
Internal Report 2013–12 August 2013

Universiteit Leiden

Opleiding Informatica

Complexity Reduction and Validation

of Computing the

Expected Hypervolume Improvement

Iris Hupkens

MASTER’S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Abstract

Expected improvement algorithms are commonly used in global optimization problems
where evaluating the objective function is costly. The Expected Hypervolume Improve-
ment (EHVI) is a recent generalization of these algorithms to multiobjective optimization.
The computation of the EHVI is based on a multidimensional integration of a piecewise
defined nonlinear function. Exact calculation of the EHVI has so far only been possible in
2-D, and even there it is slow. In higher dimensions it can so far only be approximated, for
instance by Monte Carlo integration, and no expression/algorithm for direct integration
is available.

In this thesis, a new algorithm is devised for the exact calculation of the EHVI in higher
dimensions, and its correctness is experimentally verified in three dimensions. Addition-
ally, fast computation schemes are proposed for the exact calculation of the EHVI in
two and three dimensions, with time complexity in O(n2) (previously O(n3 log n)) and in
O(n3), respectively. Empirical tests show that for Pareto front approximations of modest
size (< 100 points) with the new algorithm computation times in the order of a second or
less are required to perform exact calculations in three dimensions and imprecise Monte
Carlo integration is no longer required. The algorithms have been implemented in C++
and can be readily used in global multiobjective optimization algorithms which use the
EHVI.

Contents

1 Introduction 3

2 Preliminaries 5

2.1 Exact Calculation of Partial One-Dimensional Improvements 6

3 Related Work 8

4 Calculating the 2-D EHVI 10

4.1 Empirical Performance . 16

5 Calculation of the Higher-Dimensional EHVI 17

5.1 Decomposition Into Parts . 17

5.2 Decomposition of the EHVI in the 3-D Case 19

5.3 Calculation of the 3-D EHVI . 26

5.4 Simple Higher-Dimensional EHVI Calculations 29

5.5 Complexity . 31

6 O(n3)-time 3-D EHVI Calculations 32

7 Empirical Tests and Results 36

7.1 Monte Carlo Verification . 37

1

7.2 Empirical Performance . 39

8 Conclusion and Future Work 42

A Sourcecode 43

A.1 2-D EHVI calculation function . 43

A.2 2-term scheme for 3-D EHVI calculation 44

A.3 Slice-update scheme for 3-D EHVI calculation 46

B How to Use the Software 50

2

Chapter 1

Introduction

In multiobjective optimization, the goal is to find a set of solutions which optimizes
multiple objective functions at the same time. Sometimes the function values of solutions
can only be determined through costly simulations, so approximation functions are used in
their place. This makes it possible to evaluate the function values of the most promising
individuals only, instead of wasting time evaluating the function values of individuals
that are unlikely to result in an improvement. Given a predictive distribution of the
expected function values, the Expected Hypervolume Improvement (or EHVI for short)
represents the expected improvement in the hypervolume measure of the solution set [1].
The hypervolume measure itself is a common measure used to determine the quality of
a set of solutions to a multiobjective optimization problem [2], which makes the EHVI a
natural quality measure to use in multiobjective surrogate-assisted optimization.

The calculation of the EHVI has so far been a problem. Monte Carlo integration can
solve the issue of computing the EHVI directly, but to get an accurate approximation
out of Monte Carlo integration is slow. An exact calculation approach exists, but it is
slow as well, and does not work in dimensions higher than 2. This thesis aims to increase
the speed of exact calculation of the EHVI in 2 dimensions, as well as provide a working
method of calculating it in higher dimensions. To verify whether it is working, it will
be compared to the results from Monte Carlo integration. The empirical performance of
directly calculating the EHVI in the three-dimensional case will also be analyzed in order
to show the feasibility of using direct calculations in place of Monte Carlo integration.

This thesis is structured as follows:

• Chapter 2 contains a partial summary of technical preliminaries required to under-
stand the thesis.

• Chapter 3 summarizes some related work.

• Chapter 4 contains a proof that the exact calculation of the 2-D EHVI can be
done in O(n2), as well as a proof that the worst-case complexity of calculating the

3

EHVI in the 2-D case cannot be less than O(n log n). It also contains the results of
an empirical test comparing the performance of the newly-provided algorithm to a
naive (O(n3 log n)) implementation.

• Chapter 5 describes the details of calculating the expected hypervolume improve-
ment in more than 2 dimensions.

• Chapter 6 describes a method for determining the 3-D EHVI with time complexity
O(n3).

• Chapter 7 describes the results of empirical tests of implementations of the algo-
rithms described in Chapter 5, both to verify their correctness and to measure their
performance.

• Finally, Chapter 8 contains some concluding remarks and an outline of promising
directions for future research.

4

Chapter 2

Preliminaries

Without loss of generality, we will consider maximization problems in this thesis, meaning
that finding the highest possible function values is desired.

A characteristic of multiobjective optimization problems is that there is typically no single
best solution. Instead, there is a set of solutions known as the Pareto front, all of which are
mutually non-dominated. A solution p dominates a solution q if it is strictly better than
q: that is, all of p’s function values are either greater than or equal to q’s corresponding
function value, and p 6= q. The Pareto front can consist of an infinite number of solutions,
so finding a finite Pareto approximation set is typically desired. The hypervolume measure
is a quality measure for such Pareto approximation sets, which is defined as the set’s
dominated hypervolume.

The dominated hypervolume of a set of points P with respect to a reference point r is the
hypervolume covered by the boxes that have an element of P as their upper corner and r
as their lower corner. The set containing the part of the objective space that is dominated
by the points in P will be referred to as DomSet(P). The hypervolume contribution of
a point p ∈ P is the difference in dominated hypervolume between P \ {p} and P . The
hypervolume contribution of a set of points S ⊆ P is defined analogously, as the difference
between P \ S and P . The hypervolume improvement of a point p /∈ P with respect to P
is defined as the hypervolume contribution of p with regards to P ∪ {p}.

The expected hypervolume improvement is the expected hypervolume contribution of a
new candidate point, for which the exact function values are not yet known, but which
has an associated predictive distribution function (PDF). The formula for the expected
hypervolume improvement of a candidate point with respect to a mutually non-dominated
set P is:

∫
p∈R

HI(p, P) · PDF (p)dp

5

Here R is Rm for an m-dimensional objective space. The hypervolume improvement func-
tion HI(p, P) will be 0 in the area of the objective space that falls inside the dominated
hypervolume of P , as well as in the area that fails to dominate r.

In [3], a formula is derived for exactly calculating this integral. A rectangular expected
improvement is calculated, and a correction term representing the dominated hypervolume
of P within this rectangular volume is then subtracted. While the formula is correct in
the 2-D case, it is incorrect for higher dimensions due to the more complex shape of the
dominated hypervolume of P . Due to its complexity, the full formula is omitted from these
preliminaries. One part of the formula which will be examined in more detail in Chapter
2.1 is a formula for calculating a partial one-dimensional expected improvement without
numerical integration.

For a given mean and standard deviation vector of an independently distributed pre-
dictive distribution, the expected hypervolume improvement has desirable monotonicity
properties:

1. If two predictive distributions p and q have the same variance, and p’s mean vec-
tor dominates q’s mean vector, then p will have a higher expected hypervolume
improvement than q.

2. If two predictive distributions p and q have the same mean value, then the predictive
distribution with the highest variance in its components will have a higher expected
hypervolume improvement.

The first property was proven in [1]. The second property was analytically proven for the
two-dimensional case in [3], but it still needs to be verified whether this property holds
in higher dimensions.

2.1 Exact Calculation of Partial One-Dimensional Im-

provements

In order to calculate the EHVI, we will need to calculate a lot of integrals that have the
form of a partial one-dimensional improvement. In [3], a function was derived that could
be used for that purpose. We will be using the ψ function as short-hand for the following:

ψ(a, b, µ, σ) = σ · φ(
b− µ
σ

) + (a− µ)Φ(
b− µ
σ

)

Here, φ is the function for the probability density function of the standard normal distri-
bution and Φ is the cumulative probability distribution function of the standard normal

6

distribution. The arguments µ and σ represent the mean value and standard deviation,
respectively. Both φ and Φ can be evaluated without numerical integration:

φ(x) =
1√
2π
e−

1
2
x2 Φ(x) =

1

2

(
1 + erf

(
x√
2

))
The function ψ can be used to calculate integrals that have the form of a partial expected
improvement from b to ∞, as is captured in the following equality:

∞∫
z=b

(z − a)
1

σ
φ(
z − µ
σ

) = σ · φ(
b− µ
σ

) + (a− µ)Φ(
b− µ
σ

)

The full 1-D expected improvement can be seen as a special case of this integral, where
a = b. Integrals whose upper limit is less than ∞ can be written as the sum of two such
integrals, allowing partial expected improvements over an interval [l, u) ⊂ R, l ≥ f ′ to be
calculated using ψ:

u∫
z=l

(z − f ′) 1

σ
φ(
z − µ
σ

)dz

=

∞∫
z=l

(z − f ′) 1

σ
φ(
z − µ
σ

)dz −
∞∫

z=u

(z − f ′) 1

σ
φ(
z − µ
σ

)dz

= ψ(f ′, l, µ, σ)− ψ(f ′, u, µ, σ)

The value f ′ in this case is the current best function value, or incumbent solution.

Note that to save on space, in the rest of this thesis we will use φx and Φx to denote the
partial probability distribution function and cumulative probability function of the given
probability distribution function PDF in the dimension x, so φx(px) should be read as
1
σ
φ(px−µx

σx
), and Φx(px) as Φ(px−µx

σx
).

7

Chapter 3

Related Work

Using the one-dimensional expected improvement to solve engineering problems with
expensive-to-evaluate objective functions was initially proposed by Mockus [6] and then
later picked up again by Jones et al. in [7] and has been widely used in global optimiza-
tion with expensive-to-evaluate functions since then. It has been shown to converge under
some mild assumptions [8].

The meta-model used for calculating the expected improvement can be generated using
Gaussian process regression, or Kriging [16]. It is a technique for estimating the mean
function value and the expected error using existing function values, based on the as-
sumption that points will have similar function values to the average of other nearby
points.

Multi-objective optimization problems are often solved using evolutionary algorithms,
such as NSGA-II [12] or SPEA-2 [13]. These algorithms do not require a-priori knowledge
of the relative importance of the different objective functions, and instead aim to provide
a varied set of solutions for the human decision maker. The quality of such solution sets
is often measured using the hypervolume measure, which was described in the previous
chapter. Recently, algorithms have been proposed that internally use the hypervolume
measure as a selection criterion [14] [15].

Generalizing the one-dimensional expected improvement to multiobjective optimization
problems is still a very new area of research. Besides the EHVI, various other solutions
have been proposed.

• Chebyshev scalarization with dynamically-changing weights is used in [9].

• Another proposed solution is to perform scalarization by using the distance from
the centroid of the probability distribution to the Pareto approximation set [10].

• In [11], the hypervolume improvement for candidate points is calculated based on
the upper confidence bound of the meta-model, and this measure is then used to

8

choose which point to evaluate next.

The EHVI directly corresponds to a selection criterion that has been effectively used in
multiobjective optimization, and the monotonicity properties studied in [1] (which the
older solutions for generalizing the expected improvement do not have) are expected to
make it a worthwhile contribution to the state-of-the-art once it can be calculated quickly
and exactly.

9

Chapter 4

Calculating the 2-D EHVI

Let P denote a set of n mutually non-dominated points in the two-dimensional plane.
Furthermore, let r be a reference point which is dominated by every point in P . The
aim is to calculate the expected hypervolume improvement for a point p in the decision
space for which we have the mean and standard deviation of a predictive distribution
describing the likelihood of results of its exact function value. Typically, such predictive
distributions stem from meta-models or low fidelity models of an expensive to compute
objective function. For the statistical assumptions of such models see, e.g., [5].

