows us to alter the test units or add another one to cover more code [3].

Statement coverage might seem to provide more granularity in its coverage measure than
method coverage. However, the statement coverage tracks all statements that are executed
during the test, not just the ones in the method that the test unit claims to cover.

For example, a statement in a method is not covered by its own test unit, but is reached
by another test unit. Such a statement may go undetected in statement coverage. Method
coverage does detect the missing test unit. Thus a combination of both coverage measures
helps in finding coverage deficiencies optimally.

Designing the test units to cover the statements may be difficult. The test unit should not
be too granular, otherwise it is just repeating the low-level statements. A method may
also be complicated, or it depends on other components. We can then mock some parts
of the method so that those statements always perform a certain action. Thus we can get
the program into a certain state and test whether this case works as expected. If there are
more possible cases, then we mock multiple times to increase the statement coverage.

7 Experiments

We want to determine whether the implementation from Section 6 works well in practice.
We objectively compare the results that we receive from a number of experiments.

The experiments focus on the planning and execution of missions that we provide to the
vehicles. We look at how well such missions collect measurements that are used for a
tomographic reconstruction algorithm. This includes objectives that predict how well the
links cover the network. We also take other properties of the missions into account, such
as how long it takes and how safe it is with regards to collisions between vehicles.

In Section 7.1, we describe how we set up these experiments, which consist of simulations,
algorithm runs as well as physical tests. We provide an overview of the numerical results
and comparisons in Section 7.2, and describe the outcome of two missions in Section 7.3.

7.1 Setup

During our simulations, we focus on the planning algorithms from Section 4.2 to see if our
specific implementations mentioned in Section 6.5 perform as expected.

We find out whether the resulting individuals of the multiobjective optimization algorithm
from Section 6.5.1 are a representative group of nondominated solutions. This means that
they should converge toward near-optimal solutions according to our objectives. We also
want to make our results reproducible. The constraints and objectives should lead the
evolutionary algorithm into this direction, even though it is a stochastic process.

47

Leon Helwerda

The evolutionary algorithm has a number of parameters that we can tune, which we
summarize in Table 1. We look into the influence of the maximum number of iterations
on the convergence. We also tweak the population size, and examine how the mutation
operators affect the results.

We not only look at the evolutionary algorithm itself. We can make use of the results of
the objective functions to see whether our formulation of the sensor positioning problem
from Section 6.5.2 and the waypoint assignment implementation from Section 6.5.3 help
in improving our solutions.

The positioning problem has its own configuration, such as the intended size of the network,
the maximum number of measurements we want to perform, and other weighting and
tolerance levels. The waypoint assignment is less tightly connected to the main objectives
of the reconstruction planning, but its detection of potential collisions can still influence
which results are acceptable.

This setup gives us a large number of experiments. There are 12 settings that are of
interest, and we want to test between two and four different values for each setting. We
also want to see what the result is of certain combinations of configurations. If we run the
70 possible combinations five times, then this results in 350 experiments.

Parameter description Domain Tested values

Multiobjective algorithm parameters

Number of iterations tmax N>0 1000, 5000, 10000*, 100000

Population size µ N>0 10, 15*, 20

Algorithm Boolean NSGA-II, SMS-EMOA*

Waypoint positioning problem parameters

Network size N
2 10× 10, 20× 20∗

Network padding N
2 0× 0∗, 1× 1

Positioning variant Boolean Discrete*, continuous

Number of measurements λ N>0 50, 100*, 200

Constraint and objective function parameters

Ratio of unsnappable links γ
λ

[0.0, 1.0] 0.5*, 0.8

Weight of second objective δ [0.0, 1.0] 0.2, 0.5*, 0.8

Additional algorithm and operator parameters

Specialized mutation operator Boolean Disabled, enabled*

Collision avoidance algorithm Boolean Disabled, enabled*

Penalty for unsafe paths R ∪ {∞} 0, 20, 40, ∞∗

Table 1: Parameters that we test in the experiments. We take all combinations of values
within the same group, and otherwise use the default values listed with a star.

We use step sizes of 0.25 and 0.025 for the first two types of variables in the evolutionary
algorithm. These parameters signify the standard deviation of a normal distribution used
in the mutation operator. We determined that these values work well for the continuous
version of the problem, where the variables signify the offset and slope of each line. This
version also uses 0.25 as the probability of bit-flipping the third type of variable, which
determines whether to change the angle to a cardinal direction when it is close to it.

48

Mobile radio tomography: Autonomous vehicle planning for dynamic sensor positions

Larger step sizes mean that the evolutionary algorithm can rapidly alter its individuals,
which has the downside that it might step over an optimal solution. Thus these step sizes
seem like a good middle ground. In Section 7.2, we describe the results for the experiments
of the parameters in Table 1 rather than the tuning of the step sizes.

We also compare the missions provided by the planning algorithms with missions that we
design by hand. Section 7.3 describes a physical setup and a qualitative analysis.

