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What is topological data analysis?

The topological data analysis pipeline
Going from a dataset to a topological object
Studying topological object using homology

What can quantum computers bring to the table?

The Lloyd, Garnerone & Zanardi algorithm
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What is topological data analysis?

studying the shape of a dataset

Topological data analysis studies the topology of your dataset.

P eeo

» |.e., features that are invariant under continuous deformations.
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What is topological data analysis?

Topological data analysis studies the topology of your dataset.

PP e e

» |.e., features that are invariant under continuous deformations.

Typically, the dataset is a point cloud in a d-dimensional space such as R.

» E.g, a point cloud sampled from a 3d object.
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What can topological data analysis be used for?

Suppose we would like to classify parts of the human body.

Mhead
M torso
W upper
[ lower
M hand
W upper
M lower
M foot
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What can topological data analysis be used for?

Suppose we would like to classify parts of the human body.

Mhead

M torso

W upper
[ lower
M hand

W upper
M lower
M foot

TDA does this by studying persistent topological features.

YV V¥

» |.e., features of neighbourhoods around points at different scales.
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What topological features do we study? How do we study them?

Important topological feature to study: the number of holes.

— )
u -
(a) One hole
(b) Two holes
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What topological features do we study? How do we study them?

Important topological feature to study: the number of holes.

u -
(a) One hole

(b) Two holes

Algebraic topology: use algebra to compute topological features.

» Triangulate object and study connections between triangles using algebra.
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Going from a dataset to a simplicial complex

1st step TDA pipeline: converting point-cloud to a simplicial complex.

» A collection of points, lines, triangles and their k-dimensional counterparts.

. A YD

0-simplex 1-simplex 2-simplex 3-simplex
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Going from a dataset to a simplicial complex

1st step TDA pipeline: converting point-cloud to a simplicial complex.

» A collection of points, lines, triangles and their k-dimensional counterparts.

. A YD

0-simplex 1-simplex 2-simplex 3-simplex

Vietoris-Rips complex: draw circles with radius ¢ > 0 around data-points and
connect data-points if their circles overlap.

» Persistent topology: how does topology change if we vary €?
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Studying topology of simplicial complex using homology

2nd step TDA pipeline: study topology of Vietoris-Rips complex using homology.

» A tool from algebraic topology to extract topological features.
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Studying topology of simplicial complex using homology

2nd step TDA pipeline: study topology of Vietoris-Rips complex using homology.

» A tool from algebraic topology to extract topological features.

First, for a point cloud D = {v;}i—; encode the k-simplices of the Vietoris-Rips
complex as n-bit strings.

VR(D,¢€)r :={j € {0,1}" | j has k ones and Vj;,ji = 1 we have ||v;—u|| < €}.
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Studying topology of simplicial complex using homology

2nd step TDA pipeline: study topology of Vietoris-Rips complex using homology.

» A tool from algebraic topology to extract topological features.

First, for a point cloud D = {v;}i—; encode the k-simplices of the Vietoris-Rips
complex as n-bit strings.

VR(D,¢€)r :={j € {0,1}" | j has k ones and Vj;,ji = 1 we have ||v;—u|| < €}.

Next, we turn this into a complex vector space

H;, = spanc{|j) | 7 € VR(D, e)} C (C*)*".

Discover the world at Leiden University



Studying topology of simplicial complex using homology

2nd step TDA pipeline: study topology of Vietoris-Rips complex using homology.

» A tool from algebraic topology to extract topological features.

First, for a point cloud D = {v;}i—; encode the k-simplices of the Vietoris-Rips
complex as n-bit strings.

VR(D,¢€)r :={j € {0,1}" | j has k ones and Vj;,ji = 1 we have ||v;—u|| < €}.

Next, we turn this into a complex vector space

H;, = spanc{|j) | 7 € VR(D, e)} C (C*)*".

We now have an algebraic object to study!
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Studying topology of simplicial complex using homology

In order to study #Hj we consider the so-called k-th boundary map

8]2 : HZ — H2_1
k

) = D _(=D'iE),

=1

where j(i) is obtained from j by setting i-th 1 to 0.
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Studying topology of simplicial complex using homology

In order to study #Hj we consider the so-called k-th boundary map

8]2 : HZ — Hz_1
k

17) = Y (=D 16(@)
i=1

where j(i) is obtained from j by setting i-th 1 to 0.

