
Deadlock detection in Kahn Process Networks

Erik Jongsma
LIACS, Leiden (ejongsma@liacs.nl)

Supervisor: Dr. H.N. Nikolov
LIACS, Leiden (nikolov@liacs.nl)

December 20, 2010

Contents

1 Introduction 2

2 Background 3
2.1 Kahn Process Networks . 5
2.2 PNgen . 6
2.3 Espam . 7
2.4 HDPC . 8

3 Deadlock detection 10
3.1 Examples . 11

3.1.1 Artificial deadlock . 11
3.1.2 Real deadlock . 11
3.1.3 Multiple deadlocks . 12

3.2 Other approaches . 13
3.3 Our work . 13

3.3.1 Determining minimal buffer sizes 19

4 Results 19
4.1 Getting Started . 19
4.2 Odd-even sort . 22
4.3 Sobel edge detection . 24
4.4 Demosaic . 26
4.5 FDWT . 28

5 Conclusion 29

6 Acknowledgements 30

A Demosaic KPN 31

B FDWT KPN 32

1

1 Introduction

One of the biggest challenges computer scientists face at this moment is
parallel programming. Individual CPU core speeds cannot be increased much
further, due to technical and physical restraints. Therefore, CPU developers
have started to design to multi-core processors. The theoretical increase in
performance that can be gained using this approach is given by Amdahl’s
Law:

speedup(p) =
1

s + (1− s)/p
,

where p is the number of cores, and s is the fraction of the program in ques-
tion that can not be parallelized (the serial part). Of course, this formula
is a simplification of reality, as for example we could have programs which
can be parallelized perfectly for two cores, but not more. Assuming we can
find “nice” programs, in the sense that their s is small, we can get a big
improvement in performance by using multiple cores.

However, most software that has been written so far is sequential, i.e., not
programmed with parallel execution in mind. Combine this with the fact that
parallel programming is:

• Hard for developers to do by hand,

• Very time-consuming,

• Very error-prone,

and it can be seen that there are challenges to be overcome in this area.
The rest of this thesis is organized as follows: we start by talking about the
background of our work. This includes sections about Kahn Process Net-
works, HDPC, etc. Then, we will discuss deadlock detection. A couple of
small examples will be given, followed by a list of possible approaches to
deadlock detection. We will then present the algorithm we used and the way
it is implemented. Finally, we will give some results obtained by using our
implementation on several programs.

2

2 Background

Programming for multiprocessor systems is a very difficult and time consum-
ing process. Because of this, and the fact that multiprocessor systems have
not been around that long, most existing applications have been written as
sequential programs. Therefore, we would like to have a method to automati-
cally convert these existing programs to parallel programs that are optimized
for execution on multiprocessor platforms.

The LERC group at the LIACS has created a tool-flow to automate this
process, called Daedalus:

Figure 1: Daedalus tool flow.

The Daedalus design flow, depicted in Figure 1, provides a single environ-
ment for rapid system-level architectural exploration, system-level synthesis,
programming and prototyping of multimedia MPSoC (multiprocessor plat-
forms) architectures.

3

Here, a key assumption is that the MPSoCs (multiprocessor platforms) are
constructed from a library of pre-determined and pre-verified IP components.
These components include a variety of programmable and dedicated proces-
sors, memories and interconnects, thereby allowing the implementation of a
wide range of embedded MPSoC platforms.

Starting from a sequential application specification in C, the PNgen tool (see
Section 2.2) automatically converts it into a parallel Kahn Process Network
(see Section 2.1) specification. To enable the automation, the input programs
are restricted to so-called static affine nested loop programs, which are an
important class of programs in, e.g., the scientific and multimedia application
domains.

The generated KPNs are subsequently used by the Sesame modeling and sim-
ulation environment to perform system-level design space exploration (DSE).
Sesame uses high-level model components from the IP component library, see
the right part of Figure 1.

The DSE results in a number of promising candidate system designs. Their
system-level specifications, i.e., platform, application-to-architecture map-
ping, and application descriptions, act as input to the ESPAM tool (see
Section 2.3).

The ESPAM tool uses these system-level input specifications, together with
RTL versions of the components from the IP library, to automatically gen-
erate synthesizable VHDL that implements the candidate MPSoC platform
architecture. In addition, it also generates the C code for those application
processes that are mapped onto programmable cores. Using commercial syn-
thesis tools and compilers, this implementation can be readily mapped onto
an FPGA for prototyping.

However, instead of synthesizing these processes onto an FPGA, we will use
the HDPC framework (see Section 2.4). This framework functions similar
to the YAPI tool, used for fast simulation of process networks on desktop
PCs. In contrast with YAPI, the HDPC framework does not use its own
real-time environment. HDPC generates a cross-platform (Windows, Linux,
Mac OS) multi-threaded implementation of KPNs targeting multi-core plat-

4

forms. HDPC keeps the execution overhead of the generated KPN minimal.
Therefore, it can be used not only for simulations but it can also be used as
the final implementation if the target is general-purpose multi-core desktop
machines.

2.1 Kahn Process Networks

The first step of the process described above is representing a sequential ap-
plication in a parallel model of computation. The model we use is the Kahn
Process Network (KPN), by Dr. Gilles Kahn [Kah74]. This model is espe-
cially suited for applications dominated by data-flow, e.g. streaming image
manipulation.

A KPN consists of concurrent processes that communicate using unbounded
First-In First-Out (FIFO) channels. Processes produce data tokens, which
are then written to channels. These tokens will remain in the channels until
they are consumed by other processes. Each channel has only one producer
and one consumer process connected to it, so multiple producers or con-
sumers per channel are not allowed in this model. If a process attempts to
read from an empty channel, it will block until the corresponding process fills
the channel with a new data token. If a process is running, it will only access
one channel at a time, and if blocked, it will not be allowed to access other
channels. Kahn Process Networks can be represented as directed graphs.