7.2 Planning results

We summarize the results of our experiments with the planning algorithms. Due to the
large volume of results that we obtain, we only look at the results that signify interesting
revelations of our algorithm, such as its performance, stability and effectiveness in finding
good solutions for the sensor positions.

Because of the nondeterministic nature of the evolutionary multiobjective algorithm, it
may produce different individual solutions between runs. Multiple runs with the same
parameters allow us to retrieve the mean and standard deviation of the resulting values.

We use the KLP algorithm, which is the same sorting procedure used during the algorithm,
to select an average knee point result from the objective values of one solution, calculated
from Equations 6.5 and 6.6. These can be seen as the mean results of the experiment.

Because we minimize the objectives, lower values (toward negative infinity) are better, but
the values may not be necessarily comparable between the two objectives. In Figure 16, we
show the objective values of all average knee points of the 70 experiments. Here, the outlier
“best” value in the bottom left is a run of the continuous variant and otherwise default
values, which more easily optimizes the objectives. Other results that are part of the Pareto
front of this scatter plot respectively use a smaller network size, fewer measurements, and
the highest value tested for the penalty for unsafe paths, which improves the coverage of
intersecting links but has an average objective value for the total distances.

25000 20000 15000 10000 5000 0 5000
intersections

0

500

1000

1500

2000

d
is

ta
n
ce

s

Objective values for all experiments

Figure 16: Overview the objective values of the average knee points of all experiments.

49

Leon Helwerda

We now look at some parameters used within the experiments. The specialized mutation
operator that we describe in Section 6.5.2 performs certain actions that are different from
the randomization of a normal distribution, so we want to compare how fast and useful
these operations are.

The number of iterations per second or “speed” of the algorithm is shown in Figure 17a,
where we show a run with the specialized mutation operator enabled and a run where it
is disabled. Surprisingly, the specialized mutation operator appears to require less time
to mutate the dependent variables, compared to the usual mutations. The reason for this
speedup is unclear; the artificial placement of sensors might simplify the work of other
algorithms, such as the greedy assignment.

In Figure 18, we show the objective values of the average knee point at different iterations,
in a run with 100000 iterations. We observe that the specialized mutation operator helps
in decreasing the objective values, although it eventually results in unstable knee points.

0 2000 4000 6000 8000 10000
iteration

0

5

10

15

20

sp
e
e
d

Convergence of speed within mutation operator group

enabled
disabled

(a) Specialized mutation operator

0 2000 4000 6000 8000 10000
iteration

0

10

20

30

40

50

60

70

sp
e
e
d

Convergence of speed within collision avoidance group

enabled
disabled

(b) Collision avoidance

Figure 17: Convergence of speed when parts of the algorithm are activated, measured in
iterations per second.

0 20000 40000 60000 80000 100000
iteration

12000

10000

8000

6000

4000

kn
e
e
s

Convergence of intersections at knee within collision avoidance group

--collision-avoidance, --mutation-operator
--collision-avoidance, --no-mutation-operator
--no-collision-avoidance, --mutation-operator
--no-collision-avoidance, --no-mutation-operator

(a) First objective: intersections

0 20000 40000 60000 80000 100000
iteration

500

600

700

800

900

1000

1100

1200

1300

kn
e
e
s

Convergence of distances at knee within collision avoidance group

--collision-avoidance, --mutation-operator
--collision-avoidance, --no-mutation-operator
--no-collision-avoidance, --mutation-operator
--no-collision-avoidance, --no-mutation-operator

(b) Second objective: distances

Figure 18: Convergence of objective values, with various parts of the algorithm activated.

50

Mobile radio tomography: Autonomous vehicle planning for dynamic sensor positions

The collision avoidance algorithm from Section 4.2.2 also appears to work, in that it
determines whether an assignment of waypoints is safe. However, its effectiveness within
the evolutionary algorithm is limited. The collision avoidance algorithm rejects routes that
conflict anywhere, but such solutions can be stumbled upon anywhere in the search space.
We thus reject individuals which could lead to better results if we slightly mutate them.

As shown in Figure 17b, enabling the collision avoidance algorithm significantly reduces
the speed of the entire planning algorithm. In the runs shown in Figure 18, there are no
great differences between objective values when we enable or disable the collision avoidance
algorithm. It thus hinders the performance without clear advantages.

We can alter the algorithm to penalize unsafe solutions with an additional cost within the
second objective, instead of outright rejecting them. Even so, this only has an advantage
if we have space for detours. It might be more favorable to run the collision avoidance
algorithm afterward to detect unsafe solutions.

The greedy assignment itself, using an adapted version of Algorithm 4.2, provides a useful
measure of mission length. We use this within the second objective related to distances.
Another factor of the second objective is the sum of the lengths of all sensor links.

The two factors of the second objective are combined using a weight δ from Equation 6.6.
In Table 2, we see that both objective values decrease when δ is low, such as 0.2, which
causes it to assign more weight to the mission length instead of the sensor link lengths.
This might be because the sensor links are the basis for both objectives, thus we need to
assign more weight to the travel distance to optimize both objectives.

