
On the Solvability of the
Six Degrees of Kevin Bacon Game

A Faster Graph Diameter and Radius Computation
Method

Michele Borassi1, Pierluigi Crescenzi2, Michel Habib3,
Walter Kosters4, Andrea Marino5?, and Frank Takes4

1 IMT Institute of Advanced Studies, Lucca
2 Dipartimento di Sistemi e Informatica, Università di Firenze

3 LIAFA, UMR 7089 CNRS & Université Paris Diderot - Paris 7
4 Leiden Institute of Advanced Computer Science, Leiden University

5 Dipartimento di Informatica, Università di Milano

Abstract. In this paper, we will propose a new algorithm that com-
putes the radius and the diameter of a graph G = (V,E), by finding
bounds through heuristics and improving them until exact values can be
guaranteed. Although the worst-case running time is O(|V | · |E|), we will
experimentally show that, in the case of real-world networks, it performs
much better, finding the correct radius and diameter value after 10–100
BFSes instead of |V | BFSes (independent of the value of |V |), and thus
having running time O(|E|). Apart from efficiency, compared to other
similar methods, the one proposed in this paper has three other advan-
tages. It is more robust (even in the worst cases, the number of BFSes
performed is not very high), it is able to simultaneously compute radius
and diameter (halving the total running time whenever both values are
needed), and it works both on directed and undirected graphs with very
few modifications. As an application example, we use our new algorithm
in order to determine the solvability over time of the “six degrees of
Kevin Bacon” game.

1 Introduction

The six degrees of separation game is a trivia game which has been inspired by
the well-known social experiment of Stanley Milgram [11], which was in turn
a continuation of the empirical study of the structure of social networks by
Michael Gurevich [7]. Indeed, the notion of six degrees of separation has been
formulated for the first time by Frigyes Karinthy in 1929, who conjectured that
any two individuals can be connected through at most five acquaintances. This
conjecture has somehow been experimentally verified by Milgram and extremely
popularized by a theater play of John Guare, successively adapted to the cinema
by Fred Schepisi. The corresponding game refers to a social network, such as the

? The fifth author was supported by the EU-FET grant NADINE (GA 288956)

(movie) actor collaboration network, and can be played according to two main
different variants. In the first variant, given two vertices x and y of the network,
the player is asked to find a path of length at most six between x and y: for
instance, in the case of the actor collaboration network, the player is asked to
list at most five actors x1, . . . , x5 and at most six movies m1, . . . ,m6 such that
x and x1 played in m1, x5 and y played in m6, and xi and xi+1 played in mi+1,
for 1 ≤ i ≤ 4. In the second variant of the game, the vertex x is fixed and only
the target vertex y is chosen during the game: for instance, in the case of the
actor collaboration network, one very popular instance of this variant is the so-
called “six degrees of Kevin Bacon” game, where the vertex x is the actor Kevin
Bacon, who is considered one of the centers of the Hollywood universe [12]. Many
other examples of both variants of the six degrees of separation game are now
available on the web: one of the most popular games is the so-called “six degrees
of Wikipedia” [4], in which the vertices of the network are the Wikipedia articles
and the edges are the links between these articles (here, the network is directed).

In this paper we address the following question: is a given instance of a six
degrees of separation game solvable? More generally, is a given instance of a
k degrees of separation game solvable? In the case of the second variant of the
game, an additional question is the following: which is the choice of vertex x that
makes the game solvable? In particular, we will analyze the actor collaboration
network, in order to answer these questions, and we will consider the evolution
of this network over time, from 1940 to 2014. It will turn out that neither variant
of the six degrees of separation game has ever been solvable, since there have
always been actors at distance 13 (that is, in order to be solvable the first variant
of the game has to choose k = 13) and no actor ever existed who could reach all
other vertices in less than 7 steps. Moreover, it will turn out that, for the vast
majority of the analyzed period, Kevin Bacon has never been the right choice of
vertex x (indeed, this happened only in the last two/three years).

Answering the above questions is equivalent to computing the diameter and
the radius of a graph, where the diameter is the maximum distance between
two connected vertices, and the radius is the distance from a center (that is, a
vertex that minimizes the maximum distance to all other vertices) to the vertex
farthest from it. Indeed, if the diameter (respectively, radius) of the network used
by the game is equal to D (respectively, R), then the two variants of the game are
always solvable if and only if k ≥ D (respectively, k ≥ R). Actually, the diameter
and the radius are relevant measures (whose meaning depends on the semantics
of the network), which have been almost always considered while analyzing real-
world networks such as biological, collaboration, communication, road, social,
and web networks. Since the size of real-world networks has been increasing
rapidly, in order to compute these values, we need algorithms that can handle
a huge amount of data. Given a graph G = (V,E), the simplest algorithm to
compute the diameter and the radius performs a Breadth-First Search (in short,
BFS) from each vertex: the total running time is O(|V | · |E|) in the worst case,
which is too expensive for networks with millions or billions of vertices (especially
if we have to compute these values at several different instances in time). As a

