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Abstract

We analyze the capabilities of various deep learning algorithms which employ multiple-
layer networks in order to model abstract structures from data sets and recognize patterns.
This makes it possible to perform various classification and normalization tasks. We investi-
gate the use of a Deep Belief Network (DBN) and the Restricted Boltzmann Machine (RBM)
as components for a deep learning network, as well as the alternative training algorithms that
can be used to adjust the representation of the learned data. We introduce the underlying
concepts and study the convergence properties. This allows us to derive another simplified
version of a learning rule for the Contrastive Divergence algorithm used in pretraining the
RBM. We also present a number of applications of Deep Learning by experiments on data
sets. This includes handwriting detection and games.

1 Introduction

The field of artificial intelligence has been undergoing a transition towards the development
of algorithms that are inspired by the data representations and connections within the human
brain [ARK10]. In this bachelor thesis, we investigate the practical uses of emerging technologies
such as deep learning networks.

We commonly refer to a deep architecture as a network composed of multiple levels, such as three
or more, that contain nodes that are able to perform operations on their inputs in a non-linear
way. It has been shown that there is no universally perfect depth of these networks in order to
perform well on any problem. The addition of more layers or new techniques to train the nodes
in those layers can improve the performance on one problem, but it might have unfavourable
effects on other groups of problems.

This bachelor thesis was created in association with the LIACS Insitute of Leiden University,
under supervision of Walter Kosters and Leannette de Graaf. In this thesis, we delve into the
topic of deep learning to investigate the underlying theory, the decisions that can be made in the
process of selecting a learning algorithm, and the applications of the technique.

1.1 Desires and problems

Although learning algorithms are improving time by time, there are still a few desired capabilities
that these architectures have as of yet not completely fulfilled. We would like to reduce the
number of training instances in the data set, such that the learning algorithm trains more quickly.
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However, we want to do so without creating a large impact on the error rate, so that we still
receive acceptable predictions for the test data.

This is especially important for results that have complex functions underlying them. A function
that is highly-varying cannot have a piecewise approximation without a large number of data
points. The architecture would need a large number of nodes if it is not structured correctly. If
the number of variations is larger than the training set size, then the network can easily make
the pitfall of only predicting local minima rather than generate correct predictions overall.

On the other hand, if we have generated a large set of training data, the algorithm should still
be able to train quickly on it. We want to have an almost-linear complexity for the supervised
training, otherwise the waiting time becomes too large. Another wish is that the programmer
should not need to waste a lot of time to model the problem that needs to be solved. The
algorithm needs to learn from the abstractions by itself.

There are also some other open questions in the field of machine learning. It has not been widely
researched whether new learning architectures perform better on conventional problems, when
we compare them to algorithms that were specifically created for those problems. Furthermore,
there are problems that might take humans years to learn, while a deep learning algorithm might
be able to train quickly. It is not yet known to which extent this is possible. We would also like
to compare deep network architectures against existing algorithms that can also be trained in a
supervised manner, such as Support Vector Machines [BL07, HL06].

The kinds of networks used in deep learning take vector data as input, but it is unknown how
that would work for problems that are represented by other structures, such as trees or graphs.
One could imagine that a game can be represented by an arbitrary number of moves, which would
be difficult to input in a network with a fixed number of input nodes. We could also represent a
game by the state it is currently in, but that may not be enough to allow the deep algorithm to
play it [Ben09].

1.2 Applications

The applications of deep learning are now often geared toward image processing and other sen-
sory inputs, such as face recognition and object detection in photos, or pattern recognition and
automatic subtitling in audio streams. This trend can be seen in the models of networks that are
proposed to solve these problems, because they often use components and sampling algorithms
that specifically work well on binary data such as pixels. However, it might be possible that the
proposed networks also perform well on more generic data.

Some of the underlying techniques of the deep networks have been based on definitions from
physical systems, but also from abstract mathematical theories. In general, the application of
concepts from various fields into machine learning brought great progress in the performance of
algorithms such as deep learning, but it has also increased the complexity of the system.

1.3 Overview

After this short introduction of the importance of deep learning, we examine a number of varieties
in the structure of deep networks. We investigate the functionality of Convolutional Neural Net-
works in Section 2 and Deep Belief Networks in Section 3. We further investigate the techniques
that can be used in these networks, such as Restricted Boltzmann Machines in Section 4.
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We take a closer look at a specific algorithm used for Restricted Boltzmann Machines in Sec-
tion 4.2, and theoretically describe its convergence properties. We provide a simplified derivation
of its learning rules in Section 4.2.2.

In Section 5, we propose a number of experiments, comparing the properties and parameters of
the deep learning algorithms.

2 Convolutional Neural Network

The disadvantage of deep neural networks is that the commonly used learning algorithms become
very slow. Furthermore, any attempt to correctly train the parameters of the nodes requires
a large data set when the algorithm is too slow to update them into the correct direction.
The Convolutional Neural Network (CNN) attempts to mitigate this problem. Inspired by the
structure of the visual system of animals, this kind of network is organized in a way that allows
modifying or preprocessing the input data so that the feature set contains only the important
details. In the subsampling layers, the data is first weighted by a trainable filter and bias, and then
passed on to a convolution grid, which uses data from neighboring neurons in order to average the
value for the given input. Afterwards, the value is weighted again and passed through a sigmoid
function, before being fed to a classical neural network [ARK10].

Because the data is averaged over its neighboring pixels, the Convolutional Neural Network is
very applicable to the field of image processing. This is because it attempts to reduce noise from
false positives in small areas of the image while detecting large areas better. This is useful in,
e.g., face detection algorithms.