δ g1: intersections g2: distances

0.2 −10080.0± 511.0 418.4± 4.2
0.5 −8851.0± 310.7 740.3± 18.2
0.8 −10691.0± 0.0 969.7± 0.0

Table 2: Comparison of knee objective values between values of the weight δ, where lower
values are better.

0 2000 4000 6000 8000 10000
iteration

0

5

10

15

20

sp
e
e
d

Convergence of speed within population size group

10
15
20

(a) Convergence of speed (iterations per second)

0 2000 4000 6000 8000 10000
iteration

600

650

700

750

800

850

900

950

kn
e
e
s

Convergence of distances at knee within population size group

10
15
20

(b) Convergence of second objective: distances

Figure 19: Influence of the population size on the evolutionary algorithm’s behavior.

51

Leon Helwerda

The algorithm attempts to optimize both objectives, but it has a limited work space to
do so. One solution is to add more individuals to the population. The speed of such a
run, measured in number of iterations per second, ends up to be similar to runs with
small populations when they run for a long time, as shown in Figure 19a. This is because
the algorithm always mutates one individual per iteration, and other steps have a linear
complexity in terms of number of individuals.

The use of a population with more individuals only slightly decreases the objective values of
the knee points in Figure 19b. Having more individuals means that we have more possible
solutions to choose from, but it does not necessarily provide better ones.

A more pressing constraint is the number of measurements that we want to achieve. We
need more measurements to create more complicated missions and to visit more sensor
positions for the reconstruction, but this requires more variables within each individual.
The addition of more variables greatly reduces the speed of the algorithm. This means
that the effectiveness of our algorithm to search the entire search space is limited.

Of course, the possible measurements that we can perform is limited if we use discrete
points for them. When we use the continuous version of our problem, then we are able
to find better solutions, at least according to the objectives that we minimize in Table 3.
This version is possibly even more sensitive to the configuration and the stochastic process,
because it often creates measurements that have difficulties with crossing the network.

Variant g1: intersections g2: distances

Discrete −7933.0± 1241.4 712.8± 52.5
Continuous −21773.0± 117.7 577.8± 21.8

Table 3: Comparison of knee objective values between discrete and continuous variants.

0 2000 4000 6000 8000 10000
iteration

11000

10000

9000

8000

7000

6000

5000

4000

kn
e
e
s

Convergence of intersections at knee within unsnappable rate group

0.5
0.8

(a) First objective: intersections

0 2000 4000 6000 8000 10000
iteration

500

550

600

650

700

750

800

850

900

kn
e
e
s

Convergence of distances at knee within unsnappable rate group

0.5
0.8

(b) Second objective: distances

Figure 20: Convergence of objective values for different unsnappable rates.

Still, under the right circumstances, we may receive interesting results from the algorithms.
We can alter the threshold at which we accept an individual that has a number of links that
do not cross the network. The unsnappable rate determines the percentage of measurements
that must cross at least one pixel. This rate is the value γ

λ
, where γ is the threshold

mentioned before in Section 6.5.1, and λ is the maximum number of measurements.

52

Mobile radio tomography: Autonomous vehicle planning for dynamic sensor positions

One would expect a low unsnappable rate to allow way too many inferior results, but we
observe from Figure 20 that this may allow the algorithm to take more risk, resulting in
deviating runs. A high rate results in stable knee points which end up to be relatively good,
but do not improve. Thus, we find that selecting the right set of parameters is difficult
and very dependent on context, but the algorithms may give us good results if we do find
the right values.

7.3 Physical trials

After delving into the planning of missions, we want to actually put the missions into
play. We let various missions collect their measurements and observe which ones result in
a smoother reconstructed image of the same environment of objects.

We also compare the missions based on their running time and number of times that two
vehicles are too close to each other according to an objective proximity factor. This gives
us a measure of how safe a given mission is.

First of all, we describe how we set up the controlled space that we use for these physical
experiments. We use an indoor location that is enclosed by unused rooms, and the experi-
ment space is also mostly empty. This minimizes most forms of noise from the environment
that could disturb the RF sensor measurements.

When we are indoors, location detection systems such as GPS function quite poorly, which
we also determined empirically for the building where the experiments are located. Due to
this, the vehicles need a different method of detecting its position. The vehicles have a line
follower sensor, which we describe in Section 6.3.2. With it, we can follow black lines on a
white surface. We use tiles that can be printed on A3 paper that give us intersections of
lines that are 19 mm thick and 130 mm apart when they are cut out and repeated. These
tiles are shown in Figure 21a.

(a) Grid tile (b) Overview of the grid with two robot vehicles

Figure 21: The experimental setup of the grid where the vehicles may move.

The tiles need not fit exactly, as one can leave some white space between the lines by
letting the vehicles take some leeway when the line follower sensor loses the line. The
intersections are then still at equal distances from each other.

53

Leon Helwerda

The grid pattern resulting from the tiles has the advantage of clearly denoting the “pixels”
of the area corresponding to the reconstructed tomographic image. Thus we can check
whether the image shows the objects in their correct locations.