consequence, much effort has been spent on improving performance at least in
practical cases, by developing algorithms that still have worst-case running time
O(|V |·|E|), but that perform much better in most real-world networks and return
the correct values after very few BFSes. In this paper we propose a new and more
efficient algorithm to compute radius and diameter. Our algorithm relates the
sweep approach (i.e. a new visit of the graph depends on the previous one, as in [5,
6, 9, 10]) with the techniques developed in [15, 16]. It is based on a new heuristic,
named SumSweep, which is able to compute very efficiently lower bounds on
the diameter and upper bounds on the radius of a given graph, and which can
be adapted both to undirected and to directed graphs. We will combine the new
SumSweep heuristic with the approach proposed in [15] in order to compute the
exact values of the radius and of the diameter in the case of undirected graphs,
and we will then adapt this combination to the case of directed graphs. We will
experimentally verify that the new algorithm significantly reduces the number
of required BFSes compared to previously proposed solutions.

Apart from efficiency, the new algorithm has many advantages over the ex-
isting ones. First of all, it is able to simultaneously compute the radius and the
diameter, instead of making one computation for each of these two parameters.
This way, if we are interested in both of them, the total time is halved. Moreover,
the new method is much more robust than the previous ones: other algorithms
are very fast on well-behaved graphs, but they obtain results which are far from
the optimum on particular inputs. The new algorithm is almost equivalent to the
existing ones on well-behaved graphs, and it drastically improves performance
in the “difficult” cases.

Preliminary notations. In this paper, we address the problem of finding
the radius and the diameter of a (strongly) connected (directed) graph. Given
an undirected graph G = (V,E), the eccentricity of a vertex v is e(v) :=
maxw∈V d(v, w), where the distance d(x, y) between two vertices x and y is
defined as the number of edges contained in a shortest path from x to y. The
diameter of G is maxv∈V e(v) and the radius is minv∈V e(v). Moreover, given a
directed graph G = (V,E), the forward eccentricity of a vertex v is eF (v) :=
maxw∈V d(v, w), the backward eccentricity is eB(v) := maxw∈V d(w, v). The di-
ameter of G is maxv∈V e

F (v) = maxv∈V e
B(v) and the radius is minv∈V e

F (v)
(in general it is different from minv∈V e

B(v)). Note that in all those definitions
the strong connectivity of the graph plays a crucial role.

Structure of the paper. In the rest of this section, we will briefly review
the existing methods used to compute the diameter and the radius. Then, in
Section 2 we will explain in detail how the new SumSweep heuristic works.
Section 3 will show how the eccentricities of all the vertices of a graph can
be bounded by making use of a BFS starting from a given vertex. Section 4
will introduce the exact diameter and radius computation algorithm, and finally
Section 5 will experimentally demonstrate the effectiveness of our approach. In
Section 6, a case study on the actor collaboration network is provided, while
Section 7 concludes the paper.

Related Work. Until now, several algorithms have been proposed to approx-
imate or compute the diameter of big real-world graphs. A first possibility is
using approximation algorithms with bounded error, like [3, 13]. Another possi-
bility is using heuristics that perform BFSes from random vertices, in order to
obtain an upper bound on the radius and a lower bound on the diameter (see for
example [14]). This technique is highly biased, because the bounds obtained are
rarely tight. More efficient heuristics have been proposed: the so-called 2Sweep
picks one of the farthest vertices x from a vertex and returns the distance of
the farthest vertex from x [9]; the 4Sweep picks the vertex in the middle of the
longest path computed by a 2Sweep and performs another 2Sweep from that
vertex [6]. Both methods work quite well and very often provide tight bounds.
Adaptations of these methods to directed graphs have been proposed in [2, 5].
Even on directed graphs these techniques provide very good bounds.

However, heuristics cannot guarantee the correctness of the results obtained.
For this reason, a major further step in the diameter computation was the design
of bound-refinement algorithms. Those methods apply a heuristic and try to
validate the result found or improve it until they successfully validate it. Even if
in the worst case their time complexity is O(|V | · |E|), they turn out to be linear
in practice. The main algorithms developed until now are BoundingDiameters
[15] and iFub [6]. While the first works only on undirected graphs, the second
is also able to deal with the directed case (the adaptation is called diFub [5]).
For the radius computation, the current best algorithm is a modification of the
BoundingDiameters algorithm [16]. It is also possible to use the method in
[10], but this always requires the computation of all central vertices of the graph.

