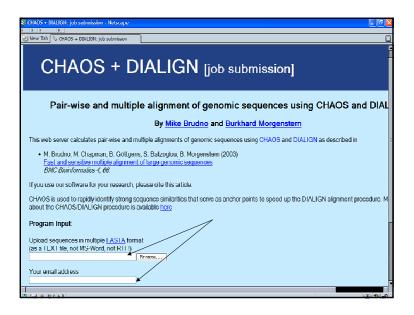

DIALIC consistent collections	
I A V L F A E D I I I I I I L A V I F G/S WD D V T F D A E	I A V L F A E D I I I I I I L A V L E G S W D D V T F D A E B
I A V L F A E D I I I I I I L A V I F G S W D D V T F D A E	IA-VLF-AEd LA-VIF-Gs- wddVTFdAE-
	D

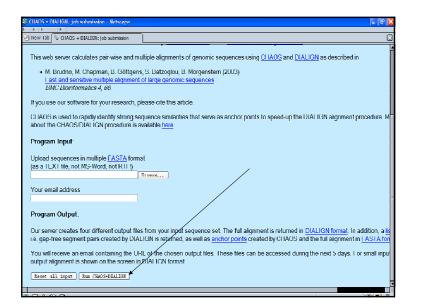
S) BitVibery - Bielefeld I	Iniversity Bioinfe	madics Server Netsc	aba				- 0
🛃 New Fah 🗞 BBServ	- Bieleteld Univers	ty Bioinfor					2
Cesel tobe RNA Studio BhAshdrid gkrots60 more Evolutionary ROSE glettTree more Others PREduo GenUs more	Note: if seq relatively sm	all data sets can be a	ligned. If you want f	o submit more data or	Bevery minutes. This means it you do not want to wai you do not want to wai	t until your	About
	Accept you Reset para	meter(s):			Submit Kexet		
	Back to AllA	WisT home page				$\overline{}$	
<u>a</u> a.eqa							I Ma

- P 🔀	Bibibery - Bielefeld Us	riversity Bioinformatics Server Netscape	- 8
×		Bielefeld University Bioinfor)	E
About 🛛		BiBiServ Bielefeld University Bioinformatics Server	
	Tools Genome Comparison	Tools Education Administration News Links AttAVis T - Submission 2 OPTION 2: Enter two different alignments of the same sequence set	
	AGenDa REFuter more Akgaments E2G van Obstanten	The program will compare the two alternative alignments to each other. Make sure both alignments involve the same sequences (including same namest) and are in EASTA format	Welco Submi
	more Primer Design GeneFibber RNA Studio RNAhybrid	Please enter your alignment//1 Inine	Conta About
y vour	pknotskoj more Fvolulionary Relationship MOSL SplitsTree	OR Upload Alignment#1 Incometers in Alignment #1	
y vun y	more Others PREdictor ComDR more	Optional title for alignment#1 :	
_		Please enteryour alignment#2 here	
I ~ ~	· · · · · · · · · · · · · · · · · · ·	ecting to bibler vitachtek uni biefetel de	-I: ** d

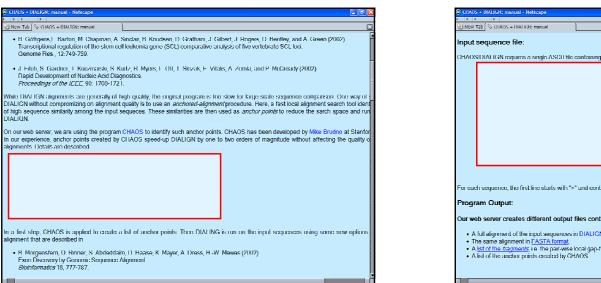
	Iniversity Bioinformatics Server Netscape	- E 🔀
1 2 2 2		
	- Bielefeld Einversity Bioinfor	×
E2G DIALIGN more Primer Design GeneFisher RNA Studio RNAhybrid pknotsicG	Please energyour alignmont#1 hose	Submi Submi Conta About
more Fvolutionary Relationship ROSE SplitsTree more Others PREdictor	OR Upload Afigument#1 Growercase characters in Alignment #1 Optional title for alignment#1 :	_
GenDh more	Please enter your alignment//2 here.	
	01 Uplaad Alopment#2 I prove lower case characters in Alignment #2 Optional lide for alignment#2.	
	Accept your choice. Submit	
	Reset	
	Back to AllAVisT home page	
		_
1		
13 13 8 97 E1 cor	meding to bibsen / techfak uni-bielefeid de	- a ⊳ • s _a [™] .