One of the nice things about the KPN model is that the result of its compu-
tation is independent of execution order, as long as we ensure that processes
block when trying to read from an empty channel. This allows us to execute
the network in parallel, as well as sequentially. However, the KPN model
assumes channels that have unbounded capacity. As we will not have an un-
bounded amount of memory when implementing a KPN, we will have to use
fixed channel sizes.

Therefore, instead of KPNs, we will use Polyhedral Process Networks (PPNs).
PPNs are a special case of KPNs. In PPNs, the communication FIFO chan-
nels are finite and therefore, PPNs synchronize using both blocking read and
blocking write, whereas KPNs only require blocking read. Also, in PPNs the
processes are internally structured in a particular way. That is, each process
executes three phases in a loop, namely the Read, Execute, and Write phases.

5

For example, we might have something like Figure 2:

READ

COMPARE_1

1

1 1

COMPARE_2

9 9

WRITE

1 1

17 16

1 1

Figure 2: PPN Example

In this figure, we can see four processes and 11 channels. The numbers beside
the channels represent the channel sizes.

The question is: how large should our channel sizes be? If we make them too
small, we might run into a situation where our application is in a deadlock
state (because if our channels are bounded, processes can also block on writ-
ing to a full channel). On the other hand, we would like our channels to be as
small as possible, to minimize memory usage. We will discuss this problem
in more detail in the upcoming sections.

2.2 PNgen

For most programs, manually specifying an application as a process network
is very error-prone and time-consuming. Therefore, a tool called PNgen has
been created [VNS07]. PNgen is a tool that takes a sequential C/C++ pro-
gram as its input, and outputs a behaviorally equivalent PPN. The only
restriction on the C/C++ code is that the program must be a static affine
nested loop program (SANLP).

6

A SANLP consists of a set of statements, each possibly enclosed in loops
and/or guarded by conditions. The loops need not be perfectly nested. All
lower and upper bounds of the loops as well as all expressions in conditions
and array accesses can contain enclosing loop iterators and parameters as well
as modulo and integer divisions. The parameters are symbolic constants, that
is, their values may not change during the execution of the program fragment.

SANLPs are common in scientific computing (e.g., matrix computation) and
signal processing applications. The reason for restricting to these programs
is that the dependence analysis necessary to derive the channels may not be
possible in general, but it is possible for SANLPs.

PNgen also generates channel sizes that ensure deadlock-free execution of the
network. For self-loops, this computation is easy because it does not depend
on the scheduling of the network. For other channels, a different approach
is needed. The way PNgen computes these channel sizes is as follows: first,
it computes a deadlock-free global schedule of the PPN. Then, the individ-
ual channel sizes are computed for this schedule. Note that the computed
schedule may not be optimal and that the buffer sizes may not be valid for
an optimal schedule. However, using this method ensures us that there is
in fact a valid schedule for the computed buffer sizes. Based on the global
schedule, all processes are placed in a common iteration space, forming one
big compound process. As a result, all channels become self-loops. Therefore,
we can then compute all channel sizes.

2.3 Espam

After we have used PNgen to generate a PPN, we must then use it to create
a parallel implementation of our program. This is where we use the ESPAM
(Embedded System-level Platform synthesis and Application Mapping) tool
[NSD08]. ESPAM takes as input a system-level specification, consisting of
three parts:

1. A Platform Specification, describing the topology of a platform using
generic parameterized system components taken from a library (see
Figure 1);

2. An Application Specification, describing an application as a PPN. The

7

PPN specification reveals the task-level parallelism available in the ap-
plication;

3. A Mapping Specification, describing the relation between all processes
and FIFO channels in Application Specification and all components in
Platform Specification.

ESPAM can target different platforms on which the PPN will be executed
(YAPI, System C, FPGA, etc.)

2.4 HDPC

The Heterogeneous Desktop Parallel Computing Framework (HDPC) [Far08]
is another target for ESPAM. For this target, ESPAM generates backend code
for a desktop computer that acts as the controlling and coordinating arbiter
between the processes of a PPN. The processes can then execute on various
computing devices like the FPGA, Graphics Processing Unit (GPU), or the
Cell B.E. to take advantage of their respective strengths. For each process in
a PPN, a thread on the host CPU is created.

8

Figure 3: HDPC Framework

Figure 3 visualizes the approach; a PPN running on the HDPC framework
with three interconnected processes. A, B, and C all execute their functions
on a device connected to the same machine. Communication channels and
the FIFO mechanism are implemented in main system memory and are un-
der HDPC’s control. This simplifies memory management, as we are working
in the same address space.

As the framework acts as a controlling and coordinating framework of a PPN,
all on a single machine, there are several differences to the traditional task-
parallel approach. PPNs for example do not allow, or even consider, global
variables for communication between processes. As in HDPC all communica-
tion happens in the same shared-memory system, the use of global variables
is permitted. These can be used for example as read-only values for control,
constants, etc.

9

3 Deadlock detection

In this thesis, we are adding real-time deadlock detection and dynamic chan-
nel resizing to the HDPC framework. In theory, this would not be necessary,
because if we use PNgen we get channel sizes that guarantee deadlock-free
execution. However, there are several reasons why we would want this any-
way:

• The channel sizes given by PNgen are not always minimal. Using dead-
lock detection (and dynamic resizing of channels) at runtime allows us
to find the absolute minimum channel sizes for the actual execution
schedule, thus minimizing memory usage.

• If we design a program by hand in the HDPC framework, there are no
guarantees on the buffer sizes at all. So, in this case, we do require a
mechanism to deal with deadlocks.

• In some cases, the minimal channel sizes might be data-dependent.
When using a run-time deadlock detection algorithm, we will always
get the correct minimal sizes.