For our physical experiments, we create two grids: one full grid with 10 by 10 pixels, and
one grid that is 20 by 20 in total but only has pixel lines at the edges of the area. This
gives us two horizontal or vertical lines per edge, depending on the direction of the edge.
The latter grid is shown in Figure 21b. We use two vehicles in all experiments.

We perform some preliminary experiments on the smaller 10×10 grid, using different kinds
of missions. All of these missions employ the same kind of waypoint patterns, which we
describe in Section 6.4.1. This includes straight lines, fan beams originating from corners or
from the center of an edge, diagonal lines and other line patterns where the robot vehicles
are driving along different edges. We attempt to connect these patterns so that there is as
little downtime between measurements; this leads to a full mission with a specific order of
patterns.

(a) Top left; straight lines mixed
with corner fan beams

(b) Top left; straight lines mixed
with center fan beams

(c) Top left; straight lines, center
fan beams and corner fan beams

(d) Center; straight lines mixed
with corner fan beams

(e) Center; straight lines mixed
with center fan beams

(f) Center; straight lines, center
fan beams and corner fan beams

Figure 22: Visualizations of tomographic reconstructions for one person standing at two
different locations within a 10×10 network, using various patterns in missions that collect
the measurements. We observe that (c) and (f) supply the most realistic and stable results.

The quality of the result may depend on where the objects are located in the network;
some areas may receive many intersecting measurements pretty quickly, while others take
a long time to settle. Therefore, we perform two experiments for each of the three missions
that we compare.

54

Mobile radio tomography: Autonomous vehicle planning for dynamic sensor positions

In the first experiment, a person is standing in the top left corner of the network. All
missions start the vehicles at the lower edge of the network, which means that they need
to travel longer to get good coverage in this corner. The second experiment has one person
standing in the center of the network for further comparison.

We show these final visualizations in Figure 22. We observe that there are qualitative
differences in the reconstructed image for these fairly similar missions, when we run them
under the same circumstances.

Some tomographic reconstructions take longer to provide an image that is visually similar
to what we expect. During this time, they only show unstable reconstructions. This is
because there are not enough sensor measurements in certain areas, or the links do not
cross each other enough at that point.

Eventually, the mission that combines straight lines, fan beams from the center of the
edges, and fan beams from the corners, in that order, quickly supplies the most stable
result locations of objects that we testes, which we observe from the reconstructed images.

We now create a mission using the planning algorithm and compare it to the hand-made
mission. We allow the algorithm to place sensors at discrete locations for up to λ = 400
measurements, and require that at least 80% of them are correctly positioned such that
they cross the network. After tmax = 7000 iterations, we end the run, which gives us a
Pareto front. We pick a knee point, in this case the seventh solution in the front.

This solution performs 382 measurements. Using ranges of waypoints, we can compress
this mission to about 70% of the original size of the assignment of waypoints. The collision
avoidance algorithm determines that this assignment is safe, but we do not make use of
the padding. We visually confirm the safety using a tool that shows in which order we
receive the links from a predefined assignment.

(a) Partial result from mission
that was automatically planned

(b) Partial result from mission
that was hand-made

(c) Final result from mission
that was hand-made

Figure 23: Visualizations of tomographic reconstructions for one person standing in the
top right corner of a 20×20 network, during a planned mission and a hand-made mission.

When we run the planned mission, we obsertve about halfway through that Figure 23a
distinctly shows the person who is standing in the top right corner. In comparison, the
hand-made mission would finish faster for the 20 × 20 grid, but halfway through the
reconstruction still shows some “ghosts” of objects that are not in the area, which can be
seen in Figure 23b. The final result in Figure 23c does show the object distinctly.

55

Leon Helwerda

8 Conclusions

In this thesis, we introduced mobile radio tomography as a novel collection of techniques
that can be used to deploy a network of wireless sensors in a new location without much
prior information about the environment. We describe the foundations of geometry and
other concepts that are relevant for this purpose. This allows us to make use of existing
algorithms and augment them with new ones. These algorithms help us plan a mission
consisting of positions where we need to take sensors to, assign these positions to various
vehicles and ensure that they do not collide with each other.

The algorithms form the basis of a planning component within a larger toolchain, which is
able to direct the vehicles to move to the correct directions and oversee the entire mission.
We make use of information from auxiliary sensors, which allows the vehicle to perform
measurements, communicate with other vehicles as well as the ground station, receive
commands that the vehicle processes immediately in any circumstance, and keep track of
its location and other status information.

The complete toolchain allows us to experiment with our mobile radio tomography setup.
We look at the parameters that determine how the planning algorithms work, and also
test the missions in an actual setting, keeping in mind that our goal is to quickly receive
a stable and good reconstructed image of the area.

From our results of the large number of experiments with the planning algorithm, it
appears that we need to carefully tune the configuration of these algorithm for them to
function optimally. The evolutionary multiobjective optimization algorithm has problems
with finding better results. This may also be caused by the objectives themselves, i.e., they
are not easily optimizable because the underlying functions are too complicated, or they
do not provide a good measure of quality.