However, there are some downsides to this approach. Some parts of the CNN cannot be trained as
flexibly as the well-known BackPropagation training method. Also, it is a discriminative method,
meaning that we can only calculate p(Label | Observation), the probability that a certain clas-
sification label is correct for the given observation input. The reverse probability, which defines
whether an observation occurs for a given label, cannot be deduced. A CNN is therefore more
difficult to research, because one cannot determine whether there is an actual relation between
an observation and the classification.

The uses of Convolutional Neural Nets have been somewhat limited to images [ARK10], although
there are also successful attempts to use them on Go games [SN08]. The fact that a CNN employs
filtering on the data set can reduce the necessary number of inputs for the eventual neural
network, and it can also make it possible to train the CNN on a small data set, even when
the number of possible states is enormous. However, it remains a challenge to select the most
important features from a data set.

3 Deep Belief Network

As a further expansion of deep architectures, the Deep Belief Network (DBN) was proposed
in [HOT06]. This kind of network has layers that are based on Restricted Boltzmann Ma-
chines (RBM), which are visibly similar to old-fashioned two-layer neural networks, and are
described in Section 4. Each RBM layer is restricted in the sense that it only has one hidden and
one visible layer. It is very easy to train them in order to find the weights for the connections
between the layers.
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Figure 1: The generic structure of a Deep Belief Network. Each layer of nodes is connected to
the next layer by weighted connections, except for the top layer.

The DBN is not a discriminative algorithm, since it is also possible to perform unsupervised train-
ing on the weights. This even holds for connections that are directed the other way around. This
process works by calculating the activations of the hidden layers and then greedily reconstructing
the corresponding input in a probabilistic manner [BLPL07]. This method is possible due to a
principle called contrastive divergence [Hin02]. We use unsupervised training in a preprocessing
step in order to initialize the parameters. This allows the network to contain a representation
that can already approach the optimal solution.

After the unsupervised pre-training step, the RBM layers can be applied on the actual data set
as if it were a normal Multilayer Perceptron (MLP) [RHW88]. For example, the DBN can link
the output of the lower levels with an associative memory that contains samples. A more simple
DBN would have some other top level layer, which can even have sigmoidal nodes like the other
layers.

The top layer provides the actual prediction. Thus one could see this layer as a new visible
layer that receives additional input. The RBM levels therefore mostly play an indicative role
for the final prediction. An advantage of this structure is that it is still possible to perform
BackPropagation on the network for fine-tuning.

3.1 Model

A Deep Belief Network consists of several kinds of layers that are placed on top of each other, as
seen in Figure 1. Primarily, the DBN consists of RBM layers, which are explained in more detail
in Section 4. These kinds of layers have one input layer and one hidden layer. The values of the
hidden nodes of the RBM at layer i become the input for the RBM at layer i + 1. At the same
time, each intermediate output of stack of RBM layers is associated with a normal sigmoidal
layer, so that the DBN can be handled as if it is a Multilayer Perceptron, i.e., a normal neural
network. This makes it possible to pretrain the network using the RBM stack, while using the
same network as a normal feed-forward network for the finetuning and predictions.
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At the top of the DBN, the results of the MLP need to be combined into an output, which can be
done using a simple logistic regression layer or a more complex associative memory performing
the final prediction.

As we can see, it is possible to modify the structure of the DBN in several ways: the types of the
layers in the two-folded network can be changed, and the sizes of those layers are also parameters
to the meta-network. The pretraining and training steps can be performed by different algorithms
that work with the layer types.

The parameters to build a Deep Belief Network are as follows:

• m, the dimension of the input vector that the DBN accepts.

• S, a list containing the number of nodes for each hidden layer in an RBM layer. This is a
list of integers, so that each RBM layer i has its hidden layer size si registered in it, and
the length of the list is the number of RBM layers in the network. Each RBM also has a
visible input layer, and the sizes of these are determined by the number of outputs (and
thus number of nodes in the hidden layer) of the previous layer si−1, or by m for the first
layer. There needs to be at least one RBM layer; otherwise we would only have the top
layer which does not entail a deep architecture.

• n, the dimension of the output of the top layer. For classification problems, one output
might be enough, but for image processing problems such as the well-known handwriting
detection, there is a need for more outputs to more accurately distinguish between cases,
rather than collapsing them together.

Now, for every number of the list of hidden layer’s sizes S, we construct two types of layers,
namely one layer of the MLP network, and an RBM layer, which has a visible and a hidden
layer. Both types of layers share some parameters, namely their inputs (determined as described
above), and the number of outputs (or hidden nodes in the RBM). The number of input nodes
at layer i + 1 is ensured to be equal to the number of hidden nodes at RBM layer i. The RBM
and MLP layers also share their weights with each other, so that the weights of the MLP are
updated when the RBM layers are pretrained.

Next, we create the top layer of the DBN, which could be for example a logistic regression layer
or a plain sigmoidal layer. It receives the outputs of the last MLP layer and its output consists
of n values. The logistic layers use a specific error-correction cost function, which is computed
using the negative log-likelihood function [BW88].

3.2 Samples and training

The network’s input and output need to be modeled in a specific way. The input could be a
raster of image pixels, which is received as a flattened version of a matrix. The output is also a
one-dimensional vector that provides the prediction label.