In the two-dimensional case, calculating the EHVI for p exactly can be done by piecewise
integration over the half-open rectangular interval boxes formed by the horizontal and
vertical lines going through the points in P and through r. The final EHVI is the sum
of the contributions calculated for all grid cells. See Figure 4.1 for a visualization of the
grid.

(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)

(0,3) (1,3) (2,3) (3,3)

(∞,∞)

r x

y

Figure 4.1: An example of the interval boxes for a small population P . Checkered boxes
fall in the dominated hypervolume of P . Therefore their contribution to the integral will
be 0, and no calculation will be necessary for these boxes.

Individual grid cells will be denoted by C(a, b), where 0 ≤ a ≤ n and 0 ≤ b ≤ n. Let

10

Q = P ∪ (∞, ry)∪ (rx,∞), with Qx denoting Q sorted in order of ascending x coordinate,
and Qy denoting Q sorted in order of ascending y coordinate. Let C be the set of grid cells
representing the interval boxes. The numbers a and b represent positions in the sorting
order of Q, starting with 0. Then, a is the position of elements of Qx and b is the position
of elements of Qy. The lower left corner of a cell will have the coordinates (Qx

a.x,Q
y
b .y).

The upper right corner of the grid cell will have the coordinates (Qx
a+1.x,Q

y
b+1.y).

Note, that due to the characteristics of mutually non-dominated points in the two-
dimensional plane, it is not necessary to sort Q twice in order to determine Qx and
Qy. Sorting P in order of ascending x coordinate is equivalent to sorting it in order of
descending y coordinate, and the other two points are opposites of each other which are
always at the beginning and end of the sorting order. It follows that Qx

k = Qy
n+1−k. There-

fore, a single sorting operation with a complexity of O(n log n) is sufficient for determining
the coordinates used for the grid cells.

When dividing the grid in the way described above, (n + 1)2 interval boxes are formed.
However, if the upper right corner of an interval box is dominated by or equal to some
point in P , its contribution will be zero, and no calculation will need to be done for that
interval box. These interval boxes are represented by a grid cell C(a, b) which is within the
dominated hypervolume of P . The remaining cells, Cstairs, are formed by cells for which
this is not the case, meaning that ∀(C(a, b) ∈ Cstairs, p ∈ P) : p.x > Qx

a.x ⇒ Qy
b .y ≥ p.y

and, analogously, p.y > Qy
b .y ⇒ Qx

a.x ≥ p.x.

Due to the definition of Q, we know that for p ∈ P it holds that p = Qx
k = Qy

n+1−k for
some 0 < k ≤ n. If k > a and n+ 1− k > b, p dominates C(a, b). No such point p exists if

b ≥ n+1−(a+1), so Cstairs consists of all cells satisfying a ≥ n−b. There are (n+1)(n+2)
2

of
such cells, resulting in a lower bound of O(n2) on the complexity of any algorithm which
iterates over these interval boxes.

If we call the lower corner of the cell l and the upper corner u, the contribution of a grid
cell to the integral is defined as follows:

uy∫
py=ly

ux∫
px=lx

HI(p)φx(px)φy(py) dpx dpy

Dominated cells have a contribution of 0 to the integral, and for cells which are non-
dominated, HI(p) can be calculated as a rectangular volume from which a correction term
is subtracted. See Figure 4.2 for a visual representation. The integral for these cells can
be calculated as follows, as was described in more detail in [3]:

11

C(a,b)

(∞,∞)

r x

y

p

Sminus

Figure 4.2: Within an integration region C(a, b), the hypervolume improvement of can-
didate points p is equal to (p.x − Qy

b+1.x) · (p.y − Qx
a+1.y) − Sminus. In this example, the

yellow rectangle represents (p.x−Qy
b+1.x) ·(p.y−Qx

a+1.y), and S consists of the two points
within the yellow rectangle.

uy∫
py=ly

ux∫
px=lx

(px − vx)(py − vy)− Sminus φx(px)φy(py) dpx dpy

=

uy∫
py=ly

ux∫
px=lx

(px − vx)(py − vy)φx(px)φy(py) dpx dpy

−
uy∫

py=ly

ux∫
px=lx

Sminus φx(px)φy(py) dpx dpy

= (ψ(vx, lx, µ, σ)− ψ(vx, ux, µ, σ)) · (ψ(vy, ly, µ, σ)− ψ(vy, uy, µ, σ))

− Sminus · Φx(ux)− Φx(lx) · Φy(uy)− Φy(ly)

The last step is motivated by Section 2.1 and the application of Fubini’s Theorem [17]. It
can be seen that the formula is of the form c1−Sminus ·c2, where c1 and c2 are calculations
which are performed in constant time with respect to n for a single cell.

The correction term Sminus is equal to the hypervolume contribution of S ⊆ P , where S
consists of those points dominated by or equal to the lower corner of the cell. Calculating
the dominated hypervolume of a set in the two-dimensional plane has a time complexity
of O(n log n). This complexity results from needing to find the neighbors of each point
in order to calculate its contribution to the hypervolume. Sorting the set has a time
complexity of O(n log n), after which the dominated hypervolume calculation itself is done
in O(n) by iterating over each point and performing an O(1) calculation using the points
that come before and after it in the sorting order. When calculating Sminus, the points for
which the dominated hypervolume is to be calculated come from P , which was already

12

(∞,∞)

r x

y

(3,3)(2,3)(1,3)(0,3)

(3,2)(2,2)(1,2)

(3,1)(2,1)

(3,0)
S = {}

S = {} S = {3}

3

2

1

S = {} S = {2} S = {2,3}

S = {} S = {1} S = {1,2} S = {1,2,3}

Figure 4.3: An example showing the order of iterations which allows the hypervolume
contribution of S to be updated in constant time.

sorted. This brings the complexity of this step down to O(n), but it can be brought down
to O(1) when the order of calculations is chosen carefully, giving the algorithm a total
complexity of O(n2).

The points dominated by or equal to the lower corner of C(a, b), which define S, are those
points satisfying the following equality:

p ∈ P,Qx
a.x ≥ p.x,Qy

b .y ≥ p.y

Because of the sorting order and definition of Qx and Qy, this is equivalent to finding the
range of points from Qx

(n+1−b) to Qx
a (limits included). S will be empty if Qx

a = Qx
(n−b),

which is the lowest value of a for which a ≥ n − b holds, and otherwise it will form an
uninterrupted range with Qx

(n+1−b) as its first element and Qx
a as its last element.

A row in Cstairs is a set of cells Cstairs(a, b) where b is the same. In a single row, S will
always be either empty or have Qx

a as its last element. Adding 1 to a adds one point to
the range of points in P which falls between Qx

a and Qx
(n+1−b). This makes it possible to

iterate over all cells in Cstairs while adding no more than one point to S per iteration. We
will do this as follows:

We will start iterating over each row of Cstairs at its first cell, where a = n − b. In this
cell, S = ∅ and Sminus = 0. For each iteration within a row after the first one, we add 1
to a and add the point Qx

a to S. For an example, refer to Figure 4.3 at the end of this
section, which shows the order of operations and the contents of S during each step.

Although the above description refers to ‘adding points to S’, we only need to keep track
of the first and last points of S in between algorithm iterations. When a new point is
added to S, Sminus increases by the area covered by the rectangle from (Qx

a.x,Q
x
a.y) to

the boundary point (Qx
(n−b).x,Q

x
a+1.y). Therefore, to update Sminus after the addition of

a point to S, only the left neighbor of the first element of S, the last element of S and

13

the right neighbor of the last element of S are needed. Figure 4.4 shows an example of
this process. This can be done in constant time in any data structure which allows the
neighbors of a point to be looked up in constant time: whenever a is incremented, Qx

a

becomes Qx
a+1 and Qx

a+1 becomes its right neighbor, Qx
a+2. Whenever b is incremented,

the new Qx
(n−b) becomes its left neighbor, Qx

(n−1−b), and as we will then start iterating
through values of a at the beginning of the row, Qx

a becomes the new Qx
(n−b) as well

because we have established earlier that Qx
a = Qx

(n−b) in the first cell in a row of Cstairs.

We have shown that the upper bound on the complexity of determining the expected
hypervolume improvement is O(n2). We can also show that the worst-case complexity can
be no better than O(n log n). If the standard deviation of a candidate point’s predictive
distribution is 0 and the mean value vector is a point which dominates all points in P ,
then the problem of calculating its EHVI reduces to calculating the hypervolume that will
be dominated by pcandidate minus the hypervolume dominated by P . If it was possible to
solve this calculation with lower complexity than O(n log n), then it would also be possible
to reduce the calculation of P ’s hypervolume to the problem of calculating the EHVI of
a point that dominates P , and it has already been proven in [4] that the complexity of
calculating the hypervolume of a set of points in the 2-D plane is in Θ(n log n).

14

(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)

(0,3) (1,3) (2,3) (3,3)

(∞,∞)

r x

y

(4,0)

(4,1)

(4,2)

(4,3)

(0,4) (1,4) (2,4) (3,4) (4,4)

(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)

(0,3) (1,3) (2,3) (3,3)

(∞,∞)

r x

y

(4,0)

(4,1)

(4,2)

(4,3)

(0,4) (1,4) (2,4) (3,4) (4,4)

(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)

(0,3) (1,3) (2,3) (3,3)

(∞,∞)

r x

y

(4,0)

(4,1)

(4,2)

(4,3)

(0,4) (1,4) (2,4) (3,4) (4,4)

(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)

(0,3) (1,3) (2,3) (3,3)

(∞,∞)

r x

y

(4,0)

(4,1)

(4,2)

(4,3)

(0,4) (1,4) (2,4) (3,4) (4,4)

Figure 4.4: An example showing how Sminus changes during each iteration within a single
row. The rectangular strip which is added after each iteration can be calculated with
knowledge of three points: the point Qx

a is its upper corner, the point Qx
a+1 provides the y

coordinate of its lower corner, and the point Qx
(n−b) provides the x coordinate of its lower

corner. Because Qx
(n−b) does not change, the hypervolume covered by the older points in

S stays the same and does not have to be re-calculated.

15

4.1 Empirical Performance

As an additional verification of the correctness of the algorithm presented above, two
implementations were written in C++. The first used the constant-time update scheme,
and the second did not: instead of using the constant-time update scheme, Sminus was
calculated by first finding the set of points S by checking each point in P to see if it was
dominated, and then calling a separate function on S to calculate the hypervolume of this
set of points.

The expected hypervolume improvement calculated using these implementations was iden-
tical for all test problems, but their speed was not. See Figure 4.5 for the empirical perfor-
mance on a simple test where P consisted of n different points on a diagonal Pareto front.
From this, it appears that using the constant-time update scheme becomes worthwhile
for n > 20, though results might vary slightly depending on implementation and system
details.

Figure 4.5: Time needed to calculate the expected hypervolume improvement in 2-D,
averaged over 10 runs. The times reported were measured on an Intel i7 quadcore CPU
with 2.1 GHz clockspeed, and the code was compiled using GNU under Windows with
the optimization level set to O3.

16

Chapter 5

Calculation of the
Higher-Dimensional EHVI

The algorithm given in [3] for exactly calculating the expected hypervolume improvement
is not correct when the number of dimensions is higher than 2. This is because the shape
of the hypervolume improvement becomes more complex when the number of dimensions
increases. We will therefore derive a new formula by first decomposing the calculation into
parts with less complex shapes, and then simplifying the resulting formula for the sake of
more convenient calculation.

5.1 Decomposition Into Parts

In higher dimensions, the search space can be divided into cells the same way it is done
in two dimensions, except instead of the boundaries being given by lines going through
the points in P and the reference point r, now the cells are separated from each other by
(m− 1)-dimensional hyperplanes (where m is the number of dimensions).

