
Constructing Simple Nonograms

of Varying Difficulty

K. Joost Batenburg∗,1, Sjoerd Henstra2, Walter A. Kosters2, and
Willem Jan Palenstijn1

1Vision Lab, Department of Physics, University of Antwerp,
Belgium

2Leiden Institute of Advanced Computer Science, Leiden
University, The Netherlands

Abstract

Japanese puzzles, also known as Nonograms, are image reconstruc-
tion problems that can be solved by logic reasoning. Nonograms can have
widely varying difficulty levels. Although the general Nonogram problem
is NP-hard, the instances that occur in puzzle collections can usually be
solved by hand.

This paper focuses on a subclass of Nonograms that can be solved by
a sequence of local reasoning steps. A difficulty measure is defined for this
class, which corresponds to the number of steps required to reconstruct
the image. In the first part of this paper, we investigate the difficulty
distribution among this class, analyze the structure of Nonograms that
have lowest difficulty, and give a construction for the asymptotically most
difficult problems. The second part of the paper deals with the task of
constructing Nonograms, based on a given gray level image. We propose
an algorithm that generates a set of Nonograms of varying difficulty that
all resemble the gray level input image. The effectiveness of the algorithm
is demonstrated for several input images.

1 Introduction

A Nonogram, also known as a Japanese puzzle in some countries, is a type of
logic puzzle which can be considered as an image reconstruction problem. The
goal is to find an image on a rectangular pixel grid that adheres to certain
row and column constraints. Usually, the image is black-and-white, although
Nonograms with more than two gray values exist as well. In addition to elemen-
tary logic, solving Nonograms requires some elementary integer calculations.
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The combination of a logic problem with integer calculations results in a com-
binatorial problem that can be approached using methods from combinatorial
optimization, logical reasoning or both, which makes Nonograms highly suitable
for educational use in Computer Science [5].
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Figure 1: A small Nonogram and its unique solution.

Fig. 1(a) shows an example of a Nonogram. Its solution is shown in Fig. 1(b).
The description for each row and column indicates the order and length of
consecutive unconnected black segments along those lines. For example, the
description “2 1” in the first row indicates that from left to right, the row
contains a black segment of length 2 followed by a single black square. The
black segments are separated by one or more white pixels and there may be
additional white pixels before the first segment, and after the last segment.

Several implementations of Nonogram solvers can be found on the Internet;
see [6] for a list of solvers. In [1], an evolutionary algorithm is described for
solving Nonograms. A heuristic algorithm for solving Nonograms is proposed in
[4]. The related problem of constructing Nonograms that are uniquely solvable is
discussed in [3]. In [2], a reasoning framework is proposed for solving Nonograms
that uses a 2-SAT model for efficient computation of reasoning steps.

In [7], it was first proved that the general Nonogram problem is NP-hard.
This also follows from the fact that Nonograms can be considered as a general-
ization of the reconstruction problem for hv-convex sets in discrete tomography,
which is NP-hard [8]. On the other side of the difficulty spectrum are the Nono-
grams that can be found in puzzle collections, which can usually be solved by
hand, applying a sequence of simple reasoning steps. In this paper, we focus
on this latter class of Nonograms, referred to as the simple type in [2]. Such
Nonograms can be solved without resorting to branching, yet there can still be
a large variance in the number of steps required to find solutions. We define
a difficulty measure for this class and analyze several properties. In particular,
we provide a construction for a family of Nonograms that have asymptotically
maximal difficulty, up to a constant factor. As an application, we propose an al-
gorithm for constructing Nonograms from the simple class of varying difficulty,
based on given gray level images.

This paper is structured as follows. In Section 2, notation is introduced to
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describe the objects of this paper and their properties. Both the simple class and
the difficulty measure are defined. In Section 3, further motivation is provided
for studying this particular difficulty measure, and its distribution is analyzed
for small Nonograms. Section 4 considers the question what the maximum diffi-
culty can be, as a function of Nonogram size. First, we derive properties of single
lines in Nonograms, illustrating the range between simple Nonograms of lowest
difficulty and Nonograms that are not even of simple type. Next, a construction
is given that obtains asymptotically maximal difficulty for Nonograms of arbi-
trarily large size. The remainder of the paper deals with an application of this
difficulty concept: constructing Nonograms of varying difficulty that resemble
a gray level input image. An algorithm is proposed for this task, followed by a
series of computational experiments. Section 6 concludes this paper.