2		
A summer been	BiBiServ	
	Bielefeld Bowersity Bioinformatics Server	
	Tools Education Administration News Links	
Tools ienome	Altavist: Online description:	
Comparison AGenUa	<u>AttAVist</u> (Alternative Alignment Visualization Tool) is a WWW-based software program that is able to compare two alternative multiple alignments of a given sequence set to each other. Regions where	
REPuter more	both alignments coincide are color-coded to visualize the local agreement between the two	Welcome
Alignments	alignments and to identify those regions of the alignments that can be considered to be most reliable.	Submission 1
E2G DIALIGN		Submission 2
more	Why comparing alignments?	Contact
rimer Design		About
GeneFisher NA Studio	Sequence alignment is the most fundamental tool for sequence data analysis in molecular biology. Practically all methods of computational sequence analysis rely in one way or the other on sequence	resour
RNAhvbrid	comparison, so their results depend on the quality of the underlying alignments. Pairwise and multiple	
pknots RG	alignment therefore continues to be one of the most active areas of research in bioinformatics. There	
more	are two major challenges in the context of sequence alignment. (a) it can be hard to distinguish weak	
volutionary Relationship	local homologies from random similarities and (b) alignment programs can only detect those	
weiauonsnip weiau	homologies that appear in the same relative order in the input sequences. The latter problem is	
SolitsTree	inherent in sequence alignment and means that, for many data sets, correct alignment of one	
more	homologous region necessarily prevents other homologies from being correctly aligned.	
Nhers		
PREdictor	No single alignment procedure can be expected to construct biologically correct alignments in all	
GenDB	possible situations. The reason for this is that every alignment program tries - explicitly or implicitly -	
more	to find optimal alignments according to some relatively simple mathematical scoring function. Yet it	
	cannot be expected that any given scoring function will, under all conditions, be in accordance with	
	biology giving the mathematically highest score to the biologically correct alignments. Consequently,	
	homan intervention is often necessary to check the results of automated alignment procedures and to	
	obtain biologically reasonable alignments. A popular way of testing the (local) reliability of pairwise or multiple alignments is to construct al <i>ternative</i> alignments of the same sequence family using different.	

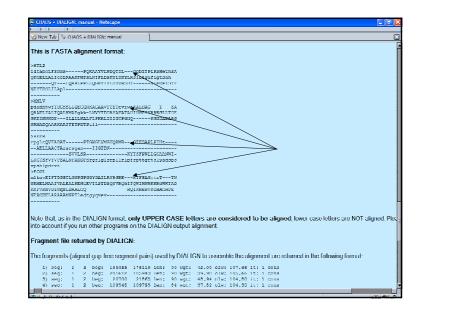

New Tab { % Rince	ov - Belefeld Conversity Bionfor	X
Internol To To and the international sector of the interna	We below the second time to the second se	Vercome [2] Submission 1 Contact About