Maps triangle to alternating sum of its edges and tetrahedron to sum of its faces.

— =] +

O @ o
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Studying topology of simplicial complex using homology

In order to study #Hj we consider the so-called k-th boundary map

8]2 : HZ — Hz_1
k

17) = Y (=D 16(@)
i=1

where j(i) is obtained from j by setting i-th 1 to 0.

Maps triangle to alternating sum of its edges and tetrahedron to sum of its faces.

— =] +

O @ o

Using this map we can study how simplices are connected to eachother!
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Studying topology of simplicial complex using homology

Important object to study is the so-called k-th homology group defined as

H = (ker 35) / (im 351) -

» Quotient of vector spaces <+ substracting bases of vector spaces.
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Studying topology of simplicial complex using homology

Important object to study is the so-called k-th homology group defined as

Hi = (ker 85) / (im 3541 -
» Quotient of vector spaces <+ substracting bases of vector spaces.

Its dimension, called the k-th betti-number, is an important topological feature.
Br = dim Hj,.

» Turns out: 8, is equal to number of k-dimensional holes at scale .
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Studying topology of simplicial complex using homology

Important object to study is the so-called k-th homology group defined as
Hi = (ker 85) / (im 3541 -
» Quotient of vector spaces <+ substracting bases of vector spaces.
Its dimension, called the k-th betti-number, is an important topological feature.
Br = dim Hj,.
» Turns out: 8, is equal to number of k-dimensional holes at scale .

Goal in TDA: compute [ to extract topological features of your point cloud.
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Studying topology of simplicial complex using homology

To compute fj, we consider the so-called k-th combinatorial Laplacian
€ T T € €
k= 8k ak + 6k+18k+1 : Hk — Hk

» Hermitian matrix!
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Studying topology of simplicial complex using homology

To compute fj, we consider the so-called k-th combinatorial Laplacian
€ T T € €
k= 8k 8k + 6k+18k+1 : Hk — Hk
» Hermitian matrix!

We do so because it can be shown that the following holds

Bk = dim (ker A},) .
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Studying topology of simplicial complex using homology

To compute fj, we consider the so-called k-th combinatorial Laplacian
€ T T € €
k= 8k 8k + 6k+18k+1 : Hk — Hk
» Hermitian matrix!

We do so because it can be shown that the following holds

. = dim (ker Af) .

Question: can we use quantum computers to efficiently compute this dimension?
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What can quantum computers bring to the table?

Quantum computers are generally very good at doing linear algebra.
» Aj is Hermitian = Hamiltonian simulation can implement U = ek

» Also, can use quantum phase estimaton to investigate eigenvalues of U.
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What can quantum computers bring to the table?

Quantum computers are generally very good at doing linear algebra.

- . - . . - . i €
> AS is Hermitian = Hamiltonian simulation can implement U = e*®k!

» Also, can use quantum phase estimaton to investigate eigenvalues of U.

We are interested in the number of eigenvalues that are equal to 0 since
Br = dim (ker Ay) = #{j : X\;(A}) = 0},

where A1 (A}), ..., An(A}) denote the eigenvalues of Aj,.
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What can quantum computers bring to the table?

Quantum computers are generally very good at doing linear algebra.

- . - . . - . i €
> AS is Hermitian = Hamiltonian simulation can implement U = e*®k!

» Also, can use quantum phase estimaton to investigate eigenvalues of U.

We are interested in the number of eigenvalues that are equal to 0 since
Br = dim (ker Ay) = #{j : X\;(A}) = 0},
where A1 (A}), ..., An(A}) denote the eigenvalues of Aj,.

LGZ algorithm: combine Hamiltonian simulation and QPE to estimate number
of eigenvalues that are equal to 0.
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The Lloyd, Garnerone & Zanardi algorithm

Goal: estimate 8 = dim (ker Af) = #{j : X\;(Af) = 0}.

To do so, the LGZ algorithm takes the following steps:
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The Lloyd, Garnerone & Zanardi algorithm

Goal: estimate 8 = dim (ker Af) = #{j : X\;(Af) = 0}.