Additionally, the algorithms that are used to generate these measures work well on their
own, but they are slow and do not provide the expected end results when used within the
evolutionary algorithm. We speculate that this is due to the additional constraints laid
down by these algorithms, such as the collision avoidance algorithm rejecting or penalizing
solutions that are unsafe. The evolutionary algorithm can then unexpectedly find worse
solutions and is not able to salvage this situation.

The greedy assignment algorithm works well for a small number of pairs of sensor positions.
When we need to obtain over 200 measurements in order to receive a good reconstruction,
then the algorithm still functions the way it is supposed to, but certain movement patterns
are not sensible for human observers.

One problem is that the travel distance determined by this algorithm is based on the
sum of the lengths of the shortest (safe) routes, and does not contain other factors that
increase the duration of the mission. Still, the contribution of the greedy algorithm toward
the optimization problem and final assignment is considerable.

Indeed, when we do find good parameter values, the planning algorithm is able to provide
intriguing results. As seen in Section 7.3, the automatically planned mission is able to
compete with a hand-made mission, which follows certain patterns that were theorized
and tested to serve well for the tomographic reconstruction. The speed of the mission is
still an issue, but the quality of the reconstructed image shows that it is possible to put
an automatically planned mission into practice.

56

Mobile radio tomography: Autonomous vehicle planning for dynamic sensor positions

The vehicles make use of the line follower sensor to detect their location in a discrete grid
setup. This makes it possible to take a preprinted partial grid, which might consist of only
“rail tracks”, and place it in a new environment as a simple, controlled setup.

We let the vehicles follow their own mission autonomously. This independence does not
mean that they cannot take the other sensor-carrying vehicles into account. This allows
them to avoid collisions, and lets them synchronize the collection of measurements. Also,
a ground station is a necessity, but only for the planning and reconstruction work. Finally,
one needs to supervise the entire setup to ensure that everything works as intended. Still,
a lot of the work is automated, which is pleasing especially for the more laborious and
repetitive tasks.

We find that the overall approach of mobile radio tomography is successful in obtaining a
reconstructed image of an area with fairly little prior knowledge about its properties, using
far fewer sensors and measurements that one would need in a static setup. We show that
the addition of various algorithms and other sources of information can help in making
this approach more stable.

In conclusion, we can split up mobile radio tomography into different parts, which all work
the way we expect them to. Even though it may be problematic to achieve the expected
result in some cases, these difficulties are not insurmountable. These parts allow us to
create a fully functional toolchain, which leads to the desired end result of reconstructed
images that clearly show the location of objects within the area of interest.

8.1 Further research

While we present a toolchain for mobile radio tomography in this thesis which accomplishes
our basic needs, this does not necessarily mean that this field of research is completely
explored. We have several ideas, theories and proposals for additional features that can
be helpful to improve the stability, quality and overall usability of mobile radio tomog-
raphy. We focus on the topics related to unmanned vehicles, but this also includes novel
reconstruction work.

One particularly interesting concept is 3D tomographic reconstruction. If we make use
of more than two axes in our space, then we can gather measurements from many more
locations. This means that the vehicle must be able to fly around or otherwise change the
altitude of its sensor, e.g., through the use of a telescoping pole mounted on a robot. We
could perform measurements that intersect with objects detected earlier on even more, by
placing sensors at different altitudes and angles.

A simplification would be to measure similar links at slices of the space, each slice having
one altitude that is equal between all measurements in this slice. The slices can then
be stacked, and we then connect the detected object pixels, which are actually three-
dimensional voxels. This would make it possible to display an interactive 3D visualization
of the reconstruction.

The level of detail of the reconstructed images is not only limited by the number of discrete
locations where we perform measurements, but also by the granularity of signal strengths,
which is inherent to the wavelength and power of the wireless antennas. It may thus be
problematic to improve the resolution of the reconstructed images, but there could still be
opportunities that can enrich the reconstruction with more detailed information.

57

Leon Helwerda

One option is to scan the entire network with an initial reconstruction. After enough
measurements are received, we obtain knowledge about where the objects of interest are
located. We could then“zoom in”on one of the objects by moving the vehicles closer to this
object, but far away enough to move around it. We can then start another reconstruction
of this object, where we decrease the distances between sensors proportionate to this new
subnetwork.

The algorithms that we propose in this thesis can also be improved. The search algorithm
from Section 4.1 that we use, is based on the A* search algorithm. Variants exist that
improve performance and decrease complexity for specific domains. This could be used to
make the application of the other algorithms that use the search algorithm more viable.
The collision avoidance algorithm from Section 4.2.2 could be made less strict by modeling
what a vehicle could do to prevent a collision, such as halting or making a shorter detour
than it can detect right now.

The greedy algorithm, which assigns sensor positions to different vehicles in the form of
waypoints, could also be extended further. The algorithm that we describe in Section 4.2.1
performs a selection that is not always optimal. The greedy algorithm could take more
information into account to make a better decision while keeping the same time complexity.
We could track the direction in which the vehicle is facing at every point, so that we can
favor moving in this direction rather than turning to go to a position behind it.