Each cell is denoted by C(a1, a2, . . . , am) where a1 through am are non-negative integers
representing an associated point in P ∪{r}. The coordinates of the lower corner and upper
corner of the cell can be derived from these integers by sorting P in ascending order of the
values of each objective function. We will use the variable l to refer to the lower corner
of the cell. If P d is P sorted in the dth objective function, then the dth function value of
l (ld) is equal to the d-th function value of the ad-th element of P d, unless ad is 0. In that
case, ld = rd. The upper corner u is given by finding the next point in each sorting order
and using the dth function value from that, or ∞ if ad was equal to n and no next point
thus exists.

The hypervolume improvement of a point p with respect to P is given by the function
HyperVolume (A \DomSet(P)), where A is the dominated hypervolume covered by p.

17

A1,2,3

A1,2
A2

A1

A3

A1,3 A2,3

f3

f2
f1

Figure 5.1: An example showing how the quantities AC are defined in a three-dimensional
objective space. A∅ is within the rectangular volume. The checkered areas represent the
dominated hypervolume of P ∩ A.

This is the same as calculating HyperVolume(A) − HyperVolume (DomSet(P) ∩ A). We
will denote the set of dimensions by D = {1, 2, . . . ,m}. We can decompose the calculation
of the hypervolume improvement of a point p ∈ C(a1, a2, . . . , am) as follows:

HI(p) =
∑
C⊆D

IC

IC = HyperVolume (AC)− HyperVolume (DomSet(P) ∩ AC)

AC is given by:

AC =



v1
v2
...
vk

 ,


w1

w2
...
wk




vd =

{
ld d ∈ C
rd d /∈ C

wd =

{
pd d ∈ C
ld d /∈ C

See Figure 5.1 for an example in 3 dimensions.

The values of rd and ld are constant for all points that fall within a given interval box:
r is the reference point and is, of course, always constant, while l represents the position

18

of the lower corner of the cell. From this, it follows that IC represents the portion of the
hypervolume improvement which is constant with regards to the values of pd, d /∈ C, and
which is variable with regards to the values of pd, d ∈ C. In fact, it is linearly related to
these values. This is a direct consequence of the way the cell boundaries are defined:

Let SC be a cross-section of DomSet(P)∩AC which goes through p. This cross-section is
defined by a projection to the dimensions not in C (if C consists of k dimensions, the slice
will be (m − k)-dimensional as a result). The projection of DomSet(P) uses only those
points in P for which the function values in the dimensions given by C are larger than the
corresponding function values of p. We shall call this selection P ′. No points in P can fall
between cell boundaries in any dimension, so the composition of P ′ must be the same for
all points within a cell. The projection of AC to the dimensions not in C is constant for
all points within a cell as well, because the coordinates defining AC are independent of
p in all dimensions not in C. HyperVolume(SC) is constant as a result. Because AC does
not span across cell boundaries in the dimensions in C, HyperVolume(DomSet(P) ∩AC)
is equal to the hypervolume of SC multiplied by the length of AC in all dimensions in C,
and those lengths are given by (pd − ld) with d ∈ C.

There is one quantity IC for which C = D. This quantity ID is special because it is linearly
related to all values of p. ID falls entirely within the cell, and as such, instead of projecting
P onto a zero-dimensional space, it can simply be said that HyperVolume(DomSet(P) ∩
AD) = HyperVolume(AD) if the cell is dominated, and HyperVolume(AD∩DomSet(P)) =
0 if it is not. Therefore, ID = HyperVolume(AD) for non-dominated cells.

The previously-discussed 2-D calculation scheme can be seen as a special case of this gen-
eral decomposition, with two differences. The first is that the different quantities making
up A are not calculated separately, and the second difference is that instead of using the
reference point r to delimit A, a point is chosen which causes HyperVolume(DomSet(P)∩
A{1}) and HyperVolume(DomSet(P)∩A{2}) to be 0. Replacing r by a point which causes
the one-dimensional dominated hypervolumes to be 0 is always possible, but in the 2-D
case this causes the constant I∅ to be the only quantity requiring the calculation of a
hypervolume improvement, which is especially convenient. Chapter 5.3 will extend this
technique to the 3-dimensional case, but first an example of the decomposition in the 3-
dimensional case will be given in the section below, along with a demonstration of how this
decomposition can be translated to the calculation of the partial expected hypervolume
improvement for each cell.

5.2 Decomposition of the EHVI in the 3-D Case

The expected improvement of a point p with associated probability distribution function
PDF in the 3-D case is defined as follows:

19

EHVI(~p) =

∫∫∫
R3

HI(~p, P) · PDF (~p)dpx dpy dpz

x y

z

Figure 5.2: A visual representation of the integration region. The black dots are points in
the Pareto approximation set P . The opaque volume underneath the points is the shape
of the dominated hypervolume of P . The dashed box in the center is an example interval
box. The dashed lines attached to this interval box represent the region within which
the dominated hypervolume of P is relevant to the calculation of the partial expected
hypervolume improvement for this interval box.

Here, PDF is a joint probability distribution function of three independent Gaussian
probability distributions, one for each dimension. As in the 2-D case, we can calculate
this integral by performing integration over a set of interval boxes covering the integration
domain and summing up the results. The interval boxes will be delimited by the 2-D planes
going through all coordinates of the points in P . See Figure 5.2 for a visualization. Each
interval box will have its lower corner denoted by some vector l ∈ R3 and its upper corner
denoted by some vector u ∈ R3. We get:

EHVI(~p) =
∑ uz∫

pz=lz

uy∫
py=ly

ux∫
px=lx

HI(p)φx(px)φy(py)φz(pz) dpx dpy dpz


The hypervolume improvement, HI(p), is 0 when p is dominated by any point in P or
when p does not dominate the reference point, so we need to do no further calculations for
cells which are within the dominated hypervolume of P or whose lower corner stretches
out to −∞ in any dimension. For all cells where this is not the case, the hypervolume

20

improvement of points within that cell can be decomposed as described in Section 5.1. We
will denote these quantities by IC where C is a subset of {x, y, z} denoting the dimensions
in which the quantity is variable.

HI(p) = I∅ + Ix + Iy + Iz + Ixy + Ixz + Iyz + Ixyz

I∅ is equal to the hypervolume improvement of l. Every point that dominates or is equal
to l will also dominate this hypervolume, and therefore HI(l) is part of HI(p) for all p in
the cell with the lower corner l. It can be calculated as the hypervolume dominated by l
and not by any point in P :

I∅ = Vol

rxry
rz

 ,

lxly
lz

 \DomSet(P)


Ix is the part of HI(p) which is variable in the x dimension and constant in the y and
z dimensions. It is the hypervolume dominated by the point {px, ly, lz} and not by l or
any point in P . The hypervolume dominated by {px, ly, lz} and not by l is formed by
the box with upper corner {px, ly, lz} and lower corner {lx, ry, rz}. Because this volume
spans no more than the length of the cell in the x dimension and points which determine
the shape of the dominated hypervolume of P only lie on the 2-dimensional planes which
delimit interval boxes, the size of the 3-D dominated volume of P increases linearly with
x. This allows Ix to be defined as a constant 2-D hypervolume improvement in the y, z
plane which is multiplied by a variable difference in the x plane, given by px − lx, to
compute the 3-D hypervolume improvement. The 2-D polyhedron with which to calculate
this 2-D hypervolume improvement is a slice of the 3-D dominated hypervolume where x
falls within the cell, and can be determined by taking the y, z coordinates of all points in
P with x > lx, as follows:

Ix = (px − lx) · Area

([(
ry
rz

)
,

(
ly
lz

)]
\DomSet (πyz (σx>lx(P)))

)

Here, π and σ are respectively the projection and selection operator from relational alge-
bra, where P is interpreted as a ternary relation.

Iy and Iz are defined analogous to Ix.

Ixy is the part of HI(p) which is variable in the x and y dimensions but constant in the
z dimension. It is the hypervolume dominated by {px, py, lz} and not by any point in P ,
{px, ly, lz}, {lx, py, lz} or l. It is formed by the 3-D rectangle with upper corner {px, py, lz}
and lower corner {lx, ly, rz}, from which the volume dominated by P is then subtracted.
Again, because this volume spans only the length of the cell in the x and y dimensions,
it increases linearly in those dimensions and can be seen as a 2-D area defined by the

21

distance between px and lx and py and ly multiplied by a one-dimensional hypervolume
improvement in the z dimension:

Ixy = (px − lx)(py − ly) · Length
(
[rz, lz] \DomSet

(
πz
(
σx>lx,y>ly(P)

)))
A one-dimensional hypervolume improvement is simply a regular improvement, which is
defined as the new value minus the highest existing value, or zero if this difference is
smaller than zero. This allows the formula Ixy to be written more simply as:

Ixy = (px − lx)(py − ly)(lz −Max
(
{rz} ∪ πz

(
σx>lx,y>ly(P)

))
)

Ixz and Iyz are defined analogous to Ixy.

Ixyz is the part of HI(p) which is variable in all three coordinates. Intuitively, this describes
the part of HI(p) which falls fully within the interval box. No part of the cell is dominated
by a point in P , and therefore this partial hypervolume improvement can be calculated
as the volume of the box which has l as its lower corner and p as its upper corner:

Ixyz = (px − lx)(py − ly)(pz − lz)

Now that we have decomposed the region that determines the hypervolume improvement,
we can decompose the calculation of the partial integrals as well. If we refer to the constant
part of each of the quantities described above as IconstC , we have to compute the following
for each interval box with a non-zero contribution:

uz∫
pz=lz

uy∫
py=ly

ux∫
px=lx

(Iconst∅ + Iconstx (px − lx) + . . .

+ Iconstxy (px − lx)(py − ly) + . . .

+ (px − lx)(py − ly)(pz − lz))
· φx(px)φy(py)φy(py) dpx dpy dpz

The constant quantities are as follows. I∅ is completely constant, therefore:

Iconst∅ = Vol

rxry
rz

 ,

lxly
lz

 \DomSet(P)



22

For Ix, Iy and Iz, the constant part is a 2-dimensional hypervolume improvement. Iconstx

is defined as follows, with the other two constants defined analogously:

Iconstx = Area

([(
ry
rz

)
,

(
ly
lz

)]
\DomSet (πyz (σx>lx(P)))

)

The constant part of Ixy, Ixz and Iyz is a one-dimensional improvement:

Iconstxy = lz −Max
(
{rz} ∪ πz

(
σx>lx,y>ly(P)

))
Ixyz has no constant part, which is why Iconstxyz is omitted from the formula.

The sum rule allows us to decompose our integral into a sum of smaller integrals, each
of which represents the expected improvement associated with a single quantity from the
decomposition of HI(p). We will refer to these partial integrals as EIC where C ⊆ {x, y, z}.

∑
C⊆{x,y,z}

EI = EI∅ + EIx + . . .+ EIxy + . . .+ EIxyz

EI∅ =

uz∫
pz=lz

uy∫
py=ly

ux∫
px=lx

Iconst∅ · φx(px)φy(py)φz(pz) dpx dpy dpz

EIx =

uz∫
pz=lz

uy∫
py=ly

ux∫
px=lx

Iconstx (px − lx) · φx(px)φy(py)φz(pz) dpx dpy dpz

. . .

EIxy =

uz∫
pz=lz

uy∫
py=ly

ux∫
px=lx

Iconstxy (px − lx)(py − ly) · φx(px)φy(py)φz(pz) dpx dpy dpz

. . .