Each RBM has a pretraining function based on the Contrastive Divergence function, as explained
in Section 4. We pass the input data to the cost function and Contrastive Divergence update
function of the RBM. Pretraining is done on small partitions of the training set, so the training
functions should receive the batch index, and optionally a learning rate ε which can be altered
during training. The training function simply passes the input data to the Contrastive Divergence
update function of the RBM.
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We can do the same for the finetuning, validation, and testing steps, calculating the error function
from the sigmoidal network layers. We apply the finetuning on the full training set, and calculation
of error scores on the test sets. In order to run a learning algorithm such as BackPropagation
or logistic regression on all of the nodes during finetuning, we distribute the error correction
updates across the weights of the nodes using the parameters of the MLP layers.

3.3 Additional techniques

Some of the deep network algorithms can make use of Autoencoders, also known as Autoassoci-
ators, to train their nodes more efficiently. An Autoassociator can encode the input while still
making it possible to reconstruct the original data later on. This representation makes it possible
to train the data in a separate one-layer network. More importantly, however, the Autoencoders
have propagation functions that allow them to connect between two other layers. These Autoen-
coders are particularly helpful in Deep Belief Networks, and in fact the Restricted Boltzmann
Machines that we define in Section 4 are somewhat similar to this technique.

There are also other deep learning architectures that are modeled after parts of the human brain,
such as the Hierarchical Temporal Memory network. The layers follow a hierarchical structure
so that higher levels correspond to larger regions of the input, in contrast to a DBN, where the
compacting structure network has layers that specialize for specific features of the input. These
kinds of networks are again specialized towards image inputs.

As we have seen in the CNN network, a lot of attention in the learning is attempting to reduce
the problem instances to the most important data. Several other methods exist in order to filter
and combine the input data. The reasons for this is that it becomes exponentially harder to learn
when the dimensions of the instances increase. This problem, called the curse of dimensionality,
effectively expresses the need for larger data sets when the instances have a large dimensionality,
which needs to be prevented. Another suggested solution to this dire problem is to combine the
concepts of RBM layers inside DBNs with the principle of Autoencoders, thus forming Stacked
Autoencoders that are able to be trained in a similar way [HS06].

4 Restricted Boltzmann Machines

An RBM layer is represented by a visible input layer and a hidden layer. The bipartite network
graph is connected by edges with weights. The nodes of each layer can be supplemented by
visible biases and hidden biases, respectively; in this case there are as many bias nodes as there
are normal nodes.

While RBM layers appear to be simple neural network components as shown in Figure 2, the
method by which they can be pretrained is very intricate. The idea is that while there are dense
connections between the nodes of the visible layer to the hidden layer, the nodes on the same
layer are independent from each other. This structure makes it possible to obtain simultaneous
samples by propagation, and we can start from reconstructions of other samples, in order to
create chains of samples.

The Contrastive Divergence gradient approximates the actual log-likelihood [GG84], which can-
not be determined in this network. The Contrastive Divergence update rules simply make use of
the propagation functions of the network, which we will see in Section 4.1 and on.
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Figure 2: The graph of an RBM network, with n hidden nodes h1, . . . , hn and m visible nodes
v1, . . . , vm, as well as bias nodes c1, . . . , cn when going to the hidden layer and b1, . . . , bm when
performing a propagation to the visible layer.

The definition of a Restricted Boltzmann Machine consists of the following parameters:

• m, the number of nodes in the visible layer.

• n, the number of nodes in the hidden layer.

• W , a matrix of weights for the connections between the visible and hidden layer.

• b and c, a list of biases for the visible nodes and hidden nodes, respectively.

If the RBM is used standalone, it initializes the weights to a uniformly distributed sample in a
restricted domain, and the biases are initialized to zeroes or randomized values. However, when
it is used in the DBN, the RBM layer is connected to a shared weight vector from the sigmoidal
layer. The weights can be reused for the DBN network’s weights. The biases can also be shared
with the MLP section of the DBN, in particular the hidden biases.

4.1 Propagation properties

The hidden nodes and the visible nodes are activated by the unit values of the opposite layer,
the biases, and the weights between the layers. Therefore, we need to be able to propagate the
activations of the nodes upwards as well as downwards, as if it were a bidirectional symbolic
weighted graph [Hin10]. In this section, we examine the propagation functions using the graph
structure of the Restricted Boltzmann Machine.

The propagation functions, which we define in the context of the Contrastive Divergence algo-
rithm in Section 4.2, are used during learning as well as in the practical use of the model. This is
because they determine how the input values are converted to values on the next layer. Therefore,
the propagation functions are an integral part of the RBM.

Restricted Boltzmann Machines are a special form of energy-based Boltzmann machine models.
They define conditional probabilities for the activation of the nodes given a certain configuration,
through the use of energy functions. For the restricted version of the Boltzmann machines, the
generic equations can be rewritten to simpler versions. This is because the hidden nodes are
conditionally independent from each other, and the visible nodes are as well [TWOH03].
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The probability that the hidden nodes are activated, given the visible node values, is equal to

p (h | v) =

n
∏

i

p (hi | v)

and the probability for the visible nodes is

p (v | h) =

m
∏

j

p (vj | h) ,

where v are the inputs of visible nodes and h hidden units [FI14].

The resulting functions that we define for the propagation of each node are shown in Equation 4.1
for hidden nodes and Equation 4.2 for visible nodes. These functions calculate the probability of
the activation of a single hidden or visible node. The functions need to be given the state of the
visible and hidden units as input, respectively. These symmetrical functions work by taking the
dot product of the sample node values with their corresponding weights, adding the bias for the
other layer, and calculating the sigmoid function. This makes it possible to sample the nodes in
the other layer, by comparing the activations with a uniformly distributed chance.