2 Notation and concepts

We first define notation for a single line (i.e., row or column) of a Nonogram.
After that, we combine these into rectangular puzzles. Let Σ = {0, 1}, the
alphabet of pixel values. We also refer to 1 as black and 0 as white. While
solving a Nonogram, the value of a pixel can also be unknown. Let Γ = {0, 1, ?},
where the symbol ’?’ refers to the unknown pixel value.

A description d of length k ≥ 0 is a (possibly empty) ordered series of positive
integers d1d2 . . . dk. A finite string s over Σ adheres to such a description d if s
satisfies the regular expression 0∗1d10+1d20+ . . . 1dk0∗. A string s ∈ Γ` (` ≥ 0)
can be fixed to a string t ∈ Σ` if sj = tj whenever sj ∈ Σ (1 ≤ j ≤ `). A
description d is called `-consistent if

∑k
i=1 di + n− 1 ≤ `. Given a string s ∈ Γ`

and a description d, we define:

S(s) = { t ∈ Σ` | s can be fixed to t },
A`(d) = { t ∈ Σ` | t adheres to d },

F (s, d) = S(s) ∩A`(d).

The operation Settle (s, d) constructs a string t from a string s over Γ and an
`-consistent description d by replacing all ’?’ symbols in s for which all strings
in F (s, d) have a unique value in Σ by this value. In other words, all pixels that
must have a certain value in order to adhere to the description, are set to that
value. In [2], an efficient, polynomial-time algorithm is described for performing
the Settle operation on a string, by using dynamic programming.

An m × n Nonogram description D consists of m > 0 row descriptions
r1, r2, . . . , rm and n > 0 column descriptions c1, c2, . . . , cn. An image P =
(Pij) ∈ Γm×n adheres to the description if P only contains values from Σ and
all rows and columns adhere to their corresponding description. A Nonogram
N consists of a pair (D,P ), where D is a Nonogram description and P is a
(partially filled) image.

A Nonogram description is called simple if it can be reconstructed by ap-
plying a sequence of Settle operations, each time using only information from
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a single row or column. In other words, it is never necessary to consider infor-
mation from several rows and columns simultaneously. Nearly all Nonograms
that appear in puzzle collections satisfy this property. From this point on, we
focus exclusively on the class of simple Nonograms. Note that for Nonograms
of the simple type, there is a bijective map between the set of images and their
descriptions. Therefore, we sometimes use the term Nonogram to refer to either
the image, or its description. Even though the order of applying the Settle op-
erations does not affect whether or not a solution can be found, the required
number of operations depends heavily on the order in which rows and columns
are selected.

We define the following operations:

• The operation h-sweep (N) applies the Settle operation to all rows of the
Nonogram N : a horizontal sweep.

• The operation v-sweep (N) applies the Settle operation to all columns of
the Nonogram N : a vertical sweep.

Both operations return the “updated” Nonogram, usually having fewer un-
knowns.

Now the difficulty of a Nonogram of the simple type is determined by start-
ing with an image N for which all pixel values are unknown, and running the
algorithm in Fig. 2.

Difficulty (N) :
diff ← 0;
while N is not solved do

if diff is even then N ← h-sweep (N);
else N ← v-sweep (N); fi
diff ← diff + 1;

od
return diff ;

Figure 2: Algorithm that solves a simple Nonogram and determines its difficulty.

The algorithm starts with a horizontal sweep, intertwines horizontal and
vertical sweeps, and counts the total number of sweeps until the Nonogram is
solved. It is clear that any m × n Nonogram of simple type has difficulty at
most equal to mn + 1, since every sweep (except perhaps the first one) must at
least fix one unknown pixel. In the next section, we motivate the choice for this
particular difficulty measure.

3 A few remarks on difficulty

We remark that our definition of “difficulty” is rather subjective. Quantifying
the amount of work required to solve a particular Nonogram is not straightfor-
ward, as it depends on the particular solution strategy employed. In Section 5,
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we will consider the task of constructing Nonograms of varying difficulty that
resemble a gray level input image. As these Nonograms are intended to be solved
by human puzzlers, it is important that the difficulty measure corresponds to
the amount of work required by a puzzler to solve the Nonogram. We observed
that while solving Nonograms, people rarely combine information from several
rows and columns simultaneously, which motivates studying the simple class.
A major advantage of the proposed measure is that it does not depend on the
order in which individual rows and columns are considered. The only degree of
freedom in this strategy, is whether one starts with the rows or columns. This
choice can make a difference of at most 1 in the resulting difficulty. An interest-
ing property of Nonograms is that small local changes in the image can have a
profound impact on the solution process for the corresponding Nonogram. The
difficulty can vary wildly, by changing just a single pixel.