EIxyz =

uz∫
pz=lz

uy∫
py=ly

ux∫
px=lx

(px − lx)(py − ly)(pz − lz) · φx(px)φy(py)φz(pz) dpx dpy dpz

Fubini’s theorem [17] states that iterated integration, performed in any order, can be used
to calculate a multiple integral under the condition that the multiple integral is absolutely
convergent. The integrals we are considering here all converge to finite numbers, so we
can safely use iterated integration.

In EI∅, factoring out the contribution of Iconst∅ results in an integral which consists solely
of a Gaussian PDF over a 3-D box. We can calculate this integral by using the formula

23

for the Gaussian cumulative probability distribution (which requires only the Gaussian
error function, erf) and subtracting the cumulative probability at the lower corner of the
cell from the cumulative probability at the upper corner of the cell. This allows EI∅ to be
calculated without numerical integration if we are willing to accept erf as a closed-form
expression:

EI∅ = Iconst∅ ·
∏

c∈{x,y,z}

(Φc(uc)− Φc(lc))

For EIx, we can factor φy and φz out of the integral and simply multiply everything
with the cumulative distribution, because everything apart from the Gaussian PDF is
constant in those integration variables. This leaves a one-dimensional integral containing
the integration variable φx:

EIx =

 ux∫
px=lx

(px − lx)φx(px) dpx

 · ∏
c∈{y,z}

(Φc(uc)− Φc(lc)) · Iconstx

The integral between the large parentheses has the proper form to be calculated using the
ψ function, in the following way:

ux∫
px=lx

(px − lx)φx(px) dpx = ψ(lx, lx, µx, σx)− ψ(lx, ux, µx, σx)

This gives the following formula:

EIx = Iconstx ·
∏

c∈{y,z}

(Φc(uc)− Φc(lc)) · (ψ(lx, lx, µx, σx)− ψ(lx, ux, µx, σx))

EIy and EIz are defined analogously.

To calculate EIxy, we can place the constant factor Iconstxy as well as the probability
distribution for z outside of the integral right away. In effect, we are integrating in the
z dimension, and then placing the result outside of the integral because it is constant in
both of the other dimensions.

EIxy = Iconstxy (Φz(uz)− Φz(lz)) ·
uy∫

py=ly

ux∫
px=lx

(px − lx)(py − ly) · φx(px)φy(py) dpx dpy

24

At first this formula appears complex, but it becomes easier to calculate because the parts
are not dependent on each other. We can see (px − lx) as a function which is constant in
y and variable in x, and (py − ly) as a function which is constant in x and variable in y.
This results in a product of two integrals which can be calculated separately:

uy∫
py=ly

 ux∫
px=lx

(px − lx)(py − ly) · φx(px)φy(py) dpx

 dpy

=

uy∫
py=ly

(py − ly)

 ux∫
px=lx

(px − lx) · φx(px)dpx

φy(py) dpy

=

uy∫
py=ly

(py − ly)φy(py) dpy ·
ux∫

px=lx

(px − lx) · φx(px)dpx

Both of the integrals have the form of a calculation of the partial one-dimensional expected
improvement. We can therefore use ψ to calculate them. We get the following formula:

(ψ(lx, lx, µx, σx)− ψ(lx, ux, µx, σx)) · (ψ(ly, ly, µy, σy)− ψ(ly, uy, µy, σy))

Which means that our complete formula for EIxy will look like this:

EIxy =Iconstxy

· (Φz(uz)− Φz(lz))

· (ψ(lx, lx, µx, σx)− ψ(lx, ux, µx, σx))

· (ψ(ly, ly, µy, σy)− ψ(ly, uy, µy, σy))

EIxz and EIyz are defined analogously.

The formula for EIxyz is easily derived using the same method that was used for deriving
the formula for EIxy and is even simpler. Instead of a product of two expected improve-
ments, a constant and a Gaussian cumulative probability distribution, it is a product of
three expected improvements:

∏
c∈{x,y,z}

(ψ(lc, lc, µc, σc)− ψ(lc, uc, µc, σc))

The amount of calculations required for the decomposition described above is quite large.
One thing that might be noticed when looking at the different formulas, is that partial

25

calculations can be reused. In particular, only six calls to the ψ function need to be made.
If efficient calculation is a goal, however, then larger improvements can be reached. This
will be explored in the next section.

5.3 Calculation of the 3-D EHVI

Consider that, in the 2-D case, we are able to calculate the hypervolume by integrating
over a box bounded by the dominated hypervolume and subtracting a correction term
Sminus. We can do something similar in the 3-D case. Recall that we decomposed HI(p)
as follows:

HI(p) = I∅ + Ix + Iy + Iz + Ixy + Ixz + Iyz + Ixyz

Together, they form the volume of

rxry
rz

 ,

pxpy
pz

 \DomSet(P)

. Instead of writing

HI(p) as a sum of hypervolume improvements, we can also write it as a single rectangular
volume from which a dominated hypervolume is subtracted:

HI(p) = Vol

rxry
rz

 ,

pxpy
pz

− Vol

DomSet(P) ∩

rxry
rz

 ,

pxpy
pz


We can then decompose the calculation of the dominated hypervolume instead of the
calculation of the hypervolume improvement. In the following decomposition of the total
subtracted dominated hypervolume S−, each part S−C is equal to the subtracted dominated
hypervolume of IC . When p is within the integration cell bounded from below by l, we
get the following:

S− = S−∅ + S−x + S−y + S−z + S−xy + S−xz + S−yz

= Vol

DomSet(P) ∩

rxry
rz

 ,

lxly
lz


+ (px − lx) · Area

(
DomSet (πyz (σx>lx(P))) ∩

[(
ry
rz

)
,

(
py
pz

)])
+ . . .

+ (px − lx) · (py − ly) ·
(
Max(rz, πz(σx>lx,y>ly(P)))− rz

)
+ . . .

26

The first thing to note is that if rz ≥ Max(rz, πz(σx>lx,y>ly(P))), S−xy = 0. The analogous
cases are true for S−xz and S−yz, allowing us to define a point v for which, if r = v, all three
quantities are 0:

v =

Max(rx, πx(σy>ly ,z>lz(P)))
Max(ry, πy(σx>lx,z>lz(P)))
Max(rz, πz(σx>lx,y>ly(P)))


The bounding box bounded by v from below and p from above contains the entire volume
of HI(p). This allows us to use v in place of r and rewrite our initial equation in a way
that reduces the number of components from 8 to 5:

HI(p) = Vol

vxvy
vz

 ,

pxpy
pz


− Vol

DomSet(P) ∩

vxvy
vz

 ,

lxly
lz


− (px − lx) · Area

(
DomSet (πyz (σx>lx(P))) ∩

[(
vy
vz

)
,

(
ly
lz

)])
− (py − ly) · Area

(
DomSet

(
πxz
(
σy>ly(P)

))
∩
[(
vx
vz

)
,

(
lx
lz

)])
− (pz − lz) · Area

(
DomSet (πxy (σz>lz(P))) ∩

[(
vx
vy

)
,

(
lx
ly

)])

The integral corresponding to Vol

vxvy
vz

 ,

pxpy
pz

 is the only component in this

equation which is variable in more than one dimension, but since it is a rectangular
volume, it is simply a product of one-dimensional improvements:

∏
c∈{x,y,z}

(ψ(vc, lc, µc, σc)− ψ(vc, uc, µc, σc))

S−∅ is a constant. Even without examining the corresponding integral it is clear that it
only needs to be multiplied with the probability that a given point is within the cell. The
formula for calculating this correction term is:

S−∅ ·
∏

c∈{x,y,z}

(Φc(uc)− Φc(lc))

27

S−x , S−y , and S−z are not constants, but they are each linearly related to only one coordinate
of p. We will look at S−x as an example:

The constant part of S−x is Area

(
DomSet (πyz (σx>lx(P))) ∩

[(
vy
vz

)
,

(
ly
lz

)])
. This has

to be multiplied by (px − lx). The expected value of S−x is therefore equal to a constant
multiplied by the partial expected improvement of px over the interval [lx, ux). This is
given by:

ux∫
px=lx

(px − lx)φx(px) dpx = ψ(lx, lx, µx, σx)− ψ(lx, ux, µx, σx)

Using a new call to ψ to calculate this term is not necessary. We can use the fact that ψ
represents the function of a one-dimensional expected improvement over a certain range
bounded from below. The partial expected improvement for the region below the lower
cell bound l is a constant term multiplied by the chance of being within the cell’s range,
which is captured in the equation below:

ψ(vc, lc, µc, σc)−ψ(vc, uc, µc, σc) = ψ(lc, lc, µc, σc)−ψ(lc, uc, µc, σc)+(Φc(uc)−Φc(lc))·(lc−vc)

Both (Φc(uc)−Φc(lc))·(lc−vc) and ψ(vc, lc, µc, σc)−ψ(vc, uc, µc, σc) were calculated earlier,
so we can reuse them to easily find ψ(lc, lc, µc, σc)− ψ(lc, uc, µc, σc).

This means that the formula for calculating the partial expected hypervolume improve-
ment of a cell will look like this if the cell is not dominated:

Let ∆ψc = ψ(vc, lc, µc, σc)− ψ(vc, uc, µc, σc), c ∈ {x, y, z}
and ∆φc = Φc(uc)− Φc(lc), c ∈ {x, y, z}

28

EI =
∏

c∈{x,y,z}

∆ψc

− V ol

DomSet(P) ∩

vxvy
vz

 ,

lxly
lz

 · ∏
c∈{x,y,z}

∆φc

− (∆ψz −∆φz · (pz − vz)) · Area
(
DomSet (πyz (σx>lx(P))) ∩

[(
vy
vz

)
,

(
ly
lz

)])
·
∏

c∈{x,y}

∆φc

− (∆ψy −∆φy · (py − vy)) · Area
(
DomSet

(
πxz
(
σy>ly(P)

))
∩
[(
vx
vz

)
,

(
lx
lz

)])
·
∏

c∈{x,z}

∆φc

− (∆ψx −∆φx · (px − vx)) · Area
(
DomSet (πxy (σz>lz(P))) ∩

[(
vx
vy

)
,

(
lx
ly

)])
·
∏

c∈{y,z}

∆φc

And it will be 0 otherwise.

5.4 Simple Higher-Dimensional EHVI Calculations

Although we are currently decomposing our integral into different quantities in order to
calculate it, we can also calculate the sum of these quantities using a single dominated
hypervolume calculation. This section will give the general formula for doing so. Recall
how we decomposed the calculation of the hypervolume improvement in Chapter 5.1:

HI(p) =
∑
C⊆D

IC

IC = HyperVolume(AC)− HyperVolume(DomSet(P) ∩ AC)

This sum can be rearranged to the following:

∑
C⊆D

HyperVolume(AC)−
∑
C⊆D

HyperVolume(DomSet(P) ∩ AC)

Since the quantities AC sum to a generalized rectangular volume, we could just as readily
calculate the total volume of A directly. This is what we did in Chapter 5.3, where the
correction terms HyperVolume(DomSet(P) ∩ AC) were still calculated separately. The
equality

∑
C⊆D HyperVolume(DomSet(P)∩AC) = HyperVolume(DomSet(P)∩A) follows

directly from the definition of SC , but we initially decomposed this calculation to solve
the problem of calculating the corresponding integral.