A A A A A A A A A A A A A A A A A A A	University Bioinformatics Server Helscope	
A weater and the second	nv - Bielefeld University Bioinfor	
	Input options:	
	AIMVis I compares two different multiple alignmenst of a given data set and highlights regions where both alignments coincide. I we input options are available:	
	It is possible to enter a <u>family of <i>enguences</i></u> . In this case, our program will run the programs DMN IGN (Mongrastern, 1999) and CA USIAN W((hornpron d'al., 1994) on the upon sequences and compare the resulting adjamments to each other. These two programs are currently among the most popular multi-alignment methods. Since they rely on hondamentally different algorithmical approaches, those parts of the alignments where both programs agree can be considered to be reliable. It is possible to orthon wildlerent <i>generalizabilish</i> alignments where both programs agree fawe bicks produced by any method, this way the user can compare the results of arbitrary alignment methods.	
	With other option, those residue pairs that are aligned to each other in <i>brith</i> alignments are colored Different colors are used to distinguish groups of residues for which the alignment coincides within groups but not between different groups. In other words, considering alignments as consistent <i>exprovationae relations</i> as onlined in Margereliem of all (1996), residue pairs that are in the same column and have the same color belong to the set-lineoretical intersection of the equivalence relations corresponding to the two alignments.	
	Our tool can not only be used to determine reliable regions in alignments but also to evaluate alignment programs by comparing the alignments they produce to reference alignments that are considered as a standard or fault. There is now a high-quality data base called BARASE that has been designed as a benchmark data base for evaluation of multiple alignment methods (Thompson et al., 1999a). The authors of bANBASE also provide software that automatically compares arbitrary alignments of their test data to the reference alignments and determines the versal degrees of agreement between these two alignments. However, for the development of alignment methods, it can be interesting to known or only the overall quality of the produced alignment but to aliso know where exactly these alignments are in agreement with the given reference alignment and where they are not. Our method can be used for this purpose and should therefore alignment and where they are not development and improvement of pairwise and multiple alignment methods.	

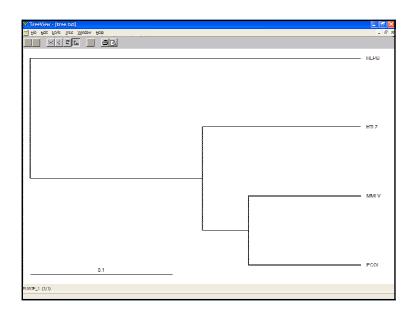
😂 BiBiServ - Bielefeld University Bioinfe	rmatics Server Netscape	- 🖻 🛛
3 3 3 3	1	
🔁 Now Tab 🗽 RiBitlery - Rielefeld Linivers	ty Bioinfor	×
Program ou	put.	1
produced by residue pair are used to between off appear in th colorest 1 th residues als the Ms and lower case i	result of AtAVIST applied to a small test sequence set. The first alignment has been "DAUGN, the second one by CLUSTAL. For each column in the first alignment, those s are colored that also appear in one column in the second alignment. Different colors disfinguish, groups of residues where the alignment coincides withing groups but not event groups. For example, The two Ms in column 4 in the DAUGN alignment also e same column in the CLUSTAL alignment, namely in column 21, they are therefore exame to have the full second and the column of the truth of the second example. The two Ms in column 4 in the UN KN alignment haves o same to have the CLUSTAL alignment, namely in column 21, they are therefore exame to have the full test. The CLUSTAL alignment meets or specer in a common column in the CLUSTAL alignment set of the colors are used. All esidows in the DAUGN alignment are printed in black because they are not considered All KsN, egenden in which column they are different columns the full test.	
alignments o appear in th	5 alignment, all residues have the same color as in the first alignment so the two an be easily compared. This may imply, however, that residues in the second alignment, same color even though they are not aligned together in the first alignment, see for umn 21 in the second alignment.	
This is what	the AIAVisT output looks like.	
THE RESU	LT OF DIALIGN IS :	
prtp_mouse	YQSMMSQYLKLLSSQKYQILLYNGDVIMDCNEMGDENFVDSLD	
yus6_caeel	MT9RVINAVININGERDOLINGOVDIACNALMOGEFTOKIG	
cbpy yeast	INKNPLFAGUWRKFYITAVIDLINQDLFILVYAGUKDFICNWLGNKAWTUVLF	
VDV9_Veast	DNDVFTGFLFTGDGSKPFQQYIAELLNHNIPVLIYAGDKDYICNWLGNHAMSNELE	
cbpy_picpa	YESCNFEINRNELFAGOWNKFYHENVSSLINKGLFVLIVAGOKDFICNWLGNRAWT DVLF	
cops arath	5ASCRIGATIVATICA DWRWIFACTLIFECTRIFACTATICWHCMROMANWK	
DOLD BOOM	ORMEVORRPWLVDworsdEOVAGFVHECSUITFETTREAGPV-	
នធានលេះព		- T : *Set