The proposed difficulty measure can be computed efficiently, by using the
Settle algorithm from [2]. This allows for enumeration of a large set of Nono-
grams, to perform a statistical analysis of the difficulty distribution. Fig. 3(a-c)
show the difficulty histogram for all simple square Nonograms of size 4×4 up
to 6×6, obtained by a complete enumeration. Note that all these Nonograms
have a unique solution. It can be observed that a large fraction of all simple
n×n Nonograms (4 ≤ n ≤ 6) has low difficulty (close to n), while high diffi-
culty Nonograms (difficulty close to 1

2n2) occur rarely. For n = 6, out of 236

images, 70.76% yields a Nonogram of the simple type. Fig. 3(d) shows the same
histogram, but using a logarithmic scale. It can be observed that the average
difficulty is 4.51, whereas the difficulty can be as large as 26.

Similar trends can be observed for larger Nonograms, but an exhaustive
search is no longer possible in that case. An interesting question is how the
maximum possible difficulty varies with Nonogram size. A Nonogram of high
difficulty should satisfy two properties:

• In each consecutive h-sweep and v-sweep only a few new pixels should be
determined. Ideally, this number of newly discovered pixel values should
be bound by a constant.

• In each consecutive h-sweep and v-sweep the value of at least one new pixel
should be determined, as otherwise the Nonogram is not of the simple type.

For a Nonogram of size n×n, n2 + 1 is clearly an upper bound on its difficulty.
However, it is not clear at all that the maximum difficulty that can be reached
increases linearly with the number of pixels. In the next section, we will show
how to construct arbitrarily large Nonograms for which the asymptotic difficulty
is 1

2n2, which demonstrates that the upper bound can be attained up to a
constant factor.
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(d) Idem as (c), logarithmic

Figure 3: Number of Nonograms of a given size as a function of difficulty level.
In (d), the vertical axis has logarithmic scaling.

4 Constructing difficult Nonograms
of simple type

The Settle operation plays a crucial role in the construction of simple Nono-
grams, and in the construction of simple Nonograms of high difficulty in partic-
ular. In each sweep, there must be at least one line for which a new entry can be
fixed. On the other hand, to construct a difficult Nonogram, it is important to
avoid lines that can be fixed entirely in a single application of the Settle oper-
ation. In this section we will first consider scenarios where the Settle operation
can either infer no information at all for a given line, or where the entire line
can be fixed in a single step. This immediately provides a necessary condition
for a Nonogram to be simple, and a characterization of the simple Nonograms
of lowest difficulty (difficulty 1). We then proceed with a construction of the
asymptotically most difficult Nonograms of simple type in Section 4.2.

4.1 Elementary cases of Settle operations

Simple Nonograms can be solved by performing a sequence of Settle operations,
using only the information from a single line at a time. We first characterize
those situations where the Settle operation immediately results in a unique
solution:
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Lemma 4.1. Let d = d1d2 . . . dk be an `-consistent description. Then we have
Settle (?`, d) ∈ Σ` if and only if

∑k
i=1 di + k − 1 = `.

Proof. By assumption,
∑n

i=1 di + k − 1 ≤ `, as d is `-consistent. Suppose that∑n
i=1 di + k − 1 = `. We show that there is a unique string in Σ` that adheres

to the description. Indeed, 1d101d20 . . . 1dn ∈ F (?`, d) and has length `. Fur-
thermore, it contains a minimal number of 0 symbols, and therefore any other
string that adheres to d must have length greater than `, showing that F (?`, d)
consists of a single element.

Conversely, if
∑n

i=1 di + k − 1 < `, then also 01d101d20 . . . 1dn ∈ F (?`, d), so
there are at least two different strings that adhere to the description. Therefore,
the Settle operation cannot fix all entries.

Next, we characterize those situations where the Settle operation cannot
infer any information:

Lemma 4.2. Let d = d1d2 . . . dk be an `-consistent description. Then we have
Settle (?`, d) = ?` if and only if

∑k
i=1 di + k − 1 ≤ `−max1≤i≤k di.