29

We have determined that each partial quantity HyperVolume(DomSet(P) ∩ AC) de-
pends linearly on the dimensions which its corresponding volume AC depends on, and
is constant in the same dimensions in which AC is constant. This is true as well when
HyperVolume(DomSet(P)∩A) is first calculated, and then split into the various volumes
representing DomSet(P)∩AC . Because of this, we can calculate an m-dimensional EHVI
using only a single m-dimensional hypervolume calculation per cell. We need to calculate
the hypervolume improvement of each cell’s center of mass, p̄.

p̄d =

∫ ud
pd=ld

pd · φd(pd)dp
Φd(ud)− Φd(ld)

The integral can be calculated as if it is an expected improvement where the incumbent
solution is 0. However, we already need to calculate ψ(rd, ld, µd, σd) − ψ(ld, ud, µd, σd) to
determine the volume of A, and the following equation holds:

ψ(0, ld, µd, σd)− ψ(0, ud, µd, σd)

Φd(ud)− Φd(ld)
=
ψ(rd, ld, µd, σd)− ψ(rd, ud, µd, σd)

Φd(ud)− Φd(ld)
+ rd

Dividing a partial expected improvement over a range [ld, ud) by the chance of being in
that range (given by Φd(ud)−Φd(ld)) gives the expected improvement of points which are
known to lie within that range. Adding the value of rd gives the expected dth coordinate
of a point in the objective space bounded from below by r.

This means that the general formula for calculating the partial expected improvement in
a cell is the following if the cell is not dominated:

EI =
∏
d∈D

(ψ(rd, ld, µd, σd)− ψ(rd, ud, µd, σd))− S− ·
∏
d∈D

(Φd(ud)− Φd(ld))

S− = HyperVolume

DomSet(P) ∩



r1
r2
...
rm

 ,


p̄1
p̄2
...
p̄m





p̄d = rd +
ψ(rd, ld, µd, σd)− ψ(rd, ud, µd, σd)

Φd(ud)− Φd(ld)

And 0 otherwise.

30

5.5 Complexity

Any algorithm which iterates over all grid cells described in Chapter 5 will have a time
complexity of Ω(nm). This is further increased by the complexity of the calculations within
each grid cell. The algorithm of Chapter 5.4 requires an m-dimensional hypervolume to be
calculated for each cell that is not dominated. Calculating a 3-dimensional hypervolume
can be done in O(n log n), which results in a time complexity of O(n4 log n). However, as
will be shown in Chapter 6, constant-time calculations within each grid cell are possible
with O(n3) total preparation time, resulting in an algorithm of complexity O(n3). Similar
O(nm) algorithms are conjectured to exist for m > 3.

One important thing to note, is that the expected hypervolume improvements for multiple
individuals can be calculated at the same time without having to perform the hypervolume
calculations more than once when using the decomposition described in Chapter 5.2 or
5.3, because the hypervolume calculations are not dependent on the mean and standard
deviation of the probability distribution. The algorithm described in Chapter 5.4 does not
have this advantage.

31

Chapter 6

O(n3)-time 3-D EHVI Calculations

In Chapter 4 we showed that calculating the 2-D expected hypervolume improvement is
possible with time complexity O(n2). Although the algorithm described in that section
made use of characteristics of a 2-D Pareto approximation set which are not present in
higher dimensions, this section will show that there is also a way to calculate the 3-D EHVI
with time complexity O(n3). In other words: the calculations necessary for computing the
partial expected hypervolume improvement of each grid cell will be performed in constant
time. The trade-off is that we will need O(n2) extra memory.

The only calculations which have a complexity higher than constant time are the dom-
inated hypervolume calculations. If we use the simple algorithm described in Chapter
5.4, we only need to perform a single 3-dimensional hypervolume calculation to find the
correction term that we need. However, we will start out with the algorithm described
in Chapter 5.3 (without replacing r by v), because it lends itself better to the re-use of
old hypervolume calculations. Three sets of correction terms are needed to calculate the
partial expected hypervolume improvement of a cell:

• S−∅ , a constant correction term which requires a three-dimensional hypervolume
calculation.

• S−x , S−y and S−z , which each require a two-dimensional hypervolume calculation. We
will call the 2-D areas used in the calculation of these correction terms xslice, yslice
and zslice, respectively.

• S−xy, S−xz and S−yz, which requires a ‘one-dimensional’ hypervolume calculation.

Instead of calculating these correction terms afresh for each cell, it is possible to perform
all necessary hypervolume calculations in only O(n3) time total. The first step is to create
a data structure which allows us to see if a cell is dominated in O(1) time. This can simply
be a two-dimensional array holding the highest value of z for which the cell is dominated,
which we shall call Hz. A simple way to fill this array is to iterate over all points q ∈ P in

32

order of ascending z value, setting the array value Hz(a1, a2) to z if q dominates the lower
corner of C(a1, a2, 0). This only needs to be done once, so the O(n3) time complexity is
no problem. Figure 6.1 shows an example.

x

y

z

(10,2,10)

(7,3,8)

(9,6,6)
(4,10,4)

Reference point: (0,0,0) y

x

10 10 10 10

8 8

6 6 6

6

4 0 0 0

0

0

Figure 6.1: Example height array Hz for a population consisting of 4 points, which is
visualized on the left. Cells on the outermost edge of the integration area (which stretch
out to ∞ in some dimension) are always non-dominated.

Besides containing information that allows constant-time evaluation of whether a cell is
dominated, the value of S−xy for a cell C(a1, a2, a3) that is not dominated is also given by
Hz(a1, a2). If we build two more height arrays Hx and Hy where we use the highest value
of x and y instead of z, we can determine the results of all three of the one-dimensional
hypervolume calculations in constant time during cell calculations.

Now, only the two-dimensional hypervolume calculations represented by xslice, yslice
and zslice, and the three-dimensional hypervolume calculation represented by S−∅ , still
have a complexity greater than constant time. For notational simplicity, we have omitted
their dependence on a particular cell from the notation until now, but in order to show
the relations between correction terms of different cells, we will write ‘S−∅ belonging to
C(a1, a2, a3)’ as C(a1, a2, a3).S

−
∅ , and likewise for the two-dimensional hypervolumes.

The value of S−∅ is related to the values of xslice, yslice and zslice in the following way:

• C(a1, a2, a3).xslice =
C(a1+1,a2,a3).S

−
∅ −C(a1,a2,a3).S

−
∅

u.x−l.x

• C(a1, a2, a3).yslice =
C(a1,a2+1,a3).S

−
∅ −C(a1,a2,a3).S

−
∅

u.y−l.y

• C(a1, a2, a3).zslice =
C(a1,a2,a3+1).S−∅ −C(a1,a2,a3).S

−
∅

u.z−l.z

With our height array Hz, we can calculate all values of zslice for a given value of a3 in
O(n2) time. We can also calculate all values of S−∅ for a given value of a3 in O(n2) time,

33

provided a3 = 0 or we have both S−∅ and zslice for the cells where a3 is one lower. The
details of these calculations will be given below. If we go through our cells in the right
order (with a3 starting at 0, incrementing it only after we have performed the calculations
for all cells with a given value of a3), we only need to update the values of zslice and S−∅
n times, resulting in an algorithm for the full computation with complexity in O(n3). If
we know the value of S−∅ for all cells with a given value of a3, we can use the formulas
given above to calculate xslice and yslice in constant time whenever we need them, so
we do not need to calculate these constants in advance.

The details of calculating zslice using the height array are as follows. We will iterate
through the possible values of a1 and a2 in ascending order. We know that zslice(a1, a2)
is 0 if a1 = 0 or a2 = 0. If our height array shows that C(a1 − 1, a2 − 1, a3) is domi-
nated, zslice(a1, a2) is set equal to the area of the 2-D rectangle from its lower corner to
{rx, ry}. Else, if that cell is not dominated, zslice(a1, a2) is set equal to zslice(a1−1, a2)+
zslice(a1, a2− 1)− zslice(a1− 1, a2− 1). The value of zslice(a1− 1, a2− 1) is removed as
this is the area which is overlapping, causing it to be added twice otherwise.

For an example, refer to Figure 6.2.

34

y

x
4 7 9 10

2

3

6

10

0 0

0 0

0 0 0 0

0 0 0 0

0 0

00

y

x
4 7 9 10

2

3

6

10

2*4 = 8 2*7 = 14 2*9 = 18 2*10 = 20

3*4 = 12 3*7 = 21 3*9 = 27
27+20-18
= 29

6*4 = 24 6*7 = 42 6*9 = 54
54+29-27
= 56

10*4 = 40 40+42-24
= 58

58+54-42
= 70

70+56-54
= 72

y

x
4 7 9 10

2

3

6

10

18*4
= 72

20*4
= 80

27*4
= 108

29*4
= 116

24*4
= 96

42*4
= 168

54*4
= 216

56*4
= 224

40*4
= 160

58*4
= 232

70*4
= 280

72*4
= 288

12*4
= 48

21*4
= 84

14*4
= 56

8*4
= 32

y

x
4 7 9 10

2

3

6

10

2*4 = 8 2*7 = 14 2*9 = 18 2*10 = 20

3*4 = 12 3*7 = 21 3*9 = 27
27+20-18
= 29

6*4 = 24 6*7 = 42 6*9 = 54
54+29-27
= 56

0+24-0
= 24

24+42-24
= 42

42+54-42
= 54

54+56-54
= 56

y

x
4 7 9 10

2

3

6

10

72
+ 18*2
= 108

80
+ 20*2
= 120

108
+ 27*2
= 162

116
+ 29*2
= 174

96
+ 24*2
= 144

168
+ 42*2
= 252

216
+ 54*2
= 324

224
+ 56*2
= 336

160
+ 24*2
= 208

232
+ 42*2
= 316

280
+ 54*2
= 388

288
+ 56*2
= 400

48
+ 12*2
= 72

84
+ 21*2
= 126

56
+ 14*2
= 84

32
+ 8*2
= 48

y

x
4 7 9 10

2

3

6

10

2*4 = 8 2*7 = 14 2*9 = 18 2*10 = 20

3*4 = 12 3*7 = 21
21+18-14
= 25

25+20-18
= 27

0+12-0
= 12

12+21-12
= 21

21+25-21
= 25

25+27-25
= 27

0+12-0
= 12

12+21-12
= 21

21+25-21
= 25

25+27-25
= 27

Figure 6.2: Some values of zslice and S− for the example shown in Figure 6.1, with a3 = 0,
1 and 2, respectively. The x and y values of each cell’s lower corner are shown on the axes.
The grids with the values of S− are on the left and the grids with the values of zslice are
on the right.

35

Chapter 7

Empirical Tests and Results

Five different implementations of a 3-D expected hypervolume improvement calculation
algorithm were used throughout the following tests, referred to as the 8-term, 5-term,
2-term, slice-update and Monte Carlo schemes. The goal of comparing the exact calcula-
tion algorithms to a Monte Carlo scheme is twofold. First, by computing the Expected
Hypervolume Improvement in different ways, the algorithms and their implementations
will be thoroughly validated. Second, the time consumption of the algorithms will be
compared. This is of particular interest because Monte Carlo schemes are often used as
fast approximations to exact computations.

• The 8-term scheme is a direct implementation of the calculations described in Chap-
ter 5.2.

• The 5-term scheme implements the slightly simplified calculations described in
Chapter 5.3.

• The 2-term scheme implements the calculations described in Chapter 5.4.

• The slice-update scheme implements the algorithm described in Chapter 6.

• The Monte Carlo scheme uses Monte Carlo integration to give an approximation
of the expected hypervolume improvement. Its random number generator uses the
Box-Muller transform [19] in combination with the Mersenne Twister algorithm [18]
(specifically, the 32-bit MT19937 variant from the C++ standard library, imple-
mented in GCC) to generate normally distributed pseudo-random numbers. Due to
the nature of Monte Carlo algorithms, it is impossible to get an exact answer out of
this scheme. The expected error of Monte Carlo integration is related to the number
of trials m by 1√

m
, which means that to make the estimate ten times more accurate,

a hundred times more trials are required.

The implementations of ψ and the Gaussian cumulative distribution function were iden-
tical for all schemes, except for the Monte Carlo scheme where they were not used. The

36

2-D and 3-D hypervolume calculation functions were also identical between those schemes
which used them. Standard C++ library functions were used for sorting and for the im-
plementation of the Gaussian error function erf.