4.1.1 Real-valued nodes

Propagation works with the conditional probability functions in binary-valued Restricted Boltz-
mann Machines, where each node vj , hi ∈ {0, 1}. If it is desirable, we can decide to replace
the nodes with real-valued variables vj , hi ∈ [0, 1]. We can pretend that the expected activation
p (vj = 1 | h) and p (hi = 1 | v) is that node’s state.

Since it is not very straightforward to find the results of the probability terms, we can choose to
simply set the node’s value to that of the probability. This has the advantage that the network
can accept data sets with real-valued inputs. The network loses some of its stochastic behavior
and becomes more deterministic, but this is sometimes helpful for research.

4.2 Contrastive Divergence

The RBM can employ supervised or unsupervised learning through the use of these propagation
functions, known as Gibbs sampling. The Contrastive Divergence algorithm repeats the transi-
tions between the visible and hidden units over and over again. That should cause the probabilities
to converge to the underlying distribution of the data. This means that those transitions can alter
the state of the visible and hidden nodes so that it might become slightly different.

Based on the difference between the input and the reconstructed output from the propagations,
we can train the weights in a certain way. We can alter them so that the reconstruction of the
visible nodes will not change when it is given certain inputs. This causes the network to contain
a representation of the most important samples from the data set.

Each step of Gibbs sampling can therefore be used to determine the difference between the input
and generated output, and this error margin can be used to adapt the network so that it can
perform better next time. Note that this technique will remain an approximation unless it is done
infinitely long. However, even one step of Gibbs sampling appears to work well. This is a special
case of the Contrastive Divergence (CD-k) algorithm, where k = 1 is the number of steps.
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The Contrastive Divergence algorithm for binary units is outlined as follows [FI14]:

1. Given a training example v with its classification label, initialize v
0 to this sample.

2. For every t from 0 to k − 1, do the following steps:

a. Create a sample for each of the hidden nodes ht
i using its conditional probability

p
(

ht
i | v

t
)

= sig





m
∑

j=1

wijv
t
j + ci



 , (4.1)

where wij is the weight between visible node j and hidden node i, vtj is the input value
at node j during this step and ci is the hidden node’s bias. The node hi is enabled if
its probability or activation is greater that a uniformly distributed random number.

b. Create a new sample for each of the visible nodes vt+1
j using

p
(

vt+1
j | ht

)

= sig

(

n
∑

i=1

wijh
t
i + bj

)

. (4.2)

3. Calculate the final activation of the hidden nodes p(hi = 1 | vk) at step k; creating this
sample is not necessary during learning.

4. Using the probabilities and activations found above, determine the updated values for
∆wij := ∆wij + p(hi = 1 | v0) · v0j − p(hi = 1 | vk) · vkj , as well as for ∆bj := ∆bj + v0j − vkj
and ∆ci := ∆ci + p(hi = 1 | v0)− p(hi = 1 | vk).

The update values ∆wij , ∆bj and ∆ci are initially zero. The Contrastive Divergence algorithm
can be applied to all the examples in the training set S, in a random order, or on subsets of
the training set. After each batch or epoch, the weights wij and biases bj , ci are updated using
a learning rate ε and the mean update values as ε · ∆

|S| , and then the update values are reset.

Due to this, smaller batch sizes allow the weights to update faster, so that it takes less epochs to
initialize toward the model’s distribution and lead toward better performance, when compared
to putting a full training set in one batch per epoch.

4.2.1 Variants, convergence and backpropagation

An alternative for the basic Contrastive Divergence algorithm is Persistent Contrastive Diver-
gence (PCD) [Tie08]. In this case, the chain of Gibbs sampling steps is again initialized with
a training example, but when another sample v is given, the chain is not reset. Instead, the
activations of the visible nodes from the previous sample are reused, and only the update rules
of the ∆ compare against the newer sample. This should allow the chain to respond when the
input changes, and thus make a longer chain in general.

The Contrastive Divergence algorithm and its variations have been studied as to whether the
resulting samples, which do not follow the gradient of the log-likelihood function [CPH05], actu-
ally converge to the underlying model distribution. We would like the generated samples to be
as representative and error-free as possible. However, the algorithm starts with a sample from
the data set and we can only perform a finite k iterations in the algorithm, so the sample at vk

will have some bias toward the specific input.
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Despite these setbacks and estimations, the bias is generally small, and could be eliminated by
a more precise algorithm that would be computationally intensive to run on its own.

It has been shown that the general use of Contrastive Divergence provides slightly improving
results when k increases [BD09]. As k approaches infinity, it will exhibit fixed points [ST10].
Under certain conditions it has been proven that the learning samples indeed converge to a
precise unbiased model [Yui05].

Contrastive Divergence is often compared and combined with the BackPropagation algorithm
that is often used in feed-forward networks like Multilayer Perceptrons [RHW88]. Indeed, the
variant known as Contrastive BackPropagation is a simpler version of CD that updates weights in
such networks in a similar way [MH05]. As shown in [HOWT06], Contrastive BackPropagation
updates the weights in the network using a probabilistic forward pass like in CD, then uses
BackPropagation for the backward step. This removes some of the probabilistic nature of the
chain that the algorithm generates, which might make it more biased. However, deterministic
algorithms like these are easier to analyze.