Proof. We will first show that if
∑k

i=1 di + k− 1 ≤ `−max1≤i≤k di, none of the
entries can be fixed by the Settle operation. Put s := 1d101d20 . . . 1dn0t, where
t = ` −∑k

i=1 di − k + 1 ≥ max1≤i≤k di. Then s ∈ F (?`, d). Consider any entry
j of s. We first deal with the case that j >

∑k
i=1 di + k − 1, so sj belongs to

the (possibly empty) segment of zeros at the end of s. By shifting the rightmost
block of 1 symbols in s to the right until it overlaps with entry j, a new string
s̄ ∈ F (?`, d) can be obtained, with s̄j = 1. Now assume that j ≤ ∑k

i=1 di +k−1.
If sj = 0, then there must always be a segment of 1 symbols ending directly to
the left of j. Shifting this segment to the right by 1, and shifting all symbols to
the right of entry j accordingly, yields a new string s̄ ∈ F (?`, d) with s̄j = 1. If
sj = 1, then a new string s̄ ∈ F (?`, d) with s̄j = 0 can be obtained by shifting
the segment that overlaps with entry j to the right until its leftmost entry is
j + 1, and shifting all segments to the right of this segment accordingly. As the
shift distance is never greater than max1≤i≤k di, this is always possible.

Conversely, suppose that
∑k

i=1 di + k − 1 > ` −max1≤i≤k di. Consider the
string s, where all segments of 1s have been placed to the left as far as possible,
with only one 0 symbol between each pair of consecutive segments, and the string
s̃, where all segments of 1s have been placed as far to the right as possible. Let
dt be a maximal element of d. Then its rightmost entry in s is

∑t
i=1 di+t−1 and

its leftmost entry in s̃ is `−∑k
i=t di−k+t+1. Clearly, in any element of F (?`, d),

the rightmost entry of dt cannot be smaller than
∑t

i=1 di + t−1 and its leftmost
entry cannot be larger than `−∑k

i=t di−k+t+1. Put j =
∑t

i=1 di +t−1. Then
j =

∑k
i=1 di −

∑k
i=t+1 di + t − 1 ≥ ` − k −max1≤i≤k di −

∑k
i=t+1 di + t + 1 =

` −∑k
i=t di − k + t + 1. Therefore, entry j must lie between the left and right

boundaries of segment dj in any member of F (?`, d) and can be fixed at 1, so
the Settle operation can fix at least one symbol.
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Lemma 4.1 and Lemma 4.2 directly lead to the following properties related
to Nonograms:

Corollary 4.3. Let D be a Nonogram description. If all row and column de-
scriptions satisfy the condition given in Lemma 4.2, the Nonogram is not of
simple type.

Corollary 4.4. Let D be a Nonogram description. Then D is a Nonogram
of simple type with difficulty 1 if and only if all row descriptions satisfy the
condition given in Lemma 4.1.

Corollary 4.4 characterizes the simple Nonograms of lowest difficulty. In the
next subsection, we turn our attention to the simple Nonograms of asymptoti-
cally highest difficulty. High difficulty is obtained by keeping the conditions of
Lemma 4.2 satisfied for a large number of lines, and for many sweeps.

4.2 Difficult Nonograms

In this section we will construct certain m × n Nonograms of the simple type
that require approximately 1

2mn sweeps, thereby attaining a very high difficulty.
More precisely, we show:

Theorem 4.5. Let m satisfy m = 8k + 2 for some integer k ≥ 1, and take an
even integer n with n ≥ 14. Then there exists an m×n Nonogram that requires
A(m, n) = (m + 2)(2n− 15)/4 + 10 sweeps (if k > 1). If k = 1, so m = 10, the
Nonogram requires 6n− 37 sweeps. For square n× n Nonograms of this special
type (so n = 8k + 2 with integer k ≥ 2) we need (n2 − 11

2 n + 5)/2 sweeps.

The remaining part of this section is devoted to the construction of these
special m× n Nonograms, and to the proof that the number of sweeps is equal
to A(m, n), as mentioned in the theorem. Fig. 4 shows the construction for
m = n = 18. It is possible to give similar constructions for slightly varied values
of m and n, for instance for odd width, but we will not go into detail on this.
The slightly different value (2 less than the general formula predicts) if k = 1 is
explained by a small case difference in the construction, see below.