To do so, the LGZ algorithm takes the following steps:

1. Use Grover's algorithm to prepare the simplex-state given by

1 .
[9K) = NG Z 17) -
VAL, S evR(D )y,

> l.e., the uniform superposition over the complex vector space Hj,.
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The Lloyd, Garnerone & Zanardi algorithm

Goal: estimate 8 = dim (ker Af) = #{j : X\;(Af) = 0}.

To do so, the LGZ algorithm takes the following steps:

1. Use Grover's algorithm to prepare the simplex-state given by

1 .
[9K) = NG Z 17) -
VAL, S evR(D )y,

> l.e., the uniform superposition over the complex vector space Hj,.

. . . . . . €

2. Use Hamiltonian simulation to implement U = 2%,
> Actually, since Af is not sparse we implement eBr for By, ~ , /AL
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The Lloyd, Garnerone & Zanardi algorithm

Goal: estimate 8 = dim (ker Af) = #{j : X\;(Af) = 0}.

To do so, the LGZ algorithm takes the following steps:

1. Use Grover's algorithm to prepare the simplex-state given by

1 .
[9K) = NG Z 17) -
VAL, S evR(D )y,

> l.e., the uniform superposition over the complex vector space Hj,.
2. Use Hamiltonian simulation to implement U = ek

> Actually, since A§ is not sparse we implement e¢*Bk, for By, &~ /AL,
3. Use quantum phase estimation to sample from eigenvalues of U = ek
> By last weeks tutorial we can one-to-one relate these to eigenvalues of Aj..
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The Lloyd, Garnerone & Zanardi algorithm

Goal: estimate 8 = dim (ker Af) = #{j : X\;(Af) = 0}.

To do so, the LGZ algorithm takes the following steps:

1. Use Grover's algorithm to prepare the simplex-state given by

1 .
[9K) = NG Z 17) -
VAL, S evR(D )y,

> l.e., the uniform superposition over the complex vector space Hj,.
2. Use Hamiltonian simulation to implement U = ek

> Actually, since A§ is not sparse we implement e¢*Bk, for By, &~ /AL,
3. Use quantum phase estimation to sample from eigenvalues of U = ek

> By last weeks tutorial we can one-to-one relate these to eigenvalues of Aj..
4. Estimate the number of eigenvalues \;(Af) = 0.

» Either using quantum counting or Monte-Carlo estimation.
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The Lloyd, Garnerone & Zanardi algorithm

Goal: Prepare the simplex-state given by |ix) := \/ﬁ ZjGVR(D@)k l7)-
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The Lloyd, Garnerone & Zanardi algorithm

Goal: Prepare the simplex-state given by |ix) := \/ﬁ ZjGVRw’e)k l7)-

For j € {0,1}™ we can efficiently check whether j € VR(D, €).

» First, check whether j contains exactly k ones.
» Afterwards, check pairwise distance between all v; for which j; = 1.
o Requires a total of O(k?) computations of pairwise distances ||v; — v;]|.
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The Lloyd, Garnerone & Zanardi algorithm

Goal: Prepare the simplex-state given by |ix) := \/ﬁ ZjGVRw’e)k l7)-

For j € {0,1}™ we can efficiently check whether j € VR(D, €).

» First, check whether j contains exactly k ones.
» Afterwards, check pairwise distance between all v; for which j; = 1.
o Requires a total of O(k?) computations of pairwise distances ||v; — v;]|.

Allows us to efficiently implement a quantum oracle to the membership function
f:{0,1}" = {0,1}
) 1if 7 € VR(D,¢€)y,
fG) = {

0 else.
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The Lloyd, Garnerone & Zanardi algorithm

Goal: Prepare the simplex-state given by |ix) := \/ﬁ ZjGVRw’e)k l7)-

For j € {0,1}™ we can efficiently check whether j € VR(D, €).

» First, check whether j contains exactly k ones.
» Afterwards, check pairwise distance between all v; for which j; = 1.
o Requires a total of O(k?) computations of pairwise distances ||v; — v;]|.

Allows us to efficiently implement a quantum oracle to the membership function
f:{0,1}" = {0,1}

. 1if 7 € VR(D,¢€)y,
() = {0
else.