Two kinds of deadlocks can occur in process networks: artificial deadlocks
and real deadlocks. Real deadlocks are deadlocks which are independent of
channel sizes. This means all channels involved in a real deadlock will be
blocked on read. Artificial deadlocks are deadlocks which only occur because
we do not have infinite channel sizes as required by the definition of a KPN.
They can be resolved by increasing the amount of memory reserved for the
channel causing the deadlock. Every deadlock which involves at least one
channel blocked on write is an artificial deadlock.

We will first show some examples of situations in which deadlocks can occur.
Then, we will briefly describe the different methods that have been used in
the past to resolve deadlocks. Finally, we will discuss our method.

10

3.1 Examples

First, a simple example where artificial deadlock will occur:

3.1.1 Artificial deadlock

P1

P2

C0 - 1 C1 - 1

Figure 4: PPN with an artificial deadlock

P1 and P2 both do the same in a loop: they write two tokens to their output
channel, and then read two tokens from their input channel. When we execute
this PPN, both channels will be filled and then we are in a deadlock state.
Both processes still need to write one more token to their output channel,
but those are both full. This is an artificial deadlock, because if the channel
sizes were bigger, we would not have this problem. Indeed, if this PPN is
executed using our deadlock detection and resolving algorithm, the size of
one of the channels is increased to two, and the program can continue.

3.1.2 Real deadlock

Now, a simple example to show when real deadlocks occur. We look at the
same KPN:

P1

P2

C0 - 1 C1 - 1

Figure 5: PPN with a real deadlock

11

P1 and P2 still do the same in a loop: they read two tokens from their input
channel, and then write two tokens to their output channel. When we execute
this PPN, both channels will be empty at the start, and so both processes
will not be able to read. We are now also in a deadlock state, except that
this deadlock cannot be resolved by increasing channel sizes. Therefore, this
network is in a real deadlock.

3.1.3 Multiple deadlocks

In this example, multiple cycles can be found:

P1

P2

C0 - 1 C4 - 1

P3

C1 - 1

C2 - 1

Figure 6: KPN with a multiple deadlocks

In this example, we will not specify what the different processes do, but just
show some of the possible cycles:

• C1 → C2 → C4, all blocked on write: artificial deadlock.

• C1 → C2 → C4, all blocked on read: real deadlock.

• C0 → C4, with one of the two blocked on read: artificial deadlock.

More possible cycles can be found in this graph. Note that when looking for
deadlock cycles, we reverse the direction of the edges if a channel is blocked
on read (as in the last case). This will be explained in more detail when we
discuss the deadlock detection algorithm.

12

3.2 Other approaches

A lot of effort has gone into deadlock detection for process networks, lead-
ing to all kinds of solutions to this problem. For some languages, like SHIM
(a concurrent language), this problem is solved statically [SVE09]. However,
this gives us no result about channel sizes, it just detects if the current config-
uration will lead to a deadlock state when executed. Then, there are several
approaches that deal with process networks. W. Huang and D. Qi [HQ08] use
message passing between processes. They communicate with each other about
their status, and with the so-called resource managers (the channels). Dead-
locks are detected by the resource managers, when they have had messages
from all processes involved in it. N. Barath et. al. [BNB05] use a different
approach. They use a Deadlock Detection and Resolution (DD&R) process,
which is pre-programmed with all possible cycles in the process network.
This process then monitors the other processes at run-time, and detects a
deadlock when one of these cycles is found. Others [OE05, AZE07] detect
deadlocks in a distributed way. TCP/IP messages are used to send labels to
other processes. These labels keep track of the state of the processes. Once
all processes in a cycle have the same label, a deadlock is detected. B. Jiang
et. al. [JDK08] propose a hierarchical deadlock detection algorithm, where
the process network is split into segments, and each segment gets its own
local observer. A global observer is then used to gather data from all local
observers and detect a deadlock if it occurs.

3.3 Our work

Instead of the different processes communicating with each other about their
status, we have used another approach. Separate from the threads executing
the processes of the PPN, we have a watcher thread. We will first discuss the
way our deadlock detection algorithm works. Then, we will look at the mod-
ifications have been made to the HDPC framework. Finally, we will discuss
the watcher thread and dynamic resizing.

The method we use for deadlock detection is similar to the one used by Jiang
et. al. [JDK08], without the hierarchical part. As we have seen before, a PPN
can be represented as a graph, where the vertices are processes and the edges
are channels. Using our watcher thread, we can get blocking information
about this graph. So, we know which of the processes are blocked on read or

13

write (or not at all). Using this information, and the graph layout, we con-
struct a dependency graph. This is done as follows: if none of the processes
attached to a channel are blocked, it is removed from the graph. If a process
is blocked on read, the direction of the corresponding channel is reversed.
This is because if a process is blocked on read, it is dependent on the writing
process. If a process is blocked on write, the corresponding channel remains
as is. The dependency graph represents a state of the program, where the
edges are pointing from blocked processes to the processes they are waiting
for.

To clarify this, we look at an example from [JDK08]. Suppose we have the
following PPN:

sible cases.
In [3], a distributed deadlock detection algorithm is pro-

posed, in which the KPN processes exchange state informa-
tion to identify the process that is causing the deadlock.

In this paper, we propose a hierarchical KPN deadlock de-
tection procedure. We first present a non-hierarchical detec-
tion algorithm that we, then, extend to a hierarchical version.
The latter is useful when large networks are partitioned into
subnetworks.

2. DEADLOCK DETECTION IN NON-PARTITIONED
NETWORKS

A Kahn Process Network is a multigraph consisting of ver-
tices (processes) and edges (FIFO channels). The KPN in
Figure 2(a) consists of three vertices P1-P3, and four edges
C1-C4. This graph can be represented by a topology edge list
I as shown in Figure 2(b).