The construction proceeds as follows. There are k rows with description
n, i.e., consisting of only 1s. These rows, the so-called split rows, being the
(8i − 1)th rows (1 ≤ i ≤ k), are fully fixed in the first h-sweep. Furthermore,
all columns, except for the first, second and last one, have description 13k+1

(where σr denotes a sequence of r copies of a sequence σ). After the first v-
sweep, the rows immediately above and below the split rows are therefore filled
with 0s in all these columns, referred to as the middle columns. Any three such
rows together, i.e., split row and rows immediately above and below it, form a
so-called 3-strip. Each row above a split row has description 1, each row below
a split row has description 12. The second 1 can in the third sweep also be
fixed easily at the end of the row. So together any 3-strip will —after the third
sweep— look like Fig. 5.
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Figure 4: Overview of the construction of an 18× 18 Nonogram with difficulty
115. The construction can be extended in the vertical direction by inserting
consecutive copies of the marked block. Extension in the horizontal direction is
straightforward.

1

18

1 1

? ? ?

? ?

Figure 5: Contents of a 3-strip after the third sweep (n = 18). Gray squares
denote unknown pixels.

Now the Nonogram is in fact separated by the 3-strips into k parts of height
5, called the 5-strips, and a final part consisting of the bottom two rows, called
the 2-strip. All these parts must be solved in turn, as will be clear from the
sequel.

Note that the 5-strips are all alike, except for the first one, which is used for
bootstrapping the solver procedure. Within each 5-strip, the middle row will be
filled with 10n−1 after the third sweep (its description is a single 1), and then
the top two rows of the 5-strip will be solved, largely pixel by pixel, from right
to left; after that the bottom two rows of the 5-strip will be solved in a similar
fashion, from left to right, again largely pixel by pixel. The traversals from the
top two rows to the bottom two rows within each 5-strip, and from each 5-strip
to the next 5-strip or the final 2-strip, require special care. These traversals,
combined with 5-strip solving, all invert the direction in which pixels are fixed,
thereby constituting a zig-zag pattern.

The descriptions for the first, second and last columns are (32)k1, (112)k1
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and 2(13)k, respectively.
Let us, to begin with, concentrate on the first (and special) 5-strip. The de-

scriptions of its rows are 121n/2−3, 21n/2−32, 1 (as said above), 21n/2−7(21)2 and
1n/2−6213, respectively. The other 5-strips have a slightly different description
for the first two rows, namely (12)21n/2−72 and 1321n/2−6. The row descriptions
for the final 2-strip are the same: these two rows can be viewed as the top part
of a regular 5-strip. In Fig. 4 the resulting solved 18 × 18 Nonogram is shown;
note the two split rows.

One can verify that after the first three sweeps, the following pixels are fixed:
most pixels from the 3-strips (as mentioned above, cf. Fig. 5; the five remaining
unknown pixels are used for the traversals within and between the 5-strips), the
bottom right pixel of the Nonogram (at 0), the two topmost pixels of the second
columns from the left and right (at 01), and the entire middle row from each
5-strip (at 10n−1, as said above). This last filling has the important property
that in the middle columns, all 1s are now almost pinned: they must be in either
first or second row, fourth or fifth row, and so on. This enforces that all 5-strips
must be solved in order, and really after one another.

Concentrating on the first two rows, one can see that after the fourth sweep,
only six pixels are fixed. The order, or rather the number of the sweep in which
the pixels are found (again for n = 18; circles denote black pixels) is shown in
Fig. 6. Here, for each two unknown pixels immediately above one another (except
for the leftmost two, where this fact is not known yet), exactly one must be 1.
This is inferred pixel by pixel, coming from the right, and alternating between
top and bottom row, thus contributing to the large number of sweeps needed.
The 2s in the descriptions are necessary for the construction of the traversal;
this also holds, in several variations, for other rows in 5-strips. Note that in the
third sweep no new pixel values are found for these rows.

31 2 30jkl27 27jkl26jkl23 22jkl19 18jkl15 14jkl11 10jkl 7 6jkl 2 4jkl

29jkl 1jkl29 28jkl28 25 24jkl21 20jkl17 16jkl13 12jkl 9 8jkl 5 1jkl 4jkl

Figure 6: Order in which pixel values are found for the first two rows.