Therefore, Grover's algorithm allows us to implement the mapping

STl e k) = 76 S
fge{()l}" v/ dim H, k jeVR(D,e)y
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The Lloyd, Garnerone & Zanardi algorithm

We would like to use HS and QPE to sample from the eigenvalues of e*2F.
» Similar to Problem 3 of last tutorial, this gives us the eigenvalues of Af.

» We don't know eigenvectors of Af. What input quantum state do we use?
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The Lloyd, Garnerone & Zanardi algorithm

We would like to use HS and QPE to sample from the eigenvalues of e*2F.
» Similar to Problem 3 of last tutorial, this gives us the eigenvalues of Af.

» We don't know eigenvectors of Af. What input quantum state do we use?

From the simplex-state |¢x) we can efficiently prepare the mixed state

1 N "o €n
Pye = T i Z |7) (j| = "Projector onto Hj,".
Mk G eVR(D, o)
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The Lloyd, Garnerone & Zanardi algorithm

We would like to use HS and QPE to sample from the eigenvalues of e*2F.
» Similar to Problem 3 of last tutorial, this gives us the eigenvalues of Af.

» We don't know eigenvectors of Af. What input quantum state do we use?

From the simplex-state |¢x) we can efficiently prepare the mixed state

1 N "o €n
Pye = T i Z |7) (j| = "Projector onto Hj,".
Mk G eVR(D, o)

We can rewrite this mixed state in terms of the eigenvectors of Aj,

1 dim Hj,
Prc = ) (5.
L T ; [5) (s
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The Lloyd, Garnerone & Zanardi algorithm

We would like to use HS and QPE to sample from the eigenvalues of e*2F.
» Similar to Problem 3 of last tutorial, this gives us the eigenvalues of Af.

» We don't know eigenvectors of Af. What input quantum state do we use?

From the simplex-state |¢x) we can efficiently prepare the mixed state

1 N "o €n
Pye = T i Z |7) (j| = "Projector onto Hj,".
Mk G eVR(D, o)

We can rewrite this mixed state in terms of the eigenvectors of Aj,

1 dim Hj,
Prc = ) (5.
L T ; [5) (s

So, the mixed state Py is the j-th eigenstate [1);) with probability gt
k
Let's use this state as input to the HS + QPE routine!
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The Lloyd, Garnerone & Zanardi algorithm

Altogether, after the Grover-step the LGZ algorithm runs the following circuit

0°) ———
QPE (emi)
Prug ———
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The Lloyd, Garnerone & Zanardi algorithm

Altogether, after the Grover-step the LGZ algorithm runs the following circuit

) +—

QPE (emi)
Prug ———

Py is in an eigenstate [1;) with uniform probability, thus the probability of
measuring an eigenvalue A is

A=A
Pr(/\):#{Jdi'mJH; 3
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The Lloyd, Garnerone & Zanardi algorithm

Altogether, after the Grover-step the LGZ algorithm runs the following circuit

0°) ———
QPE (emi)
Prug ———

Py is in an eigenstate [1;) with uniform probability, thus the probability of

measuring an eigenvalue A is

by - #14=2)

dim H;,

In particular, the probability of measuring A = 0 is given bu

Bi

dimH,  dimH

Using quantum counting or Monte-Carlo estimation, we can now estimate .
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My research

» Motivation: dequantizations of Ewin Tang et al.
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My research

» Motivation: dequantizations of Ewin Tang et al.
» Question: can we show classical/quantum seperation?
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My research

» Motivation: dequantizations of Ewin Tang et al.
» Question: can we show classical/quantum seperation?

o Does it solve a hard problem for complexity class with (conjectured)
quantum advantage?
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My research

» Motivation: dequantizations of Ewin Tang et al.
» Question: can we show classical/quantum seperation?

o Does it solve a hard problem for complexity class with (conjectured)
quantum advantage?

» Question: can we use samples from the eigenvalues of Af for something
else than computing Betti numbers?
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My research

» Motivation: dequantizations of Ewin Tang et al.
» Question: can we show classical/quantum seperation?
o Does it solve a hard problem for complexity class with (conjectured)
quantum advantage?
» Question: can we use samples from the eigenvalues of Af for something
else than computing Betti numbers?
o So-called applications of “simplicial spectral theory".
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