(a) A KPN

I =

Ch So Si

C1 1 2
C2 2 1
C3 1 3
C4 2 3

(b) Topology edge list

Fig. 2. A KPN with three processes and four channels (a),
and the corresponding topology edge list I (b).

The topology edge list I is a representation of the net-
work’s incidence matrix. Thus, channel Ch is an outgoing
edge for the source node (So), and an incoming edge for the
sink node (Si). For example, nodes P1 and P3 are source and
sink nodes, respectively, of channel C3. To detect deadlock
cycles in a KPN, list I is updated with blocking information
sent by the network nodes to a centralized observer that knows
the list I . Specifically, when process Pi blocks on channel Cj ,
it sends a message (i, j) to the observer. No additional infor-
mation is needed.

The blocking state of a KPN consists of process compo-
nents and channel components. The process component is the
blocking information (i, j). The channel component is FULL
(W) or EMPTY (R). The channel component is derived from
the process component and the list I: If process Pi blocks on
channel Cj , then the channel state component is EMPTY (R)
when Pi is a sink node in the topology edge list I , otherwise
it is FULL (W).

As an example, suppose that in the KPN of Figure 2, pro-
cess P1 is blocked on channel C1, process P2 is blocked on
channel C4, and process P3 is blocked on channel C3. The

node states are then (1,1), (2,4), and (3,3), respectively. The
channel states are W , R, and W for channels C1, C3, and
C4, respectively. The derived channel states are added to
the topology edge I to obtain a state-updated edge list Is as
shown in Figure 3.

Is =

Ch So Si St
C1 1 2 W
C2 2 1
C3 1 3 R
C4 2 3 W

Fig. 3. The state-updated topology edge list (Is). The last
column codes the channel states.

Observe that row C2 in the list Is can be discarded be-
cause channel C2 can not possibly be involved in a deadlock
cycle.

Once the list I is updated to the list Is, the deadlock detec-
tion observer constructs a dependency edge list D from which
deadlock cycles can be identified, if any.

List D is obtained from list Is as follows. If the state of
channel Cj is R, then swap the node IDs in row j. Otherwise ,
leave So and Si node IDs as they are. In list D, all node IDs in
the column So are blocked nodes. The list D for our running
examples is shown in Figure 4 together with the dependency
graph.

D =

Ch So Si St
C1 1 2 W
C3 3 1 R
C4 2 3 W

(a) Dependency edge list (b) A dependency graph

Fig. 4. Dependency edge list(4a) and the corresponding De-
pendency graph (4b) .

Cycles can now be identified by means of a transitive clo-
sure search for closed directed paths in the list D, as follows.
Start from any node ID in the So column, say x . x is blocked
on a full channel, that is, x is W -blocked . Go to the Si node
ID in the same row, say y. Find the node ID y in the So col-
umn, and repeat until the starting node ID x is reached again.
If a cycle in the list D is found, then it is a deadlock cycle if
and only if at least one node in it is blocked on a channel with
state FULL (W).

In our running example, nodes P1-P3 are in a deadlock
cycle.

Multiple deadlock cycles may exist, but no nodes can be
part of more than one deadlock cycle.

Figure 7: A PPN

Also suppose our watcher thread has determined that P1 and P2 are blocked
on write, and that P3 is blocked on read. Then, C2 is removed, the direction
of C3 is swapped, and we get the following dependency graph:

14

sible cases.
In [3], a distributed deadlock detection algorithm is pro-

posed, in which the KPN processes exchange state informa-
tion to identify the process that is causing the deadlock.

In this paper, we propose a hierarchical KPN deadlock de-
tection procedure. We first present a non-hierarchical detec-
tion algorithm that we, then, extend to a hierarchical version.
The latter is useful when large networks are partitioned into
subnetworks.

2. DEADLOCK DETECTION IN NON-PARTITIONED
NETWORKS

A Kahn Process Network is a multigraph consisting of ver-
tices (processes) and edges (FIFO channels). The KPN in
Figure 2(a) consists of three vertices P1-P3, and four edges
C1-C4. This graph can be represented by a topology edge list
I as shown in Figure 2(b).

(a) A KPN

I =

Ch So Si

C1 1 2
C2 2 1
C3 1 3
C4 2 3

(b) Topology edge list

Fig. 2. A KPN with three processes and four channels (a),
and the corresponding topology edge list I (b).

The topology edge list I is a representation of the net-
work’s incidence matrix. Thus, channel Ch is an outgoing
edge for the source node (So), and an incoming edge for the
sink node (Si). For example, nodes P1 and P3 are source and
sink nodes, respectively, of channel C3. To detect deadlock
cycles in a KPN, list I is updated with blocking information
sent by the network nodes to a centralized observer that knows
the list I . Specifically, when process Pi blocks on channel Cj ,
it sends a message (i, j) to the observer. No additional infor-
mation is needed.

The blocking state of a KPN consists of process compo-
nents and channel components. The process component is the
blocking information (i, j). The channel component is FULL
(W) or EMPTY (R). The channel component is derived from
the process component and the list I: If process Pi blocks on
channel Cj , then the channel state component is EMPTY (R)
when Pi is a sink node in the topology edge list I , otherwise
it is FULL (W).

As an example, suppose that in the KPN of Figure 2, pro-
cess P1 is blocked on channel C1, process P2 is blocked on
channel C4, and process P3 is blocked on channel C3. The

node states are then (1,1), (2,4), and (3,3), respectively. The
channel states are W , R, and W for channels C1, C3, and
C4, respectively. The derived channel states are added to
the topology edge I to obtain a state-updated edge list Is as
shown in Figure 3.