Finally, let us examine the number of sweeps. From the construction it is clear
that the addition of two new columns (among the middle columns) increases the
number of sweeps by m + 2. Indeed, in every 5-strip we need an extra 8 sweeps,
and the final 2-strip adds another 4; together we get 8k + 4 = m + 2 of them.
Therefore, A(m,n) should satisfy A(m,n + 2) = A(m,n) + m + 2.

Furthermore, it is easy to see that every extra 5-strip and its accompanying
3-strip (as shown in Fig. 4) adds 4n + c sweeps, for some integer constant c.
Careful inspection shows that c = −30. We conclude that A(m,n) should satisfy
A(m + 8, n) = A(m,n) + 4n− 30. Using A(18, 18) = 115 we arrive at the closed
formula.

Note that the traversal within the first 5-strip, that reverses the right-left
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direction into a left-right direction, slightly differs from those in the other 5-
strips. This causes the small difference in the number of sweeps for k = 1.

5 Generating Nonograms of simple type

In this section we describe an algorithm that produces a series of Nonograms of
the simple type of varying difficulty. The algorithm is rather flexible and offers
many options that can be customized. We only sketch these options here.

The generated Nonograms should resemble a given gray value image P ∈
{0, . . . , 255}m×n We want these Nonograms not to look alike, and therefore
maintain a set L of Nonograms from which a newly generated Nonogram should
differ. The new Nonogram is then appended to L.

As a subroutine, the algorithm for generating Nonograms uses a straight-
forward generalization of the Difficulty algorithm from Fig. 2, referred to as
FullSettle: instead of the difficulty, the FullSettle operation returns the set of
unknown pixels, where we let the sweeps continue until they make no further
progress. Note that in Section 2 the Difficulty algorithm was applied to Nono-
grams of the simple type, where the algorithm terminates by definition, whereas
in the current application the Nonograms may not be solved, and termination
of FullSettle is effected when a sweep does not yield any new fixed pixels.

Furthermore, a function Init (P ) is used, that returns a 0–1 Nonogram that
somehow resembles P , e.g., by applying a threshold operation or a binary edge
detection filter to the gray level input image.

Generate (P,L) :
p ← Init (P ); U ← FullSettle (p);
while U 6= ∅ do p ← Adapt (p, U, P,L); U ← FullSettle (p); od
return (p,Difficulty (p));

Figure 7: Algorithm that generates a uniquely solvable Nonogram and its diffi-
culty.

Pseudo-code for the algorithm Generate is shown in Fig. 7. The main in-
gredient is the function Adapt (p, U, P,L) that returns a Nonogram p′ that is
equal to p, except for (at least) one pixel that is 0 in p but is 1 in p′. Note
that, since the number of black pixels strictly increases, the loop in Generate
indeed terminates: an all black Nonogram is certainly uniquely solvable. Also
note that upon entering Adapt at least one (i, j) ∈ U satisfies pij 6= 0; indeed,
if FullSettle (p) 6= ∅, it cannot be the case that all the unknown pixels must be
1. The function Adapt proceeds as in Fig. 8.

Here suitable non-negative parameters α, β and γ must be chosen. So we
want the Nonogram to have a small amount of unknowns, we would like the
changed pixel to be dark in the original image, and many Nonograms from L to
be white in that particular pixel. If α = γ = 0, the final Nonogram will resemble
the original P , but will usually be quite dark. However, if β = 0, resemblance
will be worse. High γ-values ensure diversity. Clearly, in particular if L is large,
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Adapt (p, U, P,L) :
min ←∞;
for all (i, j) ∈ U (in random order) do

if pij = 0 then
pij ← 1; % try new image, that differs in one pixel
value ← α · |FullSettle (p)|+ β · Pij + γ ·∑L∈L Lij ;
if value < min then min ← value; (k, `) ← (i, j); fi
pij ← 0; % restore original image

fi
od
pk` ← 1;
return p;

Figure 8: Algorithm that slightly adapts an image p.

it might be hard or even impossible to guarantee that the generated Nonogram
sufficiently differs from those in L.