The evolutionary algorithm could also be enhanced with objectives that better fit our
desires. We could improve the sensor positions by defining variables that create different
types of waypoints or complete patterns, such as straight lines and fan beams from certain
center points. We can use the hand-made missions as a baseline to optimize further, and
use it as a reference point in our Pareto front for different selection strategies.

In our physical setup, one would rather have the vehicles find out their location on their
own, with no knowledge of the area at all. This excludes the grid overlay, which lets the ve-
hicles position their sensors at precise but fixed locations. The grid restricts the movement
to certain directions, even when diagonal movement would be faster, for example.

A major bottleneck here is that the reconstruction requires precise location information,
and relying on external positioning information is too fragile. A solution that uses a global
positioning system (GPS) would not work reliably when there is no open air, and even
when outdoors it may be inexact and shifting the position incorrectly.

Other location detection systems such as ultrasound or infrared sensor information may
be possible but require additional setup or assumptions about the environment. Another
option is letting the vehicles determine their location through the use of the tomographic
measurements themselves. When there are enough sensors in our network, and we have
some baseline information such as initial positions and a realistic speed indicator, then a
triangulation approach could be possible.

Finally, we mostly consider vehicles that can freely move around in our conception of mobile
radio tomography. If we want a permanent setup with fewer sensors, then we can also use
other robotic systems to transport the wireless sensors. One could consider a guidance rail
mounted against a wall which holds sensors in certain positions and drags them around
to measure different links. This gives us the freedom to position sensors wherever we want
along these rails, without requiring a large number of them or depending on completely
independent, battery-powered vehicles.

58

Mobile radio tomography: Autonomous vehicle planning for dynamic sensor positions

List of figures

The following figures are included in this thesis. The actual figure can be found on the
corresponding page. We also specify the source of the work here; unless otherwise specified,
the figures are own work.

1 Radio tomography network with static sensors. From [36] 3

2 Flow diagram of the mobile radio tomography project. Own work [19] . . . 6

3 Postulates of Euclidean geometry . 10

(a) Lines . 10

(b) Circles . 10

(c) Angles . 10

4 Differences between geometries in first two dimensions 12

(a) Normal Euclidean geometry . 12

(b) Grid geometry . 12

(c) Spherical geometry. Based on example from 1 12

5 Axes of three-dimensional coordinate systems 13

(a) Normal Euclidean geometry. Based on example from 2 13

(b) Geometry with down axis. Based on example from 2 13

(c) Spherical geometry. Based on example from 1 13

6 Object shapes . 14

(a) Cube . 14

(b) Cylinder. Based on 3 . 14

(c) Sphere . 14

(d) Cone . 14

(e) Other polygon . 14

7 Physical vehicle types . 15

(a) Caterpillar track robot. Photo made by Tim van der Meij 15

(b) Rover with wheels. From 4, public domain 15

(c) Quadcopter drone. From [5] . 15

8 Pareto front . 27

9 Components in the toolchain . 30

10 Vehicle interface inheritance diagram . 33

11 Mission inheritance diagram . 36

12 Calibration cycles . 38

(a) Cycle with v1 from (0, 0) through (0, 2) 38

(b) Cycle with v2 from (0, 1) through (0, 3) 38

13 Straight line and fan beam cycles . 40

(a) Lines, v1: (0, 0)→ (9, 0), v2 : (0, 9)→ (9, 9) 40

(b) Fan beam with v1 from (9, 0) through (0, 9) 40

14 Example discrete solution with some padding. 43

15 Graphical user interface of the control panel 45

(a) Planning view, showing current state 45

(b) Waypoints view . 45

(c) Settings view . 45

1 http://www.texample.net/tikz/examples/dome/
2 http://tex.stackexchange.com/a/117175
3 http://tex.stackexchange.com/a/182998
4 https://en.wikipedia.org/wiki/File:Traxxas_t-maxx.no_body.triddle.jpg

59

http://www.texample.net/tikz/examples/dome/
http://tex.stackexchange.com/a/117175
http://tex.stackexchange.com/a/182998
https://en.wikipedia.org/wiki/File:Traxxas_t-maxx.no_body.triddle.jpg

Leon Helwerda

16 Average knee points of all experiments . 49
17 Convergence of speed of parts of the evolutionary algorithm 50

(a) Specialized mutation operator . 50
(b) Collision avoidance . 50

18 Convergence of objective values for parts of the evolutionary algorithm . . . 50
(a) First objective: intersections . 50
(b) Second objective: distances . 50

19 Influence of population size . 51
(a) Convergence of speed (iterations per second) 51
(b) Convergence of second objective: distances 51

20 Convergence of objective values for unsnappable rates 52
(a) First objective: intersections . 52
(b) Second objective: distances . 52

21 Experimental setup of the grid . 53
(a) Grid tile. Made by Tim van der Meij 53
(b) Overview of the grid. Photo by Tim van der Meij 53