Is =

Ch So Si St
C1 1 2 W
C2 2 1
C3 1 3 R
C4 2 3 W

Fig. 3. The state-updated topology edge list (Is). The last
column codes the channel states.

Observe that row C2 in the list Is can be discarded be-
cause channel C2 can not possibly be involved in a deadlock
cycle.

Once the list I is updated to the list Is, the deadlock detec-
tion observer constructs a dependency edge list D from which
deadlock cycles can be identified, if any.

List D is obtained from list Is as follows. If the state of
channel Cj is R, then swap the node IDs in row j. Otherwise ,
leave So and Si node IDs as they are. In list D, all node IDs in
the column So are blocked nodes. The list D for our running
examples is shown in Figure 4 together with the dependency
graph.

D =

Ch So Si St
C1 1 2 W
C3 3 1 R
C4 2 3 W

(a) Dependency edge list (b) A dependency graph

Fig. 4. Dependency edge list(4a) and the corresponding De-
pendency graph (4b) .

Cycles can now be identified by means of a transitive clo-
sure search for closed directed paths in the list D, as follows.
Start from any node ID in the So column, say x . x is blocked
on a full channel, that is, x is W -blocked . Go to the Si node
ID in the same row, say y. Find the node ID y in the So col-
umn, and repeat until the starting node ID x is reached again.
If a cycle in the list D is found, then it is a deadlock cycle if
and only if at least one node in it is blocked on a channel with
state FULL (W).

In our running example, nodes P1-P3 are in a deadlock
cycle.

Multiple deadlock cycles may exist, but no nodes can be
part of more than one deadlock cycle.

Figure 8: A dependency graph

Now we can detect deadlocks by looking for cycles in the dependency graph.
Indeed, if there is a cycle in de dependency graph, we know that there is a
number of processes which are all waiting on each other. In the example, we
have a cycle consisting of C1, C4 and C3.

Once we have found a cycle, we first check which kind of deadlock state the
program is in. If a cycle consists of only processes blocked on read, we have
found a real deadlock. We output this and quit the program. Otherwise, we
have an artificial deadlock, and we want to increase the size of the channel
causing it. To do this, we use timestamps. Each time the status of a channel
is changed by one of its processes (blocked on read/write, or not blocked),
we store a timestamp recording when this happened. Once a deadlock is de-
tected, we increase the size of the channel which has the smallest timestamp.
Of course, we only increase the size of full channel, so empty channels are dis-
regarded. After increasing the channel size, we allow execution to continue.
We keep using this method until the program finishes, and finally output the
channel sizes we have found.

Now, we look at the modification made to the HDPC framework. We started
by moving the initialization of the channels. Before, channels were created
in a method of the PPN processes called attachinput. However, since the
watcher thread needs access to the channels, they are now created in the
main thread of the program, so that a list of channel pointers can be made.
The attachinput method of the processes has also been changed, to allow
it to bind the processes to already existing channels. Furthermore, we need
to allow the watcher access to the PPN topology. So, we have created the
following data-structure:

15

typedef struct ChannelData {

int Number;

int Input;

int Output;

ChannelBase* ChannelPointer;

int Status;

uint64_t Blocktime;

} ChannelData;

One instance of this struct is created in the main thread. The number variable
is simply the channel name (used for output). The rest are fairly straightfor-
ward, ChannelPointer is the pointer to the actual channel, and the last two
variables are only used by the watcher thread and will be discussed later.
To see how we must adapt an existing HDPC project to work with this new
framework, refer to section 4.1.

Then, we changed all channel types. For example, the wait_read function of
the semaphore type channel is now:

#if HDPC_DEBUG_MODE

bool done = false;

while (!done) {

Write.lock();

if (!full.try_wait()) {

if (Status == 0)

Timestamp = getTime();

Status = 1;

} else

done = true;

Write.unlock();

boost::this_thread::yield();

}

Read.lock();

Status = 0;

#else

wait (full);

#endif

The same changes have been made to all channel types. The main point is
that once the channel is empty (and a process is blocking on it), Status is

16

set to 1 and Timestamp to the current time. Until the status changes, the
timestamp will remain the same. For the wait_write method, the changes
are almost the same, except the status will be set to 2 when the attached pro-
cess is blocked on write. Furthermore, some mutexes have been introduced,
which we will discuss in more detail later on.

Now, we are ready the discuss the watcher thread. This thread executes the
following steps in a loop:

• All current read and write operations are finished, and no further op-
erations are allowed to start. We use the Read and Write mutexes
mentioned earlier to facilitate this. So, the watcher simply locks both
mutexes for all channels.

• Status information is collected in the form of block status (full, empty,
not blocked), and the time of the latest change to this status. The
watcher uses methods of the channel to get the Status and Timestamp

values.

• Read and write operations can be resumed. Methods of the channel are
used to unlock both mutexes for all channels.

• We calculate if a deadlock has occurred:

First, all blocked channels are sorted by block-time. This is done
by a simple sorting algorithm.

Then, for each blocked channel, we determine if there is a cycle
in the dependency graph using channels that are blocked after it (in
time). If so, we have found a deadlock.

If a real deadlock has been found, we output it and exit the pro-
gram.

If an artificial deadlock has been found, we increase the size of the
channel causing it (as determined by the timestamps), and continue
executing the program.

Because in a PPN a process can be blocked on only one channel, the cycle-
finding algorithm is very efficient. Also, because the watcher process synchro-
nizes the entire network before checking its status, we can immediately detect
deadlocks without finding false positives. Other approaches require polling

17

methods to determine if a deadlock is a false positive, leading to difficulties
such as the need to determine polling intervals (see for example [JDK08]).