7.1 Monte Carlo Verification

As a verification of the correctness of the algorithms, the expected hypervolume improve-
ments calculated by all schemes on several test problems were compared to each other
and to the value which the Monte Carlo scheme converged towards.

The graph in Figure 7.1 shows the results of running the algorithms on a simple test
problem. The population consisted of three points: (1, 2, 3), (2, 3, 1) and (3, 1, 2). The
reference point was set to (0, 0, 0). The median vector for the Gaussian distribution was
set to (3, 3, 3), placing it right between cell borders, and the standard deviation was set to
(2, 2, 2). All non-Monte Carlo schemes gave exactly identical answers, which was likely due
to the simplicity of the test case, because rounding errors in the floating-point calculations
would have resulted in small differences otherwise. The Monte Carlo scheme was allowed
to run for 100.000.000 iterations.

Figure 7.1: Logarithmic-scale graph of the convergence of Monte Carlo integration. The
answer was measured every 100.000 iterations.

Figure 7.2 shows the results of running the algorithm on a few more complex populations.
The first consists of 30 points, some of which had identical values to another point in the
population in one of their dimensions (creating cells of size 0). The second consists of 100
points with a bias towards one area of the search space. The results of all non-Monte Carlo
schemes on these two test problems were identical to 15 and 14 digits, respectively. The

37

double-precision floating numbers which were used in the implementations are accurate
to approximately the 15th decimal, so the answers can safely be considered identical.

Figure 7.2: Two logarithmic-scale graphs showing the convergence of Monte Carlo inte-
gration, along with visualizations of the Pareto approximation sets.

The convergence of the Monte Carlo integration, as well as the near-identical answers
generated by the different approaches towards calculating the expected hypervolume im-
provement, both support the validity of the calculations described in this thesis.

38

7.2 Empirical Performance

To test the empirical performance of the exact calculation schemes, they were tested on
mutually non-dominated populations of varying sizes that were generated by selecting n
pseudo-random points which were uniformly distributed on a spherical surface. The time
needed for calculating the expected hypervolume improvement was measured (along with
all operations required to do so, such as sorting the populations, but not including the
time needed to generate the populations). The seed of the pseudorandom generator was
the same for each calculation scheme that was tested. Figure 7.3 shows the results. There
is a noticeable difference in speed between the 8-term, 5-term and 2-term scheme, but
they are in the same complexity class and for any given n, their performance relative to
each other is roughly the same. The slice-update scheme, by contrast, performs better
relative to the other schemes when n increases, as would be expected due to its lower
complexity. Even for small n it outperforms the other algorithms.

Figure 7.3: Time needed to calculate the expected hypervolume improvement for a Pareto
approximation set consisting of n points randomly selected on the surface of a sphere,
averaged over 10 runs.

What is interesting is that going from 8 terms to 5 terms causes a greater improvement
than going from 5 terms to 2 terms, even though 2-dimensional hypervolume calculations
are completely removed from the equation when going to 2 terms. No solid conclusions can
be drawn from the magnitude of the differences, as they might depend on the implemen-
tation details of the code and the compiler optimizations. However, this does show that
simplifying calculations can make a big difference for the speed of an algorithm. A benefit
of the 2-term scheme which is not captured in the graph, is that it is the simplest scheme

39

in terms of the number of operations that must be implemented, so the time needed to
implement it will be shorter.

Figure 7.4: The figure on the left shows the number of Monte Carlo trials that can be
performed in a second given a spherical Pareto approximation set consisting of n points.
The figure on the right plots the same data as a graph of the time required for 100.000
Monte Carlo iterations, compared to the time needed for the fastest non-Monte Carlo
scheme.

Figure 7.5: Graph showing the time needed to simultaneously calculate the EHVI on a
number of candidate points using either the 5-term or slice-update schemes, for a popu-
lation size of 30. The expected time taken when simply calling the slice-update scheme
on each candidate individual separately is also plotted in this graph for purposes of com-
parison.

40

The Monte Carlo scheme is a special case, in that the time it takes to run depends on the
desired accuracy, and this accuracy in turn also depends on the variance of the predictive
distribution. When this variance is higher, the accuracy will be lower. For a rough idea
of its performance relative to the exact calculation schemes, see Figure 7.4, which shows
the number of Monte Carlo trials which can be performed if the algorithm is allowed to
run for a second. Because of the O(n log n) time complexity of each individual trial, it
is less affected by n than any of the exact calculation schemes. If n is large enough and
the desired accuracy is low enough, it might be the faster option. However, when n is
reasonably small, there is no advantage to using it.

The complexity of calculating the expected hypervolume improvement of multiple points
by repeatedly using one of the described algorithms is of course linear in the number
of candidate individuals. Here, the 8-term, 5-term and slice-update schemes have an ad-
vantage not shared by the Monte Carlo and 2-term schemes, in that their hypervolume
calculations are independent of the probability distribution for which the EHVI is being
calculated. This makes it possible to calculate several expected hypervolume improve-
ments on the same population with a relatively small corresponding increase in calculation
time, because the additional calculations have complexity O(n3). It is expected to be less
impressive for the slice-update scheme, as this already has a time complexity of O(n3),
but the amount of overhead that is avoided might still be noticeable. To determine the
impact of this advantage on the relative performance of the schemes, Figure 7.5 shows the
results of using the schemes to calculate the EHVI for a vector of probability distributions
instead of just one.

As can be seen, the time taken increases linearly in the number of individuals evaluated at
the same time, but the constant added on top of that is larger for the 5-term scheme than
for the slice-update scheme. When n is 30 it is only a difference equivalent to evaluating a
few more candidate individuals, however. Because the 5-term scheme is somewhat easier
to implement, it might be preferable to use it if the number of candidate individuals is
expected to be high in comparison to n.

41

Chapter 8

Conclusion and Future Work

The main results realized in this thesis are as follows:

• We have designed and implemented a faster algorithm for calculating the EHVI
in two dimensions. The original algorithm had a time complexity in O(n3 log n),
whereas the new algorithm has a time complexity in O(n2). An empirical test shows
improved speed even for relatively small n (> 20).

• We have provided a correct exact calculation algorithm for calculating the EHVI in
more than two dimensions, written out in detail and validated in three dimensions
through comparison with Monte Carlo integration.

• For the 3-dimensional case, we have additionally designed and implemented fast
algorithms. Algorithms in two different complexity classes were implemented:

With space complexity in O(n2) and time complexity in O(n3).

With space complexity in O(n) and time complexity in O(n4 log n).

• An empirical study shows that in practice, calculating the EHVI in three dimensions
can be done in a second or less when n, the size of the Pareto approximation set, is
no larger than about 100. This makes it viable to use the exact calculation scheme
in place of Monte Carlo integration.

Besides these results, we have also established a relationship between the expected im-
provement and the center of mass, which might be important for future theoretical results.

Now that an algorithm exists for exactly calculating the expected hypervolume improve-
ment in higher dimensions, it should be verified whether the monotonicity properties of
the EHVI hold in higher dimensions. Another interesting area of future work would be
to investigate the performance of calculating the EHVI for dimensions greater than 3. In
particular, investigating whether the O(n3) algorithm for calculating the 3-dimensional
expected hypervolume indicator could be extended to higher dimensions might be worth-
while.

42

Appendix A

Sourcecode

The full implementations of the algorithms described in this paper are provided on the
website of the LIACS natural computing group, at natcomp.liacs.nl. The functions
implementing the 2-D hypervolume calculations, the 2-term scheme, and the slice-update
scheme, are additionally provided here for convenient reference.

A.1 2-D EHVI calculation function

1 #include ” he lpe r . h”
2 #include ” ehv i hvo l . h”
3 #include <deque>
4 #include <algor ithm> // s o r t i n g
5 #include <math . h> //INFINITY macro
6 using namespace std ;
7
8 //When doing 2d hypervolume ca l c u l a t i o n s , uncomment the f o l l ow i n g l i n e
9 // to NOT use O(1) S−minus updates (O(n l o g n) in s t ead) :
10 //#de f i n e NAIVE DOMPOINTS
11
12 //Returns the expec ted 2d hypervolume improvement o f popu la t i on P with r e f e r ence
13 // po in t r , mean vec to r mu and standard de v i a t i on vec t o r s .
14 double ehvi2d (deque<i n d i v i dua l∗> P, double r [] , double mu[] , double s []) {
15 s o r t (P. begin () , P . end () , xcomparator) ;
16 double answer = 0 ; //The even tua l answer
17 int k = P. s i z e () ; //Holds amount o f po in t s .
18 #i f d e f NAIVE DOMPOINTS
19 deque<i n d i v i dua l∗> dompoints ; //For the old−f a sh ioned way .
20 #end i f
21 double Sminus ; //Correct ion term fo r the i n t e g r a l .
22 int Ss t a r t = k−1, Sho r i z on ta l = 0 ;
23 //See t h e s i s f o r exp l ana t i on o f how the O(1) i t e r a t i o n comp lex i t y
24 // i s reached . NOTE: i = y = f [1] , j = x = f [0]
25 for (int i =0; i<=k ; i++){
26 Sminus = 0 ;

43

natcomp.liacs.nl

27 Sho r i z on ta l = Ss ta r t ;
28 for (int j=k−i ; j<=k ; j++){
29 double fmax [2] ; // s t a i r c a s e width and he i g h t
30 double c l1 , c l2 , cu1 , cu2 ; //Boundaries o f g r i d c e l l s
31 i f (j == k){
32 fmax [1] = r [1] ;
33 cu1 = INFINITY ;
34 }
35 else {
36 fmax [1] = P[j]−> f [1] ;
37 cu1 = P[j]−> f [0] ;
38 }
39 i f (i == k){
40 fmax [0] = r [0] ;
41 cu2 = INFINITY ;
42 }
43 else {
44 fmax [0] = P[k−i−1]−> f [0] ;
45 cu2 = P[k−i−1]−> f [1] ;
46 }
47 c l 1 = (j == 0 ? r [0] : P [j−1]−> f [0]) ;
48 c l 2 = (i == 0 ? r [1] : P [k−i]−> f [1]) ;
49 // Ce l l boundar ies have been dec ided . Determine Sminus .
50 #i f d e f NAIVE DOMPOINTS
51 dompoints . c l e a r () ;
52 for (int m = 0 ; m < k ; m++){
53 i f (c l 1 >= P[m]−> f [0] && c l 2 >= P[m]−> f [1]) {
54 dompoints . push back (P[m]) ;
55 }
56 }
57 Sminus = ca l cu l a t eS (dompoints , fmax) ;
58 #else
59 i f (Sho r i z on ta l > Ss t a r t){
60 Sminus += (P[Sho r i z on ta l]−> f [0] − fmax [0]) ∗ (P[Sho r i z on ta l]−> f [1] − fmax [1]) ;
61 }
62 Sho r i z on ta l++;
63 #end i f
64 //And then we i n t e g r a t e .
65 double ps i 1 = e x i p s i (fmax [0] , c l1 ,mu[0] , s [0]) − e x i p s i (fmax [0] , cu1 ,mu[0] , s [0]) ;
66 double ps i 2 = e x i p s i (fmax [1] , c l2 ,mu[1] , s [1]) − e x i p s i (fmax [1] , cu2 ,mu[1] , s [1]) ;
67 double gausscd f1 = gausscd f ((cu1−mu[0]) / s [0]) − gausscd f ((c l1−mu[0]) / s [0]) ;
68 double gausscd f2 = gausscd f ((cu2−mu[1]) / s [1]) − gausscd f ((c l2−mu[1]) / s [1]) ;
69 double sum = (ps i 1 ∗ ps i 2) − (Sminus∗ gausscd f1 ∗ gausscd f2) ;
70 i f (sum > 0)
71 answer += sum ;
72 }
73 Sstart −−;
74 }
75 return answer ;
76 }