RiServ - Rielefeld Universi	y Bioinfor	
This is what f	he AltAVis Foutput looks like:	
THE RESUL	T OF DIALIGN IS :	
prtp_mouse	YQSMNSQYLKLLSSQKYQILLYNGDVINACNFMSDEWFVDSLn	
yoak caee)		
cbpy_yeast	INRNELEAGDWMKPYHIAVIDLLNQDLPILVYAGDKDEICNWLGNKAWIDVLP	
yby9_yeast	DNDVFTGFLFTGDGSKFFQQYIAELLNINIFVLIYAGDKDYICNWLGNIAWSNELE	
cbpy picpa	YESCNFEINENFLFACOWERETHEEVSSLENKGLEVLIYACORDFICNWEENRAWTDVLF	
cbps_arath	FVSCSTSVYQAMLVDMMRMLEVGIPTLLEDGISLLVYAGEYDLICMMLGNSRWVNAME	
prop_mouse	QRMEVQR. REWEINEGGEQVAGEVREC SHITELTINGAG FY	
yua6_caeel	1.1SKEETHFTVEGQIGGYVTQYkuSQVTFATVRGAGH&F	
chpy yeast	WRY DEFENSIONAL QRANNING ASSIST DEVALUE VRSS RUPETER AN FRIGHT	
VbV9_Veast	WINKRRYQRRMIRPWYSKETGEELGQVKNYGPFIFIRIYDDGHMVP	
cbpy_picpa	WVDADGFEKAEVQDWLVNGREAGEFENYSNFTYLRVYDAGHMAFY-	
abps arath	NSOKTNETAAKEVPETVD CKEATLIJKTY EQUSELKVRDAGERVE NA	
NOTE: hower	case letters are not considered to be aligned	

- Bieleteld Universit	
THE RESUL	LT OF CLUSTALW IS :
prtp mouse	AÖRHARÖÄTKPTREÖKÄÖTPTANCOA DURICHEDEMEA DETN
vus6_caeel	MT SKVLNAVNONNLKOOLYNGDVDLACNALMSORFT DALG
obpy yeast	INBNPL/AGOMMKPYITAYTOLINGOLPI (//YAGOKOPICORLGNRARTOVLP
NpN3_Nesst	IN LVFIGFLFIGDGSKPFQQIIAELLNHNIPVLIYAGDKDYICNNLGNHAMSNELE
cbpy_picps	YESCHFEINRNFLFAGDWMKFYHEHV3SLLNKGLFVLIYAGDRDFICWNLGNRAWIDVLF
copm arath	FVSCSTSVYQAMLWD WHRRLEVG1PTLLEDG15LEVYAGEYDL1CNREGNSRWVNAME
prtp_mouse	QKMEVQRREW-LVDYGESGEQWAGFVKECSHITFLTIKGAG-FY
yuab_cacci	ETES KKKTHY TVK GUIGGEVTQYK GSQVTFATVRGACHAF
cbpy_veast	WKYDEEFASQKVRNWTASITDEVAGEVKSYKHFTYIRVFNGGHM
yby9 yeast	WINKRRYORRMIREWYOKETORELOOVENYOPETFIRIYORGHMVP
cbpy_picpa	WVDADCEEKAEVQDW LVNGRKAG color=00000ff= YDACHEVF
cbpy_picpa	WVDADGFEKAEVQDWLVWGRKAGEFKNY3NFTYLRVYDAGHMAPY-
obps aroth	WSCRTNEGAAREVOK CVICKEAGLICKTYE QUSELKVRDAGHRVDRD