4.2.2 Simplification

It can be shown that Contrastive Divergence is related to the error propagation gradient used in
the BackPropagation algorithm if we simplify the algorithm somewhat. We use real-valued nodes
using the chance itself as the value instead of a probabilistic distribution and restrict ourselves
to a single step of the CD algorithm. Thus we use the propagation functions

hk
i = g





m
∑

j=1

wijv
k
j + ci



 (i = 1, . . . , n)

and

vk+1
j = g

(

n
∑

i=1

wijh
k
i + bj

)

(j = 1, . . . ,m)

based on Equations 4.1 and 4.2. In particular, we are interested in the cases where g = sig, which
has sig(x) = 1

1+e−x
and sig′ = sig ·(1 − sig), as well as for the case where g = id. Note that

id(x) = x and id′ = 1.

We can define the error function

Error = ‖v0 − v1‖2 =

√

√

√

√

m
∑

j=1

(

v0j − v1j
)2

and an energy function

E =
1

2
Error2 =

1

2

m
∑

j=1

(

v0j − v1j
)2

,

which are derived from our update values of the visible units, for which we want to minimize the
difference or error between propagation steps [RN10].

Now, for a fixed visible bias bj , we determine the gradient, giving the trend in which the error
E decreases the most:

−
∂E

∂bj
=
(

v0j − v1j
)

·
∂Error

∂bj
=
(

v0j − v1j
)

· g′(in v0j ) (4.3)
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where in v0j =
∑n

i=1
wijh

k
i + bj (thus vk+1

j = g(in vkj )). This function depends on the values of
the hidden layer, which is constant for this partial derivative, since they will not contain any
more bj ’s.

For the hidden biases ci, we have

−
∂E

∂ci
=

m
∑

j=1

(

v0j − v1j
)

· g′(in v0j ) · wij · g
′(in h0i ) (4.4)

where in hki =
∑m

j=1
wijv

k
j + ci (so hk

i = g(in hki )). In the case of g = id, Equation 4.3 results in

−
∂E

∂bj
= v0j − v1j ,

which can also be seen in the case that we take g = sig. The second term g′(in v0j ) remains
constant, since the sigmoidal functions will not contain any term with a bj and is thus eliminated.

Furthermore, for g = id, Equation 4.4 results in

−
∂E

∂ci
=

m
∑

j=1

(

v0j − v1j
)

· wij = in h0i − in h1i = h0
i − h1

i .

Now the only calculation that remains is the error gradient for the weights:

−
∂E

∂wij

=
(

v0j − v1j
)

· g′(in v0j ) ·
∂in v1j
∂wij

+

m
∑

ℓ=1

(

v0ℓ − v1ℓ
)

· g′(in v0ℓ) ·
∂in v1l
∂wiℓ

=
(

v0j − v1j
)

· g′(in v0j ) · h
0
i +

m
∑

ℓ=1

(

v0ℓ − v1ℓ
)

· g′(in v0ℓ) · wiℓ · g
′(in h0i ) ·

∂in h0i
∂wiℓ

=
(

v0j − v1j
)

· g′(in v0j ) · h
0
i +

m
∑

ℓ=1

(

v0ℓ − v1ℓ
)

· g′(in v0ℓ) · wiℓ · g
′(in h0i ) · v

0
j (4.5)

In the case g = id we have

−
∂E

∂wij

=
(

v0j − v1j
)

· h0
i +

m
∑

ℓ=1

(

v0ℓ − v1ℓ
)

· wiℓ · v
0
j

=
(

v0j − v1j
)

· h0
i +

(

h0
i − h1

i

)

· v0j . (4.6)

Now note that this result will converge to
(

v0j − v1j
)

· h0
i +

(

h0
i − h1

i

)

· v0j −→ h0
i · v

0
j − h1

i · v
1
j

if ||v0 − v1||2 → 0, or in other words, our Error term converges to zero.

This is an interesting observation, since we were able to find the learning rules of the Contrastive
Divergence algorithm for the visible and hidden biases, but the update rule for the weights is
more intricate.

The resulting error gradient terms thus closely correspond to the update rules in the algorithm,
and the Error function we chose is visibly similar to the update rule for BackPropagation. We
could also incorporate probabilities in the update rules and perform this derivation for the general
Contrastive Divergence algorithm as long as an E is chosen with which we can take the derivative
of the error term. Often E is taken as log(p(v)) to generate the log-likelihood gradient.
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4.2.3 Example

We can further show that the formula found above, even though it has different convergence
properties than the update formula used in CD, is correct by means of an example. Let m = 2
and n = 2. Thus the error gradient E is

E =
1

2

m
∑

j=1

(

v0j − v1j
)2

=
1

2

(

v01 − v11
)2

+
1

2

(

v02 − v12
)2

.

In the case of g = id, this is equal to

E =
1

2

(

v01 − v11
)2

+
1

2

(

v02 − v12
)2

=
1

2

(

v01 − w11h
0
1 − w21h

0
2 − b1

)2
+

1

2

(

v02 − w12h
0
1 − w22h

0
2 − b2

)2

=
1

2

(

v01 − w11(w11v
0
1 + w12v

0
2 + c1)− w21(w21v

0
1 + w22v

0
2 + c2)− b1

)2

+
1

2

(

v02 − w12(w11v
0
1 + w12v

0
2 + c1)− w22(w21v

0
1 + w22v

0
2 + c2)− b2

)2

=
1

2

(

v01 − w2
11v

0
1 − w11w12v

0
2 − w11c1 − w2

21v
0
1 − w21w22v

0
2 − w21c2 − b1

)2

+
1

2

(

v02 − w12w11v
0
1 − w2

12v
0
2 − w12c1 − w22w21v

0
1 − w2

22v
0
2 − w22c2 − b2

)2

where every w2
rs = wrs ·wrs is a square of the weight between the hidden node r and visible node

s; the exponent 2 is not a step index (remember that we only investigate the case of a single
step). So

v11 = w2
11v

0
1 + w11w12v

0
2 + w11c1 + w2

21v
0
1 + w21w22v

0
2 + w21c2 + b1

and
v12 = w12w11v

0
1 + w2

12v
0
2 + w12c1 + w22w21v

0
1 + w2

22v
0
2 + w22c2 + b2.