The dynamic resizing of the channels is done as follows: At the time a chan-
nel is full, the read and write pointer will point to the same channel element,
like this:

↓
x1 x2 x3 x4 x5 x6 x7

↑

We start by increasing the size of the channel in memory. The old contents
of the channel are automatically copied:

↓
x1 x2 x3 x4 x5 x6 x7

↑

Then, we move the contents of the channel after the read-pointer one place
forward:

↓
x1 x2 x3 x4 x5 x6 x7

↑

Finally, we move the read pointer one place forward. We now have space in
the channel for one extra element, and the order in which elements will be
read will stay the same:

18

↓
x1 x2 x3 x4 x5 x6 x7

↑

3.3.1 Determining minimal buffer sizes

Because we can dynamically resize channels, we can start our program with
all channel sizes set to 1. During execution, channel sizes are then increased
as required until the program can finish execution. This guarantees that we
have actually found the minimal channel sizes for the actual execution sched-
ule. We will see in the result section that the difference between the channel
sizes generated by PNgen and our approach is sometimes quite large.

4 Results

4.1 Getting Started

First, we will describe how to change a HDPC program such that it works
with our new framework which includes deadlock detection and resizing.
Hopefully, these changes will be added to ESPAM, so that this will not have
to be done by hand. The code we will change here is a simple example, but
the same method is used for all other results as well.

We will reuse the deadlock example shown earlier:

P1

P2

C0 - 1 C1 - 1

Figure 9: Example PPN

19

We will only edit the <programname>_KPN.cpp file. First, we add

#include <hdpc/channels/channel.h>

#if defined HDPC_DEBUG

#include <hdpc/watcher.hpp>

#endif

to the top of the file. This includes the watcher file if debugging (and thus,
deadlock detection and resolving) is turned on. Also, we need the channel
class definition regardless of debug state. Then, we look for the following
code:

p_P_1.attachinput<LOCK_FREE, tCH_1>(0, p_P_2.getOutPort(0), 1);

p_P_2.attachinput<LOCK_FREE, tCH_2>(0, p_P_1.getOutPort(0), 1);

Here, a member function of each process is called to create a channel and
attach its in- and outputs. As we now have to create the channels in the main
thread, we comment the entire block and replace it by this:

using namespace hdpc;

using namespace channel;

// Create channels

ChannelBase* Channels[2];

Channels[0] = new Channel<tCH_1, LOCK_FREE>(1);

Channels[1] = new Channel<tCH_2, LOCK_FREE>(1);

p_P_1.attachinput(0, p_P_2.getOutPort(0), Channels[0]);

p_P_2.attachinput(0, p_P_1.getOutPort(0), Channels[1]);

Of course, if the program has more channels, the channel array defined above
must be increased in size. Now, we need to generate a data structure for the
PPN topology, so that the watcher can detect cycles. This is done as follows
(these lines are added below the previous):

#ifdef HDPC_DEBUG

// Create table for watcher thread.

ChannelData Channelarray[2];

20

WatcherData* Data = new WatcherData;

Data->Channels = Channelarray;

Data->NumChannels = 2;

for (int i = 0; i < Data->NumChannels; i++) {

Channelarray[i].ChannelPointer = Channels[i];

Channelarray[i].Number = i;

}

Channelarray[0].Output = 1;

Channelarray[1].Output = 2;

Channelarray[0].Input = 2;

Channelarray[1].Input = 1;

// Create watcher thread.

boost::thread* WatcherThread;

// Start running the watcher.

WatcherThread = new boost::thread(Watcher, Data);

#endif

This ensures the watcher has the PPN topology, and that it is actually started
when debugging is enabled. Finally, we want to write the channel sizes we
have found to a file, once we are done executing. So, we look for the following
lines at the end of the file:

tg.join_all();

t.end_timer();

printf("\nTime Elapsed: %.3f\n", t.elapsed_time());

return 0;

and replace it by this:

tg.join_all();

#ifdef HDPC_DEBUG

21

WatcherThread->interrupt();

t.end_timer();

printf("\nTime Elapsed: %.3f\n", t.elapsed_time());

ofstream output("ChannelSizesWorking.txt");

for (int i = 0; i < 3; i++)

output << "Channel " << i << ": " << Channels[i]->get_length() << endl;

#endif

exit(0);

Again, the number above might need to be changed if there are more or
less channels in the program. The watcher thread is killed after a normal
execution of the program is completed. Then, the correct channel sizes are
printed to the file ChannelSizesWorking.txt. These steps will ensure the
program runs correctly using the modified HDPC framework. If debugging is
enabled, all channel sizes can be set to 1, and the minimal required channel
sizes will be stored. This procedure was used to generate the results in the
following sections.

4.2 Odd-even sort

Odd-even sort is a sorting algorithm designed specifically for parallel exe-
cution. It works by passes of pairwise comparisons, similar to bubblesort.
However, instead of one pass that is continuously repeated, we now have two
passes. In pass 1, we compare each array element i with i + 1 for all i ≡ 0
mod 2. In pass 2, we compare each array element i with i + 1 for all i ≡ 1
mod 2. We continue executing these two passes after each other until the
array is sorted. See below for the PPN of the algorithm, and the results. In
the PPN, P1 is used to read elements from an array, P4 is used for output,
and P2 and P3 are used to compare and swap values.

22

P1

P2

C0 - 28

C1 - 1 C5 - 1

P3

C2 - 26 C6 - 26

P4

C3 - 1 C4 - 1

C7 - 2 C10 - 1

C8 - 25 C9 - 26

Figure 10: KPN for Odd-even sort

Channel Original size Determined size
0 28 1
1 1 1
2 26 9
3 1 1
4 1 1
5 1 1
6 26 9
7 2 17
8 25 1
9 26 1
10 1 16

Sum 138 58

Table 1: Buffer sizes determined at run time for Odd-even sort

23

The results of this test are quite interesting. We see that the channels from
the input-process and to the output-process can actually be reduced to size
1 (C0, C8, C9). If we look at the channels between P2 and P3 (C2, C6, C7,
C10), the difference is not as large. The sum of the original sizes for those
is 55, while the determined size is 51. This small difference has to do with
the fact that the processes store values in internal variables as well as in the
channels. Hardware cores implementing processes may not have local mem-
ory, therefore the sizes given by PNgen are slightly larger.