CHAOS: HANG'S HOALIGN: meaned CHAOS + DALIGN: sequences using CHAOS and DIALIGN: UIALIGN is a widely used activate program for pair-wise and multiple alignment of DNA and protein sequences. It assembles global align generoes, e.g. While DIALIGN alignments are generally of high quality, the original program is too slow for large-scale sequence comparison. One way of DIALIGN alignments are generally of high quality, the original program is too slow for large-scale sequence comparison. One way of DIALIGN alignments are generally of high quality is to use an *andrawebalgment* procedure Have, a task incel alignment search tool their of high sequence similarity among the input sequences. These similarities are then used as *anchor points* to reduce the sard's space and run of high sequence service, we are using the program <u>CHAOS</u> to dentify such anchor points. CHAOS has been developed by <u>Mike Brudne</u> at Stanfor In our experience, anchor points created by CHAOS speed up DIALIGN by one to two orders of magnifued without allocating the quality of the order of the ourders of magnifued without allocating the quality of the ourders of magnifued without allocating the quality of the ourders of magnifued without allocating the quality of the ourders of magnifued without allocating the quality of the ourders of magnifued without allocating the quality of the OHALIGN by one to two orders of magnifued without allocating the quality of the ourders of magnifued without allocating the quality of the ourders of magnifued without allocating the quality of the ourders of magnifued without allocating the quality of the our experiment of the points created up DIALIGN by one to two orders of magnifued without allocating the quality of the ourders of magnifued without allocating the quality of the ourders of magnifued without allocating the quality of the ourders

Input sequence file:	I tile containing the sequences to be aligned in EASTA format	
CHAOSIDIALIGN requires a single ASC	I the containing the sequences to be aligned in EASTA format	
For each sequence, the first line starts v	ith ">" and contains the name of the sequence.	
	ith ">" and contains the name of the sequence.	
Program Output:	·	
Program Output:	tput files containing	
For each sequence, the first line starts v Program Output: Our web server creates different ou	·	


S CHAOS • DL	MBGN: manua	- Netscape	
🔌 New Tab	CHAOS + DE	LEIGN: manual	(
Program	Output:		
Our web se	rver create	es different output files containing	
 A full a 	lignment of	the input sequences in DIALIGN format.	
		nt in FASTA format.	
+ A <u>list o</u>	f the <i>fragm</i>	unts, i.e. the pair-wise local gap-free alignments that DIALIGN uses to create the output alignment.	
 A list o 	Ethe ancho	pools created by CHAOS	
This is DIA	LICN align	ment format:	
dog_114 hum 114		MEMBECTIGET OFGENBOAAA GEFGATGECE ACCHEGEGETE TOTTINGOAG ADACHETERT OFGENERAAA OFFGATGECE ACCHEGEDETE TOTTIACIAG	
mus il4	31390		
		1111111111 1112222222 222222222 222322222 22222222	
dog_i14		ATCAGATAL# gGAGTAC ACCAGTOGGG CATGAGCOTO TOCAGOTOTA	
hum_114		ATCASATALA VGAGCAC ACCAGCOGG CATSAGOUTE TOCAGETETA	
mus_114	31427	ATCAGAINTE geogragEAC AGENETESSE CRIGACOUTE TECHNOLEIN	
		222222000 0222000333 3334444444 444444444 444444444	
dog 211	20662	ACEFCATURY GAUGARDOUC ACECTURERCE CUTYGADATE CAUGARDEDE	
hum ild		RESTGATERT CACCERCOCE RETERED CONTRALES CACCERCICS	
mus_il4	31477	ASSTGATERT GACTARASCA RATGISGASC COTTERACIS CASCAGETES	
		444444444 4433666666 666666666 6666662299 999999999	
0 0 0			- 10- 10- 61