22 Tomographic reconstructions for 10×10 network and various mission patterns 54
(a) Top left; straight lines mixed with corner fan beams 54
(b) Top left; straight lines mixed with center fan beams 54
(c) Top left; straight lines, center fan beams and corner fan beams . . . 54
(d) Center; straight lines mixed with corner fan beams 54
(e) Center; straight lines mixed with center fan beams 54
(f) Center; straight lines, center fan beams and corner fan beams 54

23 Tomographic reconstructions for 20× 20 network 55
(a) Partial result from mission that was automatically planned 55
(b) Partial result from mission that was hand-made 55
(c) Final result from mission that was hand-made 55

List of tables

1 Parameters used in the experiments . 48
2 Comparison of knee objective values between values of the weight δ, where

lower values are better. 51
3 Comparison of discrete and continuous variants 52

List of algorithms

4.1 Generic structure of most graph-based search algorithms. 19
4.2 Structure of the greedy waypoint assignment algorithm. 23
4.3 The collision avoidance planning algorithm. 25

60

Mobile radio tomography: Autonomous vehicle planning for dynamic sensor positions

References

[1] 3D Robotics. DroneKit. http://dronekit.io/ (accessed July 20, 2016).

[2] C. Alippi et al. RTI goes wild: Radio tomographic imaging for outdoor people de-
tection and localization. IEEE Transactions on Mobile Computing 99 (2015). doi:
10.1109/TMC.2015.2504965.

[3] P. Ammann and J. Offutt. Introduction to Software Testing. Cambridge University
Press, 2008.

[4] Arduino. https://www.arduino.cc/ (accessed August 19, 2016).

[5] ArduPilot developers. Open source autopilot. http://ardupilot.com/ (accessed
July 20, 2016).

[6] T. Bäck. Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evo-
lutionary Programming, Genetic Algorithms. Oxford University Press, 1996.

[7] T. Bäck and H. Schwefel. An overview of evolutionary algorithms for parameter
optimization. Evolutionary Computation 1 (1993), pp. 1–23. doi: 10.1162/evco.
1993.1.1.1.

[8] N. Balakrishnan and V. Nevzorov. A Primer on Statistical Distributions. Wiley &
Sons, 2004.

[9] T. Bektas. The multiple traveling salesman problem: An overview of formulations
and solution procedures. Omega 34.3 (2006), pp. 209–219. doi: 10.1016/j.omega.
2004.10.004.

[10] J. Branke, K. Deb, H. Dierolf, and M. Osswald. Finding knees in multi-objective
optimization. In: Proceedings of the International Conference on Parallel Problem
Solving from Nature (LNCS 3242). Springer, 2004, pp. 722–731. doi: 10.1007/978-
3-540-30217-9_73.

[11] D. Bredström and M. Rönnqvist. Combined vehicle routing and scheduling with tem-
poral precedence and synchronization constraints. European Journal of Operational
Research 191.1 (2008), pp. 19–31. doi: 10.1016/j.ejor.2007.07.033.

[12] H. S. M. Coxeter. Introduction to Geometry. Wiley, 1961.

[13] K. Deb. Multi-objective Optimization using Evolutionary Algorithms. Wiley & Sons,
2001.

[14] F. Ducatelle et al. Cooperative navigation in robotic swarms. Swarm Intelligence 8.1
(2014), pp. 1–33. doi: 10.1007/s11721-013-0089-4.

[15] Emlid. Navio+. http://www.emlid.com/ (accessed July 20, 2016).

[16] M. Emmerich, N. Beume, and B. Naujoks. An EMO algorithm using the hypervolume
measure as selection criterion. In: Proceedings of the Third International Conference
on Evolutionary Multi-Criterion Optimization (LNCS 3410). Springer-Verlag, 2005,
pp. 62–76. doi: 10.1007/978-3-540-31880-4_5.

[17] C. Fowler. The Solid Earth. 2nd edition. Cambridge University Press, 2004. doi:
10.1017/CBO9780511819643.

[18] B. L. Golden, S. Raghavan, and E. A. Wasil. The vehicle routing problem: Latest
advances and new challenges. Vol. 43. Springer Science & Business Media, 2008.

[19] L. Helwerda. “Mobile radio tomography: Object detection using autonomous un-
manned vehicles”. Master’s research project report, Leiden University. 2016.

61

http://dronekit.io/
http://dx.doi.org/10.1109/TMC.2015.2504965
https://www.arduino.cc/
http://ardupilot.com/
http://dx.doi.org/10.1162/evco.1993.1.1.1
http://dx.doi.org/10.1162/evco.1993.1.1.1
http://dx.doi.org/10.1016/j.omega.2004.10.004
http://dx.doi.org/10.1016/j.omega.2004.10.004
http://dx.doi.org/10.1007/978-3-540-30217-9_73
http://dx.doi.org/10.1007/978-3-540-30217-9_73
http://dx.doi.org/10.1016/j.ejor.2007.07.033
http://dx.doi.org/10.1007/s11721-013-0089-4
http://www.emlid.com/
http://dx.doi.org/10.1007/978-3-540-31880-4_5
http://dx.doi.org/10.1017/CBO9780511819643

Leon Helwerda

[20] P. Hillyard et al. Through-wall person localization using transceivers in motion.
CoRR 1511.06703 (2015). http://arxiv.org/abs/1511.06703.