A.2 2-term scheme for 3-D EHVI calculation

1 #include ” he lpe r . h”

44

2 #include ” ehv i hvo l . h”
3 #include <deque>
4 #include <algor ithm> // s o r t i n g
5 #include <math . h> //INFINITY macro
6 using namespace std ;
7
8 //2−term 3−D EHVI c a l c u l a t i o n scheme .
9 double ehvi3d 2term (deque<i n d i v i dua l∗> P, double r [] , double mu[] , double s []) {
10 double answer = 0 ; //The even tua l answer .
11 int n = P. s i z e () ; //Holds amount o f po in t s .
12 double Sminus ; //Correct ion term fo r the i n t e g r a l .
13 deque<i n d i v i dua l∗> Py , Pz ; //P sor t ed by y/ z coord ina te
14 s o r t (P. begin () , P . end () , ycomparator) ;
15 for (int i =0; i<P. s i z e () ; i++){
16 Py . push back (P[i]) ;
17 }
18 s o r t (P. begin () , P . end () , zcomparator) ;
19 for (unsigned int i =0; i<P. s i z e () ; i++){
20 Pz . push back (P[i]) ;
21 }
22 s o r t (P. begin () , P . end () , xcomparator) ;
23 for (int z=0;z<=n ; z++){
24 for (int y=0;y<=n ; y++){
25 for (int x=0;x<=n ; x++){
26 double fmax [3] ; //upper corner o f hypervolume improvement box
27 double c l [3] , cu [3] ; //Boundaries o f g r i d c e l l s
28 c l [0] = (x == 0 ? r [0] : P [x−1]−> f [0]) ;
29 c l [1] = (y == 0 ? r [1] : Py [y−1]−> f [1]) ;
30 c l [2] = (z == 0 ? r [2] : Pz [z−1]−> f [2]) ;
31 cu [0] = (x == n ? INFINITY : P[x]−> f [0]) ;
32 cu [1] = (y == n ? INFINITY : Py [y]−> f [1]) ;
33 cu [2] = (z == n ? INFINITY : Pz [z]−> f [2]) ;
34 // Ca l cu l a t e expec ted one−dimensiona l improvements w. r . t . r
35 double ps i 1 = e x i p s i (r [0] , c l [0] ,mu[0] , s [0]) − e x i p s i (r [0] , cu [0] ,mu[0] , s [0]) ;
36 double ps i 2 = e x i p s i (r [1] , c l [1] ,mu[1] , s [1]) − e x i p s i (r [1] , cu [1] ,mu[1] , s [1]) ;
37 double ps i 3 = e x i p s i (r [2] , c l [2] ,mu[2] , s [2]) − e x i p s i (r [2] , cu [2] ,mu[2] , s [2]) ;
38 // Ca l cu l a t e the p r o b a b i l i t y o f be ing w i th in the c e l l .
39 double gausscd f1 = gausscd f ((cu [0]−mu[0]) / s [0]) − gausscd f ((c l [0]−mu[0]) / s [0]) ;
40 double gausscd f2 = gausscd f ((cu [1]−mu[1]) / s [1]) − gausscd f ((c l [1]−mu[1]) / s [1]) ;
41 double gausscd f3 = gausscd f ((cu [2]−mu[2]) / s [2]) − gausscd f ((c l [2]−mu[2]) / s [2]) ;
42 // Ca l cu l a t e the ’ expec ted po s i t i o n o f p ’ and the co r r e c t i on term Sminus
43 i f (gausscd f1 == 0 | | gausscd f2 == 0 | | gausscd f3 == 0)
44 continue ; // avoid d i v i s i o n by 0 , c e l l c on t r i b u t i on i s 0 in t h e s e cases anyway .
45 fmax [0] = (ps i 1 / gausscd f1) + r [0] ;
46 fmax [1] = (ps i 2 / gausscd f2) + r [1] ;
47 fmax [2] = (ps i 3 / gausscd f3) + r [2] ;
48 Sminus = hvol3d (Pz , r , fmax) ;
49 // the expec ted hypervolume improvement i s the expec ted r e c t angu l a r volume
50 //w. r . t . r minus the co r r e c t i on term Sminus
51 double sum = (ps i 1 ∗ ps i 2 ∗ ps i 3) − (Sminus∗ gausscd f1 ∗ gausscd f2 ∗ gausscd f3) ;
52 i f (sum > 0) // Sa f e t y check ; ”Not−A−Number > 0” re turns f a l s e
53 answer += sum ;
54 }
55 }
56 }
57 return answer ;

45

58 }

A.3 Slice-update scheme for 3-D EHVI calculation

1 #include ” ehv i c on s t s . h”
2 #include <deque>
3 #include <algor ithm>
4 #include <iostream> //For error on excep t i on only .
5 #include <cmath> //INFINITY macro
6 #include ” ehv i hvo l . h”
7
8 using namespace std ;
9
10 #ifndef EHVI SLICEUPDATE
11 #define EHVI SLICEUPDATE
12
13 double ehv i 3d s l i c eupda t e (deque<i n d i v i dua l∗> P, double r [] , double mu[] , double s []) {
14 //EHVI c a l c u l a t i o n a l gor i thm with time comp lex i t y O(nˆ3) .
15 double answer = 0 ; //The even tua l answer .
16 s p e c i a l i n d ∗newind ;
17 int n = P. s i z e () ; //Holds amount o f po in t s .
18 thingy ∗Pstruct ; //2D array wi th i n f o about the shape o f the dominated hypervolume
19 deque<s p e c i a l i n d∗> Px , Py , Pz ; //P sor t ed by x/y/ z coord ina te wi th ex t ra i n f o
20 double c e l l e n g t h [3] = {0} ;
21 try{
22 //Create so r t ed arrays which conta in ex t ra in format ion a l l ow ing the l o c a t i o n in
23 // the o ther s o r t i n g orders to be a s c e r t a ined in O(1) .
24 s o r t (P. begin () , P . end () , xcomparator) ;
25 for (unsigned int i =0; i<n ; i++){
26 newind = new s p e c i a l i n d ;
27 newind−>po int = P[i] ;
28 newind−>xorder = i ;
29 Px . push back (newind) ;
30 Py . push back (newind) ;
31 Pz . push back (newind) ;
32 }
33 s o r t (Py . begin () , Py . end () , spec ia lycomparator) ;
34 for (unsigned int i =0; i<n ; i++){
35 Py [i]−>yorder = i ;
36 }
37 s o r t (Pz . begin () , Pz . end () , spec ia l z comparator) ;
38 for (unsigned int i =0; i<n ; i++){
39 Pz [i]−>zorder = i ;
40 }
41 //Then a l s o r e s e r v e memory f o r the s t r u c t u r e array .
42 Pstruct = new th ingy [n∗n] ;
43 for (int k=0;k<n∗n ; k++){
44 Pstruct [k] . s l i c e = 0 ;
45 Pstruct [k] . chunk = 0 ;
46 Pstruct [k] . h ighestdominator = −1;
47 Pstruct [k] . xl im = 0 ;
48 Pstruct [k] . yl im = 0 ;
49 }
50 }

46

51 catch (. . .) {
52 cout << ”An except ion was thrown . There probably i s n ’ t enough memory av a i l a b l e . ”
53 << endl ;
54 cout << ”−1 w i l l be returned . ” << endl ;
55 return −1;
56 }
57 //Now we e s t a b l i s h dominance in the 2−dimensiona l s l i c e s . Note : i t i s assumed t ha t
58 //P i s mutua l ly nondominated . This implementat ion o f t ha t s t ep i s O(nˆ3) .
59 for (int i =0; i<n ; i++){
60 for (int j=Pz [i]−>yorder ; j>=0;j−−)
61 for (int k=Pz [i]−>xorder ; k>=0;k−−){
62 Pstruct [k+j ∗n] . h ighestdominator = i ;
63 }
64 for (int j=Px [i]−>zorder ; j>=0;j−−)
65 for (int k=Px [i]−>yorder ; k>=0;k−−){
66 Pstruct [k+j ∗n] . xl im = Px [i]−>point−>f [0] − r [0] ;
67 }
68 for (int j=Py [i]−>zorder ; j>=0;j−−)
69 for (int k=Py [i]−>xorder ; k>=0;k−−){
70 Pstruct [k+j ∗n] . yl im = Py [i]−>point−>f [1] − r [1] ;
71 }
72 }
73 //And now fo r the a c t ua l EHVI c a l c u l a t i o n s .
74 for (int z=0;z<=n ; z++){
75 // Reca l cu l a t e Ps t ruc t f o r the next 2D s l i c e .
76 i f (z>0)
77 for (int i =0; i<n∗n ; i++){
78 Pstruct [i] . chunk += Pstruct [i] . s l i c e ∗ c e l l e n g t h [2] ;
79 }
80 //This s t ep i s O(nˆ2) .
81 for (int y=0;y<n ; y++){
82 for (int x=0;x<n ; x++){
83 i f (Pstruct [x+y∗n] . h ighestdominator < z){ // c e l l i s not dominated
84
85 i f (x > 0 && y > 0){
86 Pstruct [x+y∗n] . s l i c e = (Pstruct [x+(y−1)∗n] . s l i c e
87 − Pstruct [(x−1)+(y−1)∗n] . s l i c e)
88 + Pstruct [(x−1)+y∗n] . s l i c e ;
89 }
90 else i f (y > 0){
91 Pstruct [x+y∗n] . s l i c e = Pstruct [x+(y−1)∗n] . s l i c e ;
92 }
93 else i f (x > 0){
94 Pstruct [x+y∗n] . s l i c e = Pstruct [(x−1)+y∗n] . s l i c e ;
95 }
96 else
97 Pstruct [x+y∗n] . s l i c e = 0 ;
98 }
99 else {
100 Pstruct [x+y∗n] . s l i c e = (Px [x]−>point−>f [0] − r [0])
101 ∗ (Py [y]−>point−>f [1] − r [1]) ;
102 }
103 }
104 }
105 //Okay , now we are going to c a l c u l a t e the EHVI, f o r r e a l .
106 for (int y=0;y<=n ; y++){