	~ 01803 ~ 02	ALIGN: manual	
100 315	20565	AGAINIDINGT CONDAMIAAA COOMATCHID ANGTODINETT TICTPANICAG	
tum ile	217:10		
aus 114	31390		
-			
		111111111 111222222 222222222 222222222	
iog il4	20615	ATCAGATALS UGAGIAC ACCASTORSS CATGAGODIC TOCASCICIA	
100_114	21780		
10.0 3.8.9		ATCALATATA GOODGAGCAC ACCALTECCE CATCACCTTC TOCAACTCTA	
		2222222000 0222000333 5534444444 44444444 44444444 4	
100 115	20662		
ng tit num ilt	21027		
nus il4			
	27413		
		4455994455 9133666666 66666666666666667299 9999999999	
 Name 	s or me aildu	ed sequences are shown on the left	
 Numbridge 	ers on the let	It hand side of the alignment denote the position of the first residue in a line within the respective sequence.	
		ole aligoed residues, i.e. residues involved in al least one of the 'Vragments' (* aligned segment pairs) the	
Lowe	-case lette	ers denote residues not belonging to any of these selected 'fragments'. They are not consider	red to b
DIAL	GN. Thus, it	f a lower-case letter is standing in the same column with other letters, this is pure chance; these residues an	e not co
homol			
	un Inniau fin	e alignment roughly reflect the degree of local similarity among the sequences. More precisely: They represe	int the en
. Numb			
		ecting residues at the respective position. The numbers are normalized such that every position gets a w	

Fragme	nt file	return	ned b	y DIALIGN:								
(he frag	ments	(aligno	d gap	free segment j	iairs) usod	Eby DIALE	GN to assemi	ile the alig	nment are re	turned in th	e tollowing to	omat
1) 6	eq:	2 3	beg	185955 17	118 len:	90 wgc:	42.00 olw:	107.68 1	t: 1 cons			
2) 6				201612 18								
	ed:			1: 20700 23								
	iod:			109548 10								
50 · 5	sou:	× 0	beg	r: 39483 5:	ena sent	90 mgt.:	19109 nlw:	104122-6	C: 3 CORS			
Anchor	point	s prod	uced	by CHAOS								
Anchor p	oints p	oroduc	e by C	XIAOS are prin	ed in the f	following fo	ormat:					
5.2	170	260	1	436a.000000								
	230	325	1	4165.000000								
		162	1.6	237.000080								
1 2	75		1	6237.000000								
12		299		2619.000000								
12 12 12 13	157 302	289										
12 12 12 13	157 302 316	289 333	1	2619.000000								
12 12 12 13	157 302 316	289 333	1									