The question is: does having smaller channels decrease performance because
of excessive blocking? We have ran this example 20 times using both sets of
channel sizes (with debugging disabled). The version with original channel
sizes executed in 5.8 ms on average, while the minimal version took 7.9 ms.
So, more blocking does slow down execution (as expected). However, it is up
to the developer to decide whether to emphasize on speed or memory usage.
These results give him/her this opportunity.

4.3 Sobel edge detection

Sobel is an edge detection algorithm where a 3 × 3 window is slid over the
image to calculate the gradient of the pixel with its neighbours. In the PPN,
P5 is used to read pixel values from the original, P1 is used for output to a
new picture, P2 and P3 are used to compute the gradient per pixel, and P4
used to calculate absolute values.

24

P2

P3

C0 - 1

P1

C1 - 1

P4

C2 - 1

P5

C3 - 899 C5 - 451 C7 - 3 C9 - 897 C11 - 445 C13 - 1 C4 - 899 C6 - 898 C8 - 897 C10 - 3 C12 - 2 C14 - 1

Figure 11: KPN for Sobel edge detection

25

Channel Original size Determined size
0 1 1
1 1 1
2 1 1
3 899 898
4 899 898
5 451 450
6 898 897
7 3 2
8 897 896
9 897 896
10 3 2
11 449 448
12 2 1
13 1 1
14 1 1

Sum 5403 5393

Table 2: Buffer sizes determined at run time for Sobel edge detection

Here, the results are not as interesting as in the odd-even test. However, these
numbers do give us confidence that our approach is working correctly. The
small differences between the original and the determined sizes are again
because of the internal variables of the process. There are no significant
differences in execution times for this example either.

4.4 Demosaic

Demosaic is an algorithm that takes raw pixel data from an image sensor
(for example, a digital camera) and turns it into an RGB image. Because the
PPN for this example is rather large, it can be found in appendix A.

26

Channel Original size Determined size Channel Original size Determined size
0 1 1 27 62 60
1 1 1 28 1 1
2 1 1 29 1 1
3 259 257 30 63 62
4 1 39 31 63 61
5 1 68 32 2 2
6 1 1 33 62 1
7 62 61 34 2 1
8 62 61 35 65 65
9 63 61 36 258 127
10 2 1 37 62 61
11 259 132 38 1 1
12 65 65 39 1 1
13 1 1 40 1 1
14 2 1 41 61 61
15 1 1 42 1 1
16 1 1 43 1 1
17 62 61 44 2 1
18 1 1 45 62 61
19 1 1 46 62 62
20 61 61 47 1 1
21 1 1 48 62 59
22 1 1 49 62 62
23 62 62 50 1 1
24 1 1 51 1 26
25 1 1 52 1 1
26 62 62 Sum 1997 1787

Table 3: Buffer sizes determined at run time for Demosaic

In this example, we have some more interesting sizes. We will not talk about
the differences of one or two, as these are because of the internal variables.
Instead, we will focus on the main differences. We see that C4 and C5 are
actually bigger than in the original case. C4 leads to P4 and C5 leads to
P9 in the PPN. These both have outgoing channels that are a lot smaller
in the run time case: C11 and C36, both going to P9. So, our hypothesis
is that the data is “stored” earlier in the PPN, allowing for much smaller

27

channels later on. Something similar is going on with C33 and C51. Again,
this is probably because redistribution of weights to other edges of the graph.

With the determined sizes, the average execution time of the example is
about 330 ms. With the original sizes (C17 set to 61), the average is 295 ms.
As in odd-even, there is a choice to be made between speed and memory
usage.

4.5 FDWT

FDWT is an algorithm that computes the forward discrete wavelet transform.
This is a transformation that can be applied to images and sounds to get a
series of coëfficients in a certain basis. The corresponding PPN can be found
in appendix B.

Channel Original size Determined size Channel Original size Determined size
0 1 1 17 1 1
1 450 449 18 1 1
2 901 900 19 1 1
3 451 449 20 112 1
4 450 450 21 112 1
5 1 1 22 1 1
6 450 450 23 113 1
7 2 1 24 1 1
8 1 1 25 1 1
9 3 1 26 1 1
10 113 1 27 1 1
11 1 1 28 112 1
12 1 1 29 112 1
13 1 1 30 1 1
14 3 1 31 113 1
15 1 1 32 1 1
16 113 1 Sum 3627 2726

Table 4: Buffer sizes determined at run time for FDWT

Apart from the usual one or two token difference, we can see that every
channel that has capacity 112 or 113 is now reduced to one. As we can see

28

in the PPN, these channels are all on a path to either P9 or P13. We think
these channels are allowed to have size one, because these two processes can
immediately pass on the received tokens to the next process.

Again, we compare the average execution time of the different versions. In
this case, the minimal version runs about 2.20 s, while the original version
runs in 1.53 s. Again, we see the same performance hit because of additional
blocking.

5 Conclusion

From our tests, it seems the deadlock detection and dynamic resizing are
working well. It even provided a significant reduction in memory used in
several test-cases. However, as we can see from the execution times, the pro-
gram invariably slows down when we decrease the channel sizes. Regardless,
we think providing the absolute minimum channel sizes gives the developer
the opportunity to make the trade-off between memory usage and speed. It
could be that there are memory configurations in between the original and
minimal one, which do not cause a performance decrease but are still more
memory-efficient.