In this way we get Nonograms of different difficulty, but usually quite hard
ones. In order to obtain Nonograms of more varying and usually lower difficulty,
the following algorithm can be used:

Vary (p, P,L, depth) :
M← ∅; d ← 0;
while d < depth and p has white pixels do

min ←∞; U ← {white pixels in p};
for all (i, j) ∈ U (in random order) do

pij ← 1; value ← α · |FullSettle (p)|+ β · Pij + γ ·∑L∈L Lij ;
if value < min then min ← value; (k, `) ← (i, j); fi
pij ← 0;

od
pk` ← 1; d ← d + 1;
if |FullSettle (p)| = 0 then M←M∪ {(p,Difficulty (p))}; fi

od
return M;

Figure 9: Algorithm that generates Nonograms of varying difficulty.

The algorithm returns a set of at most depth uniquely solvable Nonograms
together with their difficulties, whose sets of black pixels strictly include that of
the original p, and can therefore in general be expected to have lower difficulty.
Note that each Nonogram added to M has at least one black pixel more than its
predecessor. In fact, in practice uniquely solvable Nonograms are encountered
in nearly every iteration.

Fig. 10, Fig. 12 and Fig. 13 contain some examples. All pictures in Fig. 10
are of size 32 × 32, while those in Fig. 12 and Fig. 13 are of size 30 × 38. The
first picture is the original gray value image, from which the second is obtained
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45 48 41 63 46 40 38 52

27 29 20 16 41 16 15 31

Figure 10: Nonograms created for the apple input image. Top row (left to right):
grey level input image; thresholded image; result of edge detection; removal
of white lines; Middle row: Nonograms created using the Generate algorithm;
Bottom row: Final Nonograms created by the Vary algorithm.

by thresholding (aiming at 35 % black pixels). For the third picture, an edge
detection filter is applied in Fig. 10 and Fig. 12. For the fourth picture (the
third in case of Fig. 13), empty lines were addressed (in Fig. 10 this is visible
near the top of the picture; in Fig. 12 near the ear). The pictures in the middle
row are Nonograms of the simple type that have been generated consecutively
by the Generate algorithm, and can therefore be expected not to look alike
entirely; the numbers indicate the difficulties; the parameters of Generate were
set at α = γ = 8 and β = 1. The pictures in the bottom row are obtained from
those immediately above them by the Vary algorithm with depth = 60; the final
Nonogram generated in the main loop is depicted (other ones could also have
been chosen). The set L contains the Nonograms from the second line created
so far. Note that usually the difficulty decreases steadily during this process,
but certainly not always, as is illustrated in Fig. 11: note the steep rise from
difficulty 47 to 69 in the top right part of the graph. And clearly, the Nonograms
from Fig. 13 are easier than those from Fig. 12; they also look more alike. The
results demonstrate that by combining preprocessing of the input image with
the Generate and Vary algorithms, a varied set of Nonograms can be generated
that also have a varying difficulty.

6 Conclusions and further research

Nonograms are interesting study objects, due to their links with both combina-
torial optimization and logic reasoning, as well as their rich variety of combi-
natorial properties. In this paper, we focused on the set of simple Nonograms,
which can be solved by a series of reasoning steps involving only a single col-
umn or row at a time. We proposed a difficulty measure for this class, which
corresponds roughly with the solution strategy followed by human puzzlers and
has favourable computational properties.
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Figure 11: Evolving difficulty during runs of Vary for second, fourth, fifth and
seventh image in the second and third row from Fig. 10.

61 87 65 94 76 93 92 83

43 47 47 62 48 55 34 43

Figure 12: Nonograms created for the input image of Alan Turing. Top row
(left to right): grey level input image; thresholded image; result of edge detec-
tion; removal of white lines; Middle row: Nonograms created using the Generate
algorithm; Bottom row: Final Nonograms created by the Vary algorithm.

First, we described a family of m×n Nonograms that have asymptotically
maximal difficulty, up to a constant factor. An interesting question remains if
the difficulty can still be increased to cmn, where c ∈ ( 1

2 , 1]. In the second part
of the paper, we briefly described an algorithm for generating Nonograms of
varying difficulty. The basic steps of this algorithm allow for a broad spectrum
of variants, each yielding different types of Nonograms. We intend to explore
such possible extensions, and their properties, in future work.
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30 28 26 27 26 28 28 26

17 15 25 17 27 16 22 23

Figure 13: Nonograms created for the input image of Alan Turing. No edge de-
tection filter is used. Top row (left to right): grey level input image; thresholded
image; removal of white lines; Middle row: Nonograms created using the Gen-
erate algorithm; Bottom row: Final Nonograms created by the Vary algorithm.
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