(1++), and information about consistency of the fragment (source of surrouw). Anchor points produce by CI IAOS : Anchor points produce by CI IAOS are printed in the following format: 1 1.78 2 235 3.55 1.4155.000000 1.7 1.52 1.8 346 1.9 152 3.83 1.2425.000000 1.9 152 1.9 152 3.8 1.2425.000000 1.9 124 1.8 381 1.9 127.9 1.9 127.9 1.9 127.9 1.9 129.000000 1.9 129.10 1.9 129.10 1.9 129.10 1.9 144 1.9 149.000000 1.9 141 1.9 149.000000 1.9 171 1.9 149.000000 1.9 149.000000 1.9 149.000000 1.9 149.000000 1.9 149.000000 <								if the fragment in these se p doing the program in w	equences (bogs), the frag duch the tragment bas b
Anchor points produce by CI AOS are printed in the following format: 1 2 176 245 1 4255.000000 1 2 238 325 1 4255.000000 1 3 757 1 4257.000000 1 5 102 249 1 255.000000 1 3 775 146 1 6209.000000 1 a 177 146 1 6209.000000 1 a 178 the sequences in volved, entries 3 and 4 are the starting points in the respective sequences. Entry 5 is the length of s segment pair, and life task entry is a reality scare calculated by CHAOS. This is used to primitive anchor points in case contradicting anchors at in this case, anchors with high scores are accepted first, anchors with lower scores are used only if they are consistent with the previous informations anchors. This is PIYLIP tree format: ((#TE270.011027, (@TE270.	(iu:), an	d infor	nation	abo	ut consistency	f the fragment (cours o			-
1 1 179 245 1 4125.00000 1 2 238 335 4325.00000 1 2 238 345 4325.00000 1 2 257 244 1 2427.00000 1 3 346 33 1 2435.00000 1 9 179 146 1 4397.00000 1 9 179 147 1 40 4397.00000 1 9 179 140 140 140 140 140 140 140 140 140 140	Anchor	points	s prod	uce	d by CHAOS:				
<pre>1 1 178 245 1 4105.00000 1 2 238 325 1 4105.00000 1 2 238 325 1 4105.00000 1 2 138 342 1 4105.00000 1 3 346 338 1 2415.00000 1 3 346 33 1 2415.00000 1 3 174 14 6 1 4009.00000 1 9 174 14 14 14 14 14 14 14 14 14 14 14 14 14</pre>					- 				
1 2 338 335 1 4455 4.000 1 2 157 244 1 6232, nominal 1 5 352 29 1 6242, nominal 1 5 356 338 1 2512, nominal 1 5 356 338 1 2512, nominal 1 5 356 338 1 2512, nominal 1 5 146 4 6000 1 8 1 5 146 4 6000 1 8 8 1 5 146 4 6000 1 8 8 8 1 2512, nominal 1 5 146 4 6000 1 8 8 16 16 1 2000 1 1 114 4 6 1 1 11 11 12 11 12 11 12 11 12 11 12 11 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12<	wichor t	onus t	NOOUC	e oy	CITAUS are pr	ted in the following for	ac		
12 15 152	1.2	178	2.65	1	4165.000000				
1 2 107 244 1 6232.000000 1 3 302 309 1 2613.000000 1 3 316 338 1 2613.000000 1 5 174 1 4 6120.000000 The first two entries are the sequences in volved, entries 3 and 4 are the starting points in the respective sequences. Entry 5 is the length of a segment pair, and the test entry is a quality score calculated by CHAOS. This is used to prioritize and/or points in case cantualiding and/ors a in this case, anothers with high scores are accepted first, anchors with lower scores are used only if they are consistent with the previous higher-scoring anchors. This is PI/IVLP tree format: (VEXECD_LINUE), (VEX									
1 5 302 289 1 25:5-000000 1 3 306 330 1 25:5-000000 1 9 1/1 116 1 5009-000000 The first two entries are the sequences in volved, entries 3 and 4 are the starting points in the respective sequences. Entry 5 is the length of s agrinering in a molecular blick ket entry is a quality-scare calculated by CHAOS. This is read to primitive and/or points in case contradicting and/ors a n this case, and/ors with high scores are accepted first, and/ors with lower scores are used only if they are consistent with the previous giver-scoring and/ors. This is PIYLIP tree format: ((#TEL10.11021, (#TEL10.1102									
1.8 346 338 1 2619-000000 The first two entries are the sequences in volved, entries 3 and 4 are the starting points in the respective sequences. Entry 5 is the length of a sequence pair, and the bask entry's a quality scarce calculation by CHAOS. This is used to prioritize anchor points in case contradicting anchors an in this case, anothers with high scores are accepted first, anchors with lower scores are used only if they are consistent with the previous ligher-scoring anchors. This is PTIYLIP tree format: (VITERED.112027, VITERED.112027, VITERED.112027, VITERED.112027, VITERED.112027, VITERED.112027, VITERED.112027, VITERED.112027, VITERED.112028, VITERED.112028,									
1 9 1/9 146 1 6009,000000 The first two entries are the sequences in wolved, entries 3 and 1 are the starting points in the respective sequences. Entry 5 is the length of s argurent par, and fluc kst entry is a publy scare calculabilited by CHAOS. This is used to primitive anchor points in case candicaliding anchors an in this case, anchors with high scores are accepted first, anchors with lower scores are used only if they are consistent with the previous high-rescong anchors. This is PIYLIP tree format: ((#TL210.111021, (@TL210.018473):0.032564):0.121218, (#TL210.12184);									