Further research on deadlock detection in the HDPC framework could be
done. For example, we could investigate how often we want the watcher
thread to execute its cycle. It might make sense to check less often if a pro-
gram rarely reaches a deadlock state. This could even be done dynamically
(if no deadlock is detected, sleep longer than the last time).

Another possible improvement could be varying the sizes of the channel in-
creases. Currently, when a channel is increased in size, we create memory for
one more token. If a channel requires a large amount of memory, the current
implementation will take very long to figure this out. We could use a similar
approach as the above, for example, we could increase a channel size by more
than one if it has been the cause of a deadlock multiple times.

Finally, it would be interesting to test these examples on machines with many
cores. It might be that the performance difference between the channel sizes
determined by PNgen and our approach will be less if every process has its

29

own processing core (because of less context switching when processes block).

6 Acknowledgements

I would like to thank Hristo Nikolov for the inspiring meetings and helpful
comments. I would also like to thank Tamás Faragó for his work on making
the HDPC framework cross-platform, and the discussions about dynamic
resizing.

30

A Demosaic KPN
P1

P8

C0
 -

1

P3C1
 -

1

P2

C2
 -

1

P9

C2
9

- 1

P4

C6
 -

1

P1
3

C3
 -

25
9

C4
 -

1
C5

 -
1

P1
4C5

2
- 1

C1
1

- 2
59

P7

C7
 -

62
C1

0
- 2

C1
3

- 1

P6

C8
 -

62
C1

2
- 6

5
P5

C9
 -

63
C1

4
- 2

C3
6

- 2
58

P1
1

C3
0

- 6
3

C3
2

- 2
P1

0

C3
1

- 6
3

C3
4

- 2

P1
2

C3
3

- 6
2

C3
5

- 6
5

C2
7

- 6
2

C2
6

- 6
2

C2
8

- 1

C2
4

- 1

C2
3

- 6
2C

25
 -

1
C1

7
- 1

C2
2

- 1
C1

8
- 6

2

C1
5

- 1
C1

6
- 1

C1
9

- 1
C2

0
- 6

1
C2

1
- 1

C4
8

- 6
2

C4
6

- 6
2

C4
7

- 1
C4

5
- 6

2

C4
4

- 2

C3
8

- 1
C3

9
- 1

C4
0

- 1
C4

1
- 6

1
C4

3
- 1

C3
7

- 6
2

C4
2

- 1

C5
1

- 1

C4
9

- 6
2

C5
0

- 1

31

B FDWT KPN

P1

P2

C0 - 1

P3

C1 - 450 C3 - 451

P5

C2 - 901

C4 - 450

C5 - 1

C6 - 450

C11 - 1P4

C7 - 2

P10

C8 - 1

P11

C9 - 3

P13

C10 - 113

P7

C14 - 3P6

C15 - 1

P9

C16 - 113

C12 - 1

C13 - 1C25 - 1

C26 - 1

C29 - 112P17

C27 - 1

P12

C28 - 112

P16

C32 - 1

C21 - 112 P15

C19 - 1

P8

C20 - 112

C18 - 1

C17 - 1

P14

C24 - 1

C23 - 113

C22 - 1

C31 - 113

C30 - 1

32

References

[AZE07] G.E. Allen, P.E. Zucknick, and B. L. Evans. A distributed deadlock
detection and resolution algorithm for process networks. In Inter-
national Conference on Acoustics, Speech, and Signal Processing,
2007.

[BNB05] N. Barath, S.K. Nandy, and N. Bussa. Artificial deadlock de-
tection in process networks for eclipse. In International Confer-
ence on Application-Specific Systems, Architecture and Processors
(ASAP’05), 2005.

[Far08] T. Faragó. A framework for heterogeneous desktop parallel com-
puting. Master’s thesis, LIACS, Leiden University, 2008.

[HQ08] W. Huang and D. Qi. A local deadlock detection and resolution
algorithm for process networks. In International Conference on
Computer Science and Software Engineering, 2008.

[JDK08] B. Jiang, E. Deprettere, and B. Kienhuis. Hierarchical run time
deadlock detection in process networks. In IEEE Workshop on
Signal Processing Systems, 2008.

[Kah74] G. Kahn. The semantics of a simple language for parallel pro-
gramming. In J. L. Rosenfeld, editor, Information Processing ’74:
Proceedings of the IFIP Congress, pages 471–475. North-Holland,
New York, NY, 1974.

[NSD08] H. Nikolov, T. Stefanov, and E. Deprettere. Systematic and auto-
mated multiprocessor system design, programming, and implemen-
tation. Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, 27(3):542–555, 2008.

[OE05] A.G. Olson and B. L. Evans. Deadlock detection for distributed
process networks. In International Conference on Acoustics,
Speech, and Signal Processing, 2005.

[SVE09] B. Shao, N. Vasudevan, and S.A. Edwards. Compositional dead-
lock detection for rendezvous communication. In EMSOFT ’09:
Proceedings of the seventh ACM international conference on Em-
bedded software, pages 59–66, New York, NY, USA, 2009. ACM.

33

[VNS07] S. Verdoolaege, H. Nikolov, and T. Stefanov. pn: a tool for improved
derivation of process networks. EURASIP Journal on Embedded
Systems, Special Issue on Embedded Digital Signal Processing Sys-
tems, 2007.

34

	Introduction
	Background
	Kahn Process Networks
	PNgen
	Espam
	HDPC

	Deadlock detection
	Examples
	Artificial deadlock
	Real deadlock
	Multiple deadlocks

	Other approaches
	Our work
	Determining minimal buffer sizes

	Results
	Getting Started
	Odd-even sort
	Sobel edge detection
	Demosaic
	FDWT

	Conclusion
	Acknowledgements
	Demosaic KPN
	FDWT KPN