Now we determine the error gradient for every combination of i = 1, 2 and j = 1, 2.

−
∂E

∂w11

= (v01 − v11) ·
∂v11
∂w11

+ (v02 − v12) ·
∂v12
∂w11

= (v01 − v11) · (2w11v
0
1 + w12v

0
2 + c1) + (v02 − v12) · w12v

0
1

= (v01 − v11) · (w11v
0
1 + h0

1) + (v02 − v12) · w12v
0
1

= v01w11v
0
1 + v01h

0
1 − v11w11v

0
1 − v11h

0
1 + v02w12v

0
1 − v12w12v

0
1 .

Now we can combine the terms again, taking care of the signs:

−
∂E

∂w11

= v01(w11v
0
1 + w12v

0
2 − w11v

1
1 − w12v

1
2) + h0

1(v
0
1 − v11).

Given the equalities w11v
0
1+w12v

0
2 = h0

1−c1 and −w11v
1
1−w12v

1
2 = −h1

1+c1 and these opposing
c1’s cancel each other out, this results in

−
∂E

∂w11

= v01(h
0
1 − h1

1) + h0
1(v

0
1 − v11)
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This corresponds with the v0j (h
0
i − h1

i ) + h0
i (v

0
j − v1j ) that we found in Equation 4.6. Similarly,

−
∂E

∂w12

= (v01 − v11) ·
∂v11
∂w12

+ (v02 − v12) ·
∂v12
∂w12

= (v01 − v11) · w11v
0
2 + (v02 − v12) · (w11v

0
1 + 2w12v

0
2 + c1)

= (v01 − v11) · w11v
0
2 + (v02 − v12) · (w12v

0
2 + h0

1)

= v01w11v
0
2 − v11w11v

0
2 + v02w12v

0
2 + v02h

0
1 − v12w12v

0
2 − v12h

0
1

= v02(v
0
1w11 + v02w12 − v11w11 − v12w12) + h0

1(v
0
2 − v12)

= v02(h
0
1 − h0

2) + h0
1(v

0
2 − v12).

The same can be done for w21 and w22; the eventual indices match up with the general expression
given in Equation 4.6.

4.3 Learning properties

After the RBM has learned from the input data, it contains a black-box representation of the
data distribution. It has therefore determined the important features from the examples that
distinguish one classification from the other. Through this, the RBM alone can already predict
the target value of unlabeled test examples at a decent error rate. Even when it is learned without
labels, it can provide normalized samples of the data at an uniform distribution of the data set.
If we use supervised learning with labels, then we can additionally generate normalized samples
for a specific classification. This can be done by providing a nulled sample with only the target
set to a given label. The RBM will then very likely provide a corresponding sample for that label.
If it was not sufficiently trained, however, it might generate noisy data, or accidentally return a
sample for another classification.

In supervised training, both the sample values and the target are passed to the RBM as input
nodes. In this case, the learning algorithm converges the network from its initial random state to
specialist hidden nodes that detect patterns in the input. Also, the output of the RBM when used
in a classification problem is actually generated at the visible nodes again. It is the result of a
chain of Gibbs sampling, which may be followed as long as one wishes. This can provide accurate
predictions because it should not use the target area of the inputs during the classification
problem, by setting them to zero.

If the RBM is trained without labels, it extracts features from the input that can be used to
represent the data in a more compact manner. This makes the Restricted Boltzmann Machine
particularly useful as a component in a larger, deep neural network, such as Deep Belief Networks.
The state of the network still exhibits the properties seen in supervised learning, but it cannot
be used for classification on its own. It is vital to use unsupervised training when working with
the RBM as a component, whereas training with the labels given only works if the RBM is used
as a standalone network.

When multiple layers of RBM components are used in a Deep Belief Network, it is important
to completely perform the unsupervised pretraining on the first RBM layer until it is settled.
Otherwise, training the next layer uses hidden activations of the previous layer that have not
yet converged. The next layer would then not receive a representative distribution of the input.
Naturally, that means that this layer cannot be pretrained properly as well.
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One use of RBMs is to generate textures or fill in missing pieces in images [KW12]. This is done
in a process called inpainting, where the trained RBM receives a piece of an unlabelled image.
Given this input, the RBM is able to determine the likely values for surrounding pixels, so that
it creates an admissible picture.

5 Experiments

In this thesis, we have highlighted various theoretical properties of deep learning architectures.
The question now is whether the standalone Restricted Boltzmann Machine and the Deep Belief
Network can actually represent complex classification problems. These experiments apply the
networks to learn from various data sets. We investigate whether the simplified version of the
Contrastive Divergence update rule has similar properties as the learning rules in [FI14]. We
also study the effects of various parameter settings and make sure that our setup can adapt to
different network configurations.

5.1 Program

We have analyzed various available packages that are able to train Restricted Boltzmann Ma-
chines and Deep Belief Networks. The Python implementations available for pylearn2 [GWFL+13]
using SciPy and Theano [BBB+10], such as [Tea13], are interesting because of the possibility to
perform certain calculations on GPUs and the opportunity to use precompiled executables. These
features might bring performance improvements for function evaluations and scanning large ma-
trices, and mitigates some of the downsides of evaluating an interpreted language.