47

107 for (int x=0;x<=n ; x++){
108 double c l [3] , cu [3] ; //Boundaries o f g r i d c e l l s
109 c l [0] = (x == 0 ? r [0] : Px [x−1]−>point−>f [0]) ;
110 c l [1] = (y == 0 ? r [1] : Py [y−1]−>point−>f [1]) ;
111 c l [2] = (z == 0 ? r [2] : Pz [z−1]−>point−>f [2]) ;
112 cu [0] = (x == n ? INFINITY : Px [x]−>point−>f [0]) ;
113 cu [1] = (y == n ? INFINITY : Py [y]−>point−>f [1]) ;
114 cu [2] = (z == n ? INFINITY : Pz [z]−>point−>f [2]) ;
115 c e l l e n g t h [0] = cu [0] − c l [0] ;
116 c e l l e n g t h [1] = cu [1] − c l [1] ;
117 c e l l e n g t h [2] = cu [2] − c l [2] ;
118 i f (c e l l e n g t h [0] == 0 | | c e l l e n g t h [1] == 0 | | c e l l e n g t h [2] == 0
119 | | (x < n && y < n && Pstruct [x+y∗n] . h ighestdominator >= z))
120 continue ; // Ce l l i s dominated or o f s i z e 0 .
121 //We have easy acces s to Sminus and z s l i c e because they are par t o f Ps t ruc t .
122 // x s l i c e and y s l i c e can be c a l c u l a t e d from Pstruct−>chunk .
123 double s l i c e [3] , Sminus , v [3] ;
124 i f (x > 0 && y > 0){
125 Sminus = Pstruct [(x−1)+(y−1)∗n] . chunk ;
126 s l i c e [0] = (x == n ? 0 : (Pstruct [x+(y−1)∗n] . chunk − Sminus) / c e l l e n g t h [0]) ;
127 s l i c e [1] = (y == n ? 0 : (Pstruct [(x−1)+y∗n] . chunk − Sminus) / c e l l e n g t h [1]) ;
128 s l i c e [2] = Pstruct [(x−1)+(y−1)∗n] . s l i c e ;
129 }
130 else {
131 Sminus = 0 ;
132 s l i c e [0] = ((y == 0 | | x == n) ? 0 :
133 (Pstruct [x+(y−1)∗n] . chunk − Sminus) / c e l l e n g t h [0]) ;
134 s l i c e [1] = ((x == 0 | | y == n) ? 0 :
135 (Pstruct [(x−1)+y∗n] . chunk − Sminus) / c e l l e n g t h [1]) ;
136 s l i c e [2] = 0 ;
137 }
138 i f (y == n | | z == n)
139 v [0] = 0 ;
140 else
141 v [0] = Pstruct [y+z∗n] . xl im ;
142 i f (x == n | | z == n)
143 v [1] = 0 ;
144 else
145 v [1] = Pstruct [x+z∗n] . yl im ;
146 i f (x == n | | y == n)
147 v [2] = 0 ;
148 else
149 v [2] = (Pstruct [x+y∗n] . h ighestdominator == −1 ? 0 :
150 (Pz [Pstruct [x+y∗n] . h ighestdominator]−>point−>f [2] − r [2])) ;
151 // A l l c o r r e c t i on terms have been e s t a b l i s h e d .
152 // Ca l cu l a t e the c e l l ’ s c on t r i b u t i on to the i n t e g r a l .
153 double ps i 1 = e x i p s i (r [0] , c l [0] ,mu[0] , s [0]) − e x i p s i (r [0] , cu [0] ,mu[0] , s [0]) ;
154 double ps i 2 = e x i p s i (r [1] , c l [1] ,mu[1] , s [1]) − e x i p s i (r [1] , cu [1] ,mu[1] , s [1]) ;
155 double ps i 3 = e x i p s i (r [2] , c l [2] ,mu[2] , s [2]) − e x i p s i (r [2] , cu [2] ,mu[2] , s [2]) ;
156
157 double gausscd f1 = gausscd f ((cu [0]−mu[0]) / s [0]) − gausscd f ((c l [0]−mu[0]) / s [0]) ;
158 double gausscd f2 = gausscd f ((cu [1]−mu[1]) / s [1]) − gausscd f ((c l [1]−mu[1]) / s [1]) ;
159 double gausscd f3 = gausscd f ((cu [2]−mu[2]) / s [2]) − gausscd f ((c l [2]−mu[2]) / s [2]) ;
160
161 double ex1 = ps i 1 − (gausscd f1 ∗ (c l [0]− r [0])) ;
162 double ex2 = ps i 2 − (gausscd f2 ∗ (c l [1]− r [1])) ;

48

163 double ex3 = ps i 3 − (gausscd f3 ∗ (c l [2]− r [2])) ;
164
165 double sum = (ps i 1 ∗ ps i 2 ∗ ps i 3) − (Sminus∗ gausscd f1 ∗ gausscd f2 ∗ gausscd f3) ;
166 // Sub t rac t c o r r e c t i on terms :
167 sum −= (s l i c e [0] ∗ gausscd f2 ∗ gausscd f3 ∗ ex1) ;
168 sum −= (s l i c e [1] ∗ gausscd f1 ∗ gausscd f3 ∗ ex2) ;
169 sum −= (s l i c e [2] ∗ gausscd f1 ∗ gausscd f2 ∗ ex3) ;
170 sum −= v [0] ∗ ex2 ∗ ex3 ∗ gausscd f1 ;
171 sum −= v [1] ∗ ex1 ∗ ex3 ∗ gausscd f2 ;
172 sum −= v [2] ∗ ex1 ∗ ex2 ∗ gausscd f3 ;
173 i f (sum > 0)
174 answer += sum ;
175 }
176 }
177 }
178 return answer ;
179 }
180 #endif

49

Appendix B

How to Use the Software

The code is organized as follows: ehvi sliceupdate.cc contains the implementation of the
slice-update scheme, ehvi montecarlo.cc contains the implementation of the Monte Carlo
integration scheme, ehvi calculations.cc contains the implementations of the other schemes
(2-term, 5-term and 8-term) as well as the implementation of the 2-dimensional calculation
scheme. ehvi multi.cc contains special implementations of the 5-term and slice-update
schemes which calculate the EHVI for multiple individuals at the same time. The files
helper.cc and ehvi hvol.cc contain functions which are used by multiple update schemes.
Hypervolume calculations are implemented in ehvi hvol.cc and the rest (such as the psi
function) is in helper.cc. There is also a file ehvi consts.h which allows the seed of the
random number generator and the number of Monte Carlo iterations to be changed.

The functions in these files can be used directly in C++ code, but main.cc contains
facilities to use it as a stand-alone command-line application. To use it in this way, the
software can be compiled with gcc by unzipping the code into a directory and using the
command:

g++ -O3 -o EHVI -std=c++0x *.cc

If compiling it in a directory which also contains other .cc files is desired, the following
can be used instead:

g++ -O3 -o EHVI -std=c++0x main.cc helper.cc ehvi_sliceupdate.cc \

ehvi_multi.cc ehvi_montecarlo.cc ehvi_hvol.cc ehvi_calculations.cc

Running the software without command line arguments will allow a test case to be entered
into the terminal (with an arbitrary population size and 1 candidate individual), which
is then run through the available calculation schemes. Providing the name of a file as an
argument will load that file and perform EHVI calculations on it. The file should consist
of the following:

50

• A single integer representing n

• n*3 floating point numbers representing the coordinates of P.

• 3 floating point numbers representing r

• An arbitrary number of individuals, represented by first 3 coordinates of their mean
value, and then the 3 values of their standard deviation in each dimension

No other text should be present in the file. All numbers should be divided by whitespace,
and additional whitespace is ignored.

The default scheme used will be the slice-update scheme, but other schemes can be spec-
ified as arguments after the filename. The list of possible schemes to request is:

2term

5term

8term

sliceupdate

montecarlo

However, only 5term and sliceupdate can be used if more than one candidate individual
is provided.

4

8 8 2

11 6 7

9 5 8

14 3 9

0 0 0

6 6 6 3 3 3

5 2 4 1 3 6

1 7 2 3 5 3

2 3 5 2 8 3

Then the following command will calculate the EHVI for the four candidate individuals
using the 5-term scheme:

./EHVI multitest.txt 5term

And the output of the program will be:

51

Loading testcase from file...

Calculating with 5-term scheme (multi-version)...

47.24623199

11.21775781

8.935099634

19.88518203

Only the actual answers are output to stdout while the rest of the output is written to
stderr, making it possible to write the answers to a file using simple shell commands.

52

Bibliography

[1] Wagner, T.; Emmerich, M.; Deutz, A. and Ponweiser, W. (2010) “On expected-
improvement criteria for model-based multi-objective optimization”, in ‘Proc. of
PPSN XI Vol. 1, Springer-Verlag, Berlin, Heidelberg, pp. 718-727.

[2] Fleischer, M. (2003) “The Measure of Pareto Optima Applications to Multi-objective
Metaheuristics”. Evolutionary Multi-Criterion Optimization. Second International
Conference, EMO 2003, pg. 519-533.

[3] Emmerich, M. T M; Deutz, A.H.; Klinkenberg, J.W. (2011) “Hypervolume-based
expected improvement: Monotonicity properties and exact computation,” 2011 IEEE
Congress on Evolutionary Computation (CEC), pp.2147-2154

[4] Nicola Beume, Carlos M. Fonseca, Manuel Lopez-Ibanez, Luis Paquete, and Jan
Vahrenhold. (2009) “On the complexity of computing the hypervolume indicator.”
IEEE Trans. Evolutionary Computation, 13(5) pp. 1075-1082.

[5] Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P. (1989) “Design and analysis
of computer experiments”. Statistical science, 4(4), 409-423.

[6] Mockus, J., Tiesis, V., Zilinskas, A. (1978) “The application of Bayesian methods for
seeking the extremum”. In: Dixon, L., Szego, G. (Eds.), Towards Global Optimiza-
tion, vol. 2. North Holland, New York, pp. 117129.

[7] Donald R. Jones, Matthias Schonlau, and William J. Welch. (1998) “Efficient Global
Optimization of Expensive Black-Box Functions”. J. of Global Optimization 13, 4
(December 1998), 455-492.

[8] Emmanuel Vazquez and Julien Bect. (2010) “Convergence properties of the expected
improvement algorithm with xed mean and covariance functions”. Journal of Statis-
tical Planning and Inference 140, pp. 3088-3095

[9] Knowles, J. (2006) “ParEGO: A hybrid algorithm with on-line landscape approxi-
mation for expensive multiobjective optimization problems”. IEEE Transactions on
Evolutionary Computation. 10 (1): 50-66.

[10] Keane, A.J. (2006) “Statistical improvement criteria for use in multiobjective design
optimisation”. AIAA Journal, 44, (4), 879-891.

53

[11] Wolfgang Ponweiser, Tobias Wagner, Dirk Biermann, and Markus Vincze. (2008)
“Multiobjective Optimization on a Limited Budget of Evaluations Using Model-
Assisted S-Metric Selection”. In Proceedings of the 10th international conference on
Parallel Problem Solving from Nature: PPSN X. Springer-Verlag, Berlin, Heidelberg,
784-794.

[12] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. (2000) “A fast
and elitist multi-objective genetic algorithm: NSGA-II”.

[13] E. Zitzler, M. Laumanns and L. Thiele. (2001) “SPEA2: Improving the Strength
Pareto Evolutionary Algorithm”.

[14] Michael Emmerich, Nicola Beume, and Boris Naujoks. (2005) “An EMO Algorithm
Using the Hypervolume Measure as Selection Criterion”. In 2005 Intl Conference,
March 2005, pages 62-76.

[15] Christian Igel, Nikolaus Hansen, and Stefan Roth. (2007) “Covariance Matrix Adap-
tation for Multi-objective Optimization”. Evol. Comput. 15, 1 (March 2007), 1-28.

[16] Williams, Christopher K.I. (1998) “Prediction with Gaussian processes: From linear
regression to linear prediction and beyond”. In M. I. Jordan. Learning in graphical
models. MIT Press. pp. 599612.

[17] Fubini, G. ”Sugli integrali multipli.” (1958) Opere scelte, Vol. 2. Cremonese, pp.
243-249.

[18] Matsumoto, M.; Nishimura, T. (1998) “Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator”. ACM Transactions on
Modeling and Computer Simulation 8 (1): 330

[19] G. E. P. Box, Mervin E. Muller. (1958) “A Note on the Generation of Random Normal
Deviates”. The Annals of Mathematical Statistics, Vol. 29, No. 2. pp. 610-611

54

	Introduction
	Preliminaries
	Exact Calculation of Partial One-Dimensional Improvements

	Related Work
	Calculating the 2-D EHVI
	Empirical Performance

	Calculation of the Higher-Dimensional EHVI
	Decomposition Into Parts
	Decomposition of the EHVI in the 3-D Case
	Calculation of the 3-D EHVI
	Simple Higher-Dimensional EHVI Calculations
	Complexity

	O(n3)-time 3-D EHVI Calculations
	Empirical Tests and Results
	Monte Carlo Verification
	Empirical Performance

	Conclusion and Future Work
	Sourcecode
	2-D EHVI calculation function
	2-term scheme for 3-D EHVI calculation
	Slice-update scheme for 3-D EHVI calculation

	How to Use the Software

