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What is topological data analysis?

The topological data analysis pipeline
Going from a dataset to a topological object
Studying topological object using homology

What can quantum computers bring to the table?

The Lloyd, Garnerone & Zanardi algorithm
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What is topological data analysis?
studying the shape of a dataset

Topological data analysis studies the topology of your dataset.

I I.e., features that are invariant under continuous deformations.

Typically, the dataset is a point cloud in a d-dimensional space such as Rd.

I E.g, a point cloud sampled from a 3d object.
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What can topological data analysis be used for?
an example of an application of topological data analysis

Suppose we would like to classify parts of the human body.

TDA does this by studying persistent topological features.

I I.e., features of neighbourhoods around points at different scales.
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What topological features do we study? How do we study them?
an example of an important topological feature

Important topological feature to study: the number of holes.

(a) One hole
(b) Two holes

Algebraic topology: use algebra to compute topological features.

I Triangulate object and study connections between triangles using algebra.
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Going from a dataset to a simplicial complex
The Vietoris-Rips complex

1st step TDA pipeline: converting point-cloud to a simplicial complex.
I A collection of points, lines, triangles and their k-dimensional counterparts.

Vietoris-Rips complex: draw circles with radius ε > 0 around data-points and
connect data-points if their circles overlap.

I Persistent topology: how does topology change if we vary ε?
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Studying topology of simplicial complex using homology
turning simplicial complex into a complex vector space

2nd step TDA pipeline: study topology of Vietoris-Rips complex using homology.
I A tool from algebraic topology to extract topological features.

First, for a point cloud D = {vi}ni=1 encode the k-simplices of the Vietoris-Rips
complex as n-bit strings.

VR(D, ε)k := {j ∈ {0, 1}n | j has k ones and ∀ji, jl = 1 we have ||vi−vl|| < ε}.

Next, we turn this into a complex vector space

Hε
k := spanC{|j〉 | j ∈ VR(D, ε)k} ⊂

(
C2)⊗n

.

We now have an algebraic object to study!
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Studying topology of simplicial complex using homology
the boundary operator

In order to study Hε
k we consider the so-called k-th boundary map

∂ε
k : Hε

k → Hε
k−1

|j〉 7→
k∑

i=1

(−1)i |j(̂i)〉 ,

where j(̂i) is obtained from j by setting i-th 1 to 0.

Maps triangle to alternating sum of its edges and tetrahedron to sum of its faces.

Using this map we can study how simplices are connected to eachother!
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Studying topology of simplicial complex using homology
the homology group

Important object to study is the so-called k-th homology group defined as

Hε
k = (ker ∂ε

k) / (im ∂ε
k+1) .

I Quotient of vector spaces ↔ substracting bases of vector spaces.

Its dimension, called the k-th betti-number, is an important topological feature.

βε
k = dimHε

k.

I Turns out: βε
k is equal to number of k-dimensional holes at scale ε.

Goal in TDA: compute βε
k to extract topological features of your point cloud.
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Studying topology of simplicial complex using homology
Combinatorial Laplacian and Hodge theory

To compute βε
k we consider the so-called k-th combinatorial Laplacian

∆ε
k := ∂T

k ∂k + ∂k+1∂
T
k+1 : Hε

k → Hε
k.

I Hermitian matrix!

We do so because it can be shown that the following holds

βε
k = dim (ker∆ε

k) .

Question: can we use quantum computers to efficiently compute this dimension?
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What can quantum computers bring to the table?
Quantum linear algebra: Hamiltonian simulation and quantum phase estimation

Quantum computers are generally very good at doing linear algebra.
I ∆ε

k is Hermitian =⇒ Hamiltonian simulation can implement U = ei∆
ε
k !

I Also, can use quantum phase estimaton to investigate eigenvalues of U .

We are interested in the number of eigenvalues that are equal to 0 since

βε
k = dim (ker∆ε

k) = #{j : λj(∆
ε
k) = 0},

where λ1(∆
ε
k), . . . , λN (∆ε

k) denote the eigenvalues of ∆ε
k.