However, the question is whether a training program could also be written in a more lower-level
language like C. This choice would allow for more direct memory management, so that certain
operations, e.g., copying large arrays, are very fast. The code could also run on server-like lab
instances that do not employ GPUs for speedups, and multi-threading is not a major concern.
As such, the task is to design a new program that can train a deep network, and not to reuse one
and adapt it to our needs. We use this new program to perform experiments with many varying
parameters.

A major advantage of C-based languages is const-correctness [SA04], which allows us to require
that functions used for validation and reporting cannot change anything in the network’s state.

The program needs to be able to accept various settings so that they can be compared in ex-
periments, by performing training algorithms based on those settings and reporting about them.
Specifically, we need to be able to choose between a DBN or RBM network and whether they
contain binary nodes or real-valued nodes that use the activations as values. Of course we also
need to choose the number of nodes per layer, although the input and output nodes are defined
by the format of the chosen data set. When we train an RBM layer or standalone network, we
want to be able to choose between normal Contrastive Divergence or the persistent-chain ver-
sion PCD, or use the learning rule from our simplified formula shown in Section 4.2.2. Other
parameters for the algorithm, such as the number of Gibbs steps, as well as the batch size of the
number of samples to run before updating weights, can also be given. Monitoring is available via
image samples and graphical output of the filter weight for every layer. Additionally, we generate
a report of the network when validated against a test set.
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5.2 Setup

We will perform experiments on three different data sets. The first data set is the MNIST
database of handwritten digits, which is often used to compare various classification algorithms,
including deep networks [LCB]. The MNIST data set is a graphical data set of small images.
There are 60000 examples in the training set and 10000 test samples, and each image has a
label corresponding to the digit it represents. Each classification has about the same number
of examples so that the data set is uniformly distributed. The data set is also very useful for
generating normalized images of each classification label in a network like a Restricted Boltzmann
Machine.

We also use two instances of data sets that are related to complex games. Often these data sets
have ordinal data, and a network with binary or with real-valued nodes should also be able to
train on them. For some data sets, we need to convert the ordinal tags or textual classifications
so that the samples can be read by our network. We use the Poker data set from UCI [CO] to
test the performance of the networks on games. The training set has 25010 examples while the
test set has one million instances, and the distribution over the classifications is very unbalanced
so that common hands such as a worthless hand or only one pair occur much more frequently
than a rare hand, e.g., a Royal flush: the former classifications both encompass almost 50% of
the data set while the Royal flush has only eight instances in total.

We use the program defined in Section 5.1 to process these data sets and train the deep networks.
Through the following experiments, we compare the influence of input properties, parameters,
network structures, and learning algorithms:

• We analyze how well a Restricted Boltzmann Machine can recognize a large number of
target classifications. We use different sets of target labels and filter the inputs of the
training and test sets so that the network can run on a subset of the data. We also determine
how the performance on these subsets develops when the number of hidden nodes in the
RBM is changed.

• We further investigate how the choice of the number of hidden nodes affects the learning
of the RBM on the data set. We take runs of the pretraining phase and also validate its
performance after each epoch. We pass the data set using the normal parameters for batch
sizes, and other influences remain constant. Thus we can plot the number of hidden nodes
and the number of epochs against the mean error that the network has on the test set.

• We compare the various algorithms and parameters for RBM networks. We seek whether
the simplified version of our learning rule has any benefit over the normal Contrastive
Divergence. We also test the Persistent version of CD, and vary the k parameter for the
number of Gibbs steps. We also use these pretraining methods for RBM layers when they
are used as components in a DBN network. In this case, we keep the structure of the DBN
fixed.

• Finally, we run complete DBN networks on our data sets. These experiments attempt to
select a decent structure for the given representation of the data set. This means that we
can vary the number of nodes on each layer. We can also decide how many epochs we run
for both the pretraining and the training phase. This can be somewhat simplified by some
monitoring functionality such as early-stopping, so that we can end a training phase before
the mean error becomes too large.
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5.3 Results

We first observe what happens when the number of hidden nodes of the RBM is altered. A
low number of hidden nodes provides a good starting point, because there is lower chance of
inconsistent results. We use 15 epochs to train the network for every configuration of hidden
nodes, and furthermore the batch size remains 20, with one Gibbs step per sample trained.

We define the mean error as the number of incorrect classifications divided by the number of
testing samples. In the case of ordinal-numbered classifications, the number of errors includes
both incorrect classification bits in the label vectors, as well as a missing bit for the correct label,
so in some cases the error can even be twice the number of incorrect labels as a whole. We think
that this is not a large problem, since we want to reduce both of these erroneous classifications.
However, this might mean that the result seems worse than expected.

5.3.1 Classification in MNIST

In Figure 3a we see the outcome of limiting the MNIST data set to only use samples with
classification label 3 or 4. We limit ourselves to 15 epochs of pretraining on the data set, and we
vary the number of hidden nodes. As a result, the standalone RBM is able to train the model
distribution precisely when it contains few hidden nodes. One of the nodes will likely become
a feature detector for the most relevant parts of a digit 3, while the other can detect the usual
shape of a 4. However, when we add more nodes, the network becomes more erratic, and although
the error remains below 0.1, it is not helpful to use more than 2 hidden nodes in this case.
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Figure 3: Comparison of RBM training on different targets from the MNIST data set. For the
case where we have only two possible classifications, a small number of hidden nodes can perfectly
represent the distribution. When there are more labels, we need an increasing number of nodes.