[21] O. Kaltiokallio, M. Bocca, and N. Patwari. Enhancing the accuracy of radio tomo-
graphic imaging using channel diversity. In: Proceedings of the IEEE International
Conference on Mobile Adhoc and Sensor Systems (MASS). 2012, pp. 254–262. doi:
10.1109/MASS.2012.6502524.

[22] H. T. Kung, F. Luccio, and F. P. Preparata. On finding the maxima of a set of
vectors. Journal of the ACM 22.4 (1975), pp. 469–476. doi: 10.1145/321906.
321910.

[23] G. Laporte. The vehicle routing problem: An overview of exact and approximate
algorithms. European Journal of Operational Research 59.3 (1992), pp. 345–358.
doi: 10.1016/0377-2217(92)90192-C.

[24] L. Meier. MAVLink Micro Air Vehicle Communication Protocol. http : / / www .
qgroundcontrol.org/mavlink/start (accessed July 20, 2016).

[25] T. van der Meij. “Constructing an open-source toolchain and investigating sensor
properties for radio tomography”. Bachelor’s thesis, Leiden University. 2014.

[26] T. van der Meij. “Mobile radio tomography: Constructing an open-source framework
with wireless communication components”. Master’s research project report, Leiden
University. 2016.

[27] T. van der Meij.“Mobile radio tomography: Reconstruction and visualization of wire-
less sensor networks with dynamically positioned sensors”. Master’s thesis, Leiden
University. 2016.

[28] T. van der Meij and L. Helwerda. Open-source mobile radio tomography frame-
work. https://github.com/timvandermeij/mobile-radio-tomography (accessed
August 19, 2016).

[29] A. Milburn. “Algorithms and models for radio tomographic imaging”. Bachelor’s
thesis, Leiden University. 2014.

[30] National Geospatial-Intelligence Agency. Department of Defense World Geodetic
System 1984, its definition and relationships with local geodetic systems. Technical
report. NIMA TR8350.2. 1997.

[31] Pololu. Zumo Robot for Arduino. https : / / www . pololu . com / product / 2510

(accessed August 17, 2016).

[32] Raspberry Pi. https://www.raspberrypi.org/ (accessed August 26, 2016).

[33] S. J. Russell and P. Norvig. Artificial Intelligence: A modern approach. Third edition.
Prentice Hall, 2010.

[34] H. Schaub and J. Junkins. Analytical mechanics of space systems. AIAA Education
Series. American Institute of Aeronautics and Astronautics, 2003.

[35] B. Wei et al. dRTI: Directional Radio Tomographic Imaging. In: Proceedings of the
14th International Conference on Information Processing in Sensor Networks (IPSN).
ACM, 2015, pp. 166–177. doi: 10.1145/2737095.2737118.

[36] J. Wilson and N. Patwari. Radio tomographic imaging with wireless networks. IEEE
Transactions on Mobile Computing 9.5 (2010), pp. 621–632. doi: 10.1109/TMC.
2009.174.

[37] S. Winter. Modeling costs of turns in route planning. GeoInformatica 6.4 (2002),
pp. 345–361. doi: 10.1023/A:1020853410145.

62

http://arxiv.org/abs/1511.06703
http://dx.doi.org/10.1109/MASS.2012.6502524
http://dx.doi.org/10.1145/321906.321910
http://dx.doi.org/10.1145/321906.321910
http://dx.doi.org/10.1016/0377-2217(92)90192-C
http://www.qgroundcontrol.org/mavlink/start
http://www.qgroundcontrol.org/mavlink/start
https://github.com/timvandermeij/mobile-radio-tomography
https://www.pololu.com/product/2510
https://www.raspberrypi.org/
http://dx.doi.org/10.1145/2737095.2737118
http://dx.doi.org/10.1109/TMC.2009.174
http://dx.doi.org/10.1109/TMC.2009.174
http://dx.doi.org/10.1023/A:1020853410145

	Introduction
	Problem statement
	Motivation
	Applications

	Approach
	Team

	Overview

	Related work
	Routing algorithms
	Autonomous vehicles

	Definitions
	Geometry
	Coordinate system
	Locations

	Objects
	Vehicles
	Sensors
	Missions
	Safe paths

	Algorithms
	Search algorithm
	Planning problem
	Sensor position assignment
	Collision avoidance
	Evolutionary algorithms

	Context
	Implementation
	Overview of the components
	Vehicles
	Hardware communication
	Interfaces
	Simulation

	Environmental sensors
	Infrared sensor
	Line follower

	Missions
	Waypoints
	Calibration
	Fan beam and straight line patterns

	Planning
	Multiobjective optimization
	Positioning problem
	Waypoint assignment

	Ground station
	Test coverage

	Experiments
	Setup
	Planning results
	Physical trials

	Conclusions
	Further research

	List of figures
	List of tables
	List of algorithms
	References