The first two entries are the sequences in volved, entries 3 and 4 are the starting points in the respective sequences. Entry 5 is the length of a argmanit pair, and this test analysis a quality scane calculation by CHAOS. This is used to prioritive anchor points in case cantentiating andress a in this case, anothers with high scores are accepted first, anchors with lower scores are used only if they are consistent with the previous algher-scoring anchors. This is PTIYLIP tree format: ((#TEX:0.111074), (00									
augment pair, and the best enhysis a quality scane calculation by CHAOS. This is used to priorifism cancher points in cases candicaliding andress a in fibric case, anothers with high scores are accepted first, anchors with lower scores are used only if they are consistent with the previous light-scoring anchors. This is PITYLIP tree format: (Intracio_linest, const_0_cinest), const_0_cinest), const_0_cinest), const_0_cinest), const_0_cinest), const_0_cinest), const_0_cinest), const_0_cinest), const_0_cinest), const_0_cinest), const_0_cinest), const_0_cinest), const_0_cinest), const_0_cinest), const_0_cinest), const_0_cinest), const_0_cinest), const_0_cinest,	13	175	146	1	6309.000000				
(19122:0.111024, 0060.0.0.01491; 0.002:0.01491;10.052554):0.121218, METRE0.133242);									
(METU:>, O.NA47, COCI.0.07471, O.028354):0.121218, METBEO.331242);	segment In this c	poir, a ase, a	nd the achors	trest with	collyis a qual	y score calculated by C	IAOS. This is used to prin	eilize anchor points in cas	e conficaticitog anchors a
ECOL:0.078471):0.052554):0.121218, HEFB:0.231242);	segment In this c higher-se	prair, a ase, a coring a	nd the achors anchor	taesi witi S.	enliyis a quai 1 high scores :	y score calculated by C	IAOS. This is used to prin	eilize anchor points in cas	e conficaticitog anchors a
HEPB50.232242);	segment In this c higher-so This is f	poir, a ase, a coring a PLIYLI	nd the nchors anchor P tree	taesi witi S.	enliyis a quai 1 high scores :	y score calculated by C	IAOS. This is used to prin	eilize anchor points in cas	e conficaticitog anchors a
	segment In this c higher-st This is f	poir, ; ase, ai coring ; PITYLI	nd the nchors anchor P tree	taesi witi S.	enliyis a quai 1 high scores :	y score calculated by C	IAOS. This is used to prin	eilize anchor points in cas	e conficaticitog anchors a
Trees can be visualized using the <i>drawfree</i> program contained in the <u>PHYLIP</u> software package.	segment In this c higher-st This is I (HTL2:0 (MTL2:0	proin, a ase, a coring a PI IYLI 0.1110; 07047	nd the anchors anchor P tree	tres with s. for	enliyis a qual 1 high scores : mat:	y score calculated by C	IAOS. This is used to prin	eilize anchor points in cas	e conficaticitog anchors a
Trees can be visualized using the <i>drawtree</i> program contained in the <u>PHYLIP</u> software package.	segment in this c higher-so This is f ((HTL2+0 (MELV=0. ECOL+0.0	pair, ; ase, a coring ; ?! IYL! 	nd the actions anchor P tree	tres with s. for	enliyis a qual 1 high scores : mat:	y score calculated by C	IAOS. This is used to prin	eilize anchor points in cas	e conficaticitog anchors a
	segment in this c higher-so This is f ((HTL2+0 (MELV=0. ECOL+0.0	pair, ; ase, a coring ; ?! IYL! 	nd the actions anchor P tree	tres with s. for	enliyis a qual 1 high scores : mat:	y score calculated by C	IAOS. This is used to prin	eilize anchor points in cas	e conficaticitog anchors a
	segment In this c higher-so This is f (MTLV:0. PODL:0.C HEPB:0.2 Trees ca	pair, ; ase, a ;oring ; ?! IYL! 	rnd flie nchors anchor P tree 21, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	tasi witi 5. • for 2554 d us	conly is a qual n high scores : mat:) = 0.121218, ing the <i>drawin</i>	vectoric calculation by C e accepted first, and program contained in	MOS This is used to pain rs with lower scores are	eitize sinch or points in cars used only if they are cor	e conficaticitog anchors a
Daw to <u>charocharacter admission tomi</u> .	Segment In this c higher-so This is f (MTLV:0. COL:0.C REFB:0.2 Thees ca	pair, ; ase, a ;oring ; ?! IYL! 	rnd flie nchors anchor P tree 21, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	tasi witi 5. • for 2554 d us	entry'is a qual n high scores : mat:) :0.121218,	vectoric calculation by C e accepted first, and program contained in	MOS This is used to pain rs with lower scores are	eitize sinch or points in cars used only if they are cor	e conficaticitog anchors a