On the other hand, if we train on the full data set, including all digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and
9, the number of hidden nodes plays are role in the mean error, as we can see in Figure 3b. The
mean error starts off very high, with only a 10th of the test set being given a correct classification.
This may be caused by the way we count errors in the classification’s binary nodes. It is also what
the Contrastive Divergence algorithm uses in its learning update rules, so it is a fair measure.
With more hidden nodes, the RBM is able to decrease the mean error a lot. Using more than
50 hidden nodes is a worthwhile idea.

Now, it could also be the case that we need to train for a longer time, or with different training
settings. We therefore investigate the relation between the number of epochs and the number of
hidden nodes. In Figure 4a, we see the result of training runs of a Restricted Boltzmann Machine
with 5 hidden nodes, for up to 500 epochs, with similar settings as in the previous experiment.
The results have been averaged over 200 runs. Although there is some variance between each
epoch, the mean error remains between 0.09 and 0.1 after some initial outliers.

The same experiment has been done with an almost unchanged RBM, but now with 250 hid-
den nodes. The result in Figure 4b shows a peculiarity in the first few epochs. The error is at
around 0.325 after the first epoch, but it then grows toward 0.6. When we run another 50 epochs,
the error decreases, but after that, it is unable to find any improvement. It can therefore be noted
that a large number of epochs is not always a practical idea, but the number of hidden nodes
might need some finetuning as well.
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Figure 4: Comparison of RBM training on the MNIST data set with a varying number of hidden
nodes and epochs.
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The experiments focus on classification problems, because we can easily compare algorithms and
parameters in this way. However, we can also investigate the use of Restricted Boltzmann Ma-
chines for generating images after unsupervised training. In Figure 5a, we see an example of a
distribution that the network can generate. Figure 5b shows a similar result for the RBM that
was used in the experiment with the data set filtered to only contain samples with classifica-
tions 3 and 4. Finally, Figure 5c shows two images of samples that are generated when set a
classification bit in an empty image, so that the RBM generates a normalized sample with that
classification.

(a) A distribution of images gener-
ated by the RBM on the MNIST
data set after 100 epochs and with
20 hidden nodes.

(b) A distribution of images gener-
ated by the RBM on the data set
filtered on 3 and 4 after 15 epochs
and with 2 hidden nodes.

(c) Samples that are generated by
the RBM on the MNIST data set
filtered on 3 and 4, when given
classification bits.

Figure 5: Comparison of examples of generated images on the MNIST data set.

5.3.2 Application to Poker

We want to study the performance of the Contrastive Divergence algorithm in an RBM when
used on a more complex data set, such as a situation within a game. The Poker data set contains
a large number of hands with five playing cards from which one can deduce a classification for
the category the hand falls in [CO]. The Poker data set is introduced in Section 5.2.

In Figure 6, we compare the use of the normal learning rules of Contrastive Divergence against
the alternative learning rule which we found in Section 4.2.2. The network trains with 25 hidden
nodes, for 100 epochs and with default settings. The results were averaged over 100 runs. It
is interesting to see that while the simplified CD algorithm is more erratic than the standard
version, but its performance is similar.

We can further investigate how the Contrastive Divergence algorithm performs in an RBM by
comparing it to other algorithms and networks. We can also compare it to the use of BackPropa-
gation by building a simple DBN and performing a pretraining and training phase. In Figure 7a,
we see the results of BackPropagation after a long pretraining phase using Contrastive Diver-
gence on a Deep Belief Network with two intermediate layers of 100 and 1000 nodes. The error
on the test set has decreased significantly, and the training phase is able to decrease it a little
more. However, after a number of epochs, the error starts to rise slightly again, and it continues
to rise in the epochs after that. The use of early-stopping can prevent the downturn by resetting
the network to the state where it performed the best.

On the other hand, if we use the alternative CD learning rule which we found in Section 4.2.2,
the pretraining phase ends up to perform about two times as worse as the normal rule, as seen
in Figure 7b. The DBN network’s BackPropagation training algorithm is unable to improve on
this margin, and behaves erratically.
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Figure 6: Comparison of RBM training on the Poker data set with a different learning rule.

6 Conclusion

We have seen that Restricted Boltzmann Machines are already very able to model an underlying
distribution of a data set so that it is able to provide accurate predictions for new samples. Even
when we use it on its own, it is able to be trained supervised so that it can learn to generate
classifications for inputs. It can also be trained unsupervised, but both learning methods allow
the RBM to generate normalized samples of its model distribution.

The RBM can also be employed as components of a larger Deep Belief Network. We can pretrain
the RBM components consecutively, and afterwards we can adjust the weights through the use
of BackPropagation in a normal Multilayer Perceptron deep network.

6.1 Further research

In this bachelor thesis, we investigated how the various deep learning network structures and
algorithms work, and how they compare against each other. This also includes an exploration on
whether they are applicable in fields such as game solving, graphics generation and predictions.

While the deep networks are able to train very well for those target purposes, there is still
a problem of representation. Many data sets for games are structured in a different way, and
often they are not compatible with the vector-based inputs of a neural network. They need
to be preprocessed and parsed before they are able to be used in this way. It would be an
interesting study to find out whether the deep networks can be adapted so that they can work
with unprocessed data from these game databases. Specifically, it would be an interesting study
to find out whether a Deep Belief Network can improve on playing Go by computers [SN08].
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