LGZ algorithm: combine Hamiltonian simulation and QPE to estimate number
of eigenvalues that are equal to 0.
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The Lloyd, Garnerone & Zanardi algorithm
an overview of the algorithm

Goal: estimate βε
k = dim (ker∆ε

k) = #{j : λj(∆
ε
k) = 0}.

To do so, the LGZ algorithm takes the following steps:

1. Use Grover’s algorithm to prepare the simplex-state given by

|ψk〉 :=
1√

dimHε
k

∑
j∈VR(D,ε)k

|j〉 .

I I.e., the uniform superposition over the complex vector space Hε
k.

2. Use Hamiltonian simulation to implement U = ei∆
ε
k .

I Actually, since ∆ε
k is not sparse we implement eiBk , for Bk ≈

√
∆ε

k.

3. Use quantum phase estimation to sample from eigenvalues of U = ei∆
ε
k .

I By last weeks tutorial we can one-to-one relate these to eigenvalues of ∆ε
k.

4. Estimate the number of eigenvalues λj(∆
ε
k) = 0.

I Either using quantum counting or Monte-Carlo estimation.
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The Lloyd, Garnerone & Zanardi algorithm
a Grover-step to prepare simplex state

Goal: Prepare the simplex-state given by |ψk〉 := 1√
dim Hε

k

∑
j∈VR(D,ε)k

|j〉.

For j ∈ {0, 1}n we can efficiently check whether j ∈ VR(D, ε)k.
I First, check whether j contains exactly k ones.
I Afterwards, check pairwise distance between all vi for which ji = 1.

◦ Requires a total of O(k2) computations of pairwise distances ||vi − vj ||.

Allows us to efficiently implement a quantum oracle to the membership function

f : {0, 1}n → {0, 1}

f(j) =

{
1 if j ∈ VR(D, ε)k,
0 else.

Therefore, Grover’s algorithm allows us to implement the mapping

1√
2n

∑
j∈{0,1}n

|j〉 7→ |ψk〉 =
1√

dimHε
k

∑
j∈VR(D,ε)k

|j〉 .
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The Lloyd, Garnerone & Zanardi algorithm
using Hamiltonian simulation and QPE to uniformly sample from the eigenvalues of ∆ε

k

We would like to use HS and QPE to sample from the eigenvalues of ei∆
ε
k .

I Similar to Problem 3 of last tutorial, this gives us the eigenvalues of ∆ε
k.

I We don’t know eigenvectors of ∆ε
k. What input quantum state do we use?

From the simplex-state |ψk〉 we can efficiently prepare the mixed state

PHε
k
=

1

dimHε
k

∑
j∈VR(D,ε)k

|j〉 〈j| = ”Projector onto Hε
k”.

We can rewrite this mixed state in terms of the eigenvectors of ∆ε
k

PHε
k
=

1

dimHε
k

dim Hε
k∑

j=1

|ψj〉 〈ψj | .

So, the mixed state PHε
k

is the j-th eigenstate |ψj〉 with probability 1
dim Hε

k
.

Let’s use this state as input to the HS + QPE routine!
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The Lloyd, Garnerone & Zanardi algorithm
the circuit and the output distribution

Altogether, after the Grover-step the LGZ algorithm runs the following circuit

|0t〉

QPE
(
ei∆

ε
k

)
PHε

k

PHε
k

is in an eigenstate |ψj〉 with uniform probability, thus the probability of
measuring an eigenvalue λ is

Pr (λ) = #{j | λj = λ}
dimHε

k

.

In particular, the probability of measuring λ = 0 is given bu

Pr (0) = #{j | λj = 0}
dimHε

k

=
βε
k

dimHε
k

.

Using quantum counting or Monte-Carlo estimation, we can now estimate βε
k.
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My research
why am I looking at this algorithm? what are the interesting questions?

I Motivation: dequantizations of Ewin Tang et al.

I Question: can we show classical/quantum seperation?

◦ Does it solve a hard problem for complexity class with (conjectured)
quantum advantage?

I Question: can we use samples from the eigenvalues of ∆ε
k for something

else than computing Betti numbers?

◦ So-called applications of “simplicial spectral theory”.
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