2 Bounding the Radius and Diameter using SumSweep

Undirected Case. The idea behind the SumSweep heuristic is finding “key
vertices” in the computation of the radius and the diameter of a graph. It is based
on the simple observation that the well-known closeness centrality measure [1]
can be a good indicator for eccentricity when applied to the most and least central
vertices of a network. Moreover, given vertices v1, . . . , vk, the value

∑k
i=1 d(vi, w)

can give an idea about the closeness centrality of a vertex w in a real-world
network (hence, of its eccentricity). In particular, if the sum is big, the considered
vertex is more likely to be peripheral, so it is a good candidate to be a vertex with
maximum eccentricity. Conversely, if this sum is small, the vertex is probably
central. These intuitions are formalized by the following propositions.

Proposition 1. Let D be the diameter, let x and y be diametral vertices (that

is, d(x, y) = D), and let v1, . . . , vk be other vertices. Then,
∑k

i=1 d(x, vi) ≥ kD
2

or
∑k

i=1 d(vi, y) ≥ kD
2 .

Proof. kD =
∑k

i=1 d(x, y) ≥
∑k

i=1 [d(x, vi) + d(vi, y)] =
∑k

i=1 d(x, vi) +∑k
i=1 d(vi, y). ut

Proposition 2. Let R be the radius and let x ∈ V be such that maxy∈V d(x, y) =

R, and let v1, . . . , vk be other vertices. Then
∑k

i=1 d(x, vi) ≤ kR.

The previous intuition is the basis of the undirected SumSweep heuristic, that
provides a lower bound for the diameter and an upper bound for the radius,
by finding vertices v1, . . . , vk that are peripheral and well distributed within the
graph. More formally, a k-SumSweep is the following procedure:

– Given a random vertex v1 and setting i = 1, repeat k times the following:
1. Perform a BFS from vi and choose the vertex vi+1 as the vertex x max-

imizing
∑i

j=1 d(vj , x).
2. Increment i.

– The maximum eccentricity found, i.e. maxi=1,...,k e(vi), is a lower bound for
the diameter.

– Compute the eccentricity of w, the vertex minimizing
∑k

i=1 d(w, vi). The
minimum eccentricity found, i.e. min{mini=1,...,k e(vi), e(w)}, is an upper
bound for the radius.

We can also impose that vi 6= vj and vi 6= w: indeed, if this is not the case, then
we can simply choose vj or w as the best vertex different from the previous ones.

Directed Case. The main ideas of the previous method can also be applied to
strongly connected directed graphs. However, in such a context it is necessary
to take into account that the distance d(v, w) does not necessarily coincide with
d(w, v). Similarly to the previous case, we define two closeness centrality indi-
cators, one for forward eccentricity and one for backward eccentricity: a vertex
v is a source (respectively, target) if d(v, w) (respectively, d(w, v)) is high on
average. Note that there might be vertices that are both sources and targets.
Analogously, Propositions 1 and 2 still hold.

The definition of directed SumSweep is very similar to the undirected case,
with the difference that the BFSes are performed alternating their direction.
More formally, we do the following:

– Given a random vertex s1 and setting i = 1, repeat k/2 times the following.
1. Perform a forward BFS from si and choose the vertex ti as the vertex x

maximizing
∑i

j=1 d(sj , x).
2. Perform a backward BFS from ti and choose the vertex si+1 as the vertex
x maximizing

∑i
j=1 d(x, tj).

3. Increment i.
– The maximum eccentricity found, which is the maximum of the two val-

ues maxi=1,...,k/2 e
F (si) and maxi=1,...,k/2 e

B(ti), is a lower bound for the
diameter.

– Compute the eccentricity of w, the vertex minimizing
∑k/2

i=1 d(w, ti). The
minimum eccentricity found, i.e. min{mini=1,...,k/2 e

F (si), e
F (w)}, is an up-

per bound for the radius.

Once again, we impose vi 6= vj and vi 6= w.

3 Bounding the Eccentricities of the Vertices

This section aims to show some bounds on the eccentricity of the vertices. In
particular, we will explain how to lower and upper bound the eccentricity of a
vertex w, using a BFS from another vertex v.

Undirected Case. Suppose we have performed a BFS from a vertex v, forming
the BFS tree T , and we want to use the resulting information to bound the
eccentricity of all other vertices. The following observation can provide an upper
bound, while we will use Lv(w) := d(v, w) as a lower bound.

Lemma 1. Let v′ be the first vertex in T having more than one child. Let Φ be
the set of vertices on the (only) path from v to v′, let Ψ be the set of vertices in
the subtree of T rooted at the first child of v′, and let h be the maximum distance
from v′ to a vertex outside Ψ . Then, for each w ∈ V , e(w) ≤ Uv(w), where

Uv(w) :=

max(d(v, w), e(v)− d(v, w)) w ∈ Φ
max(d(v′, w) + e(v′)− 2, d(v′, w) + h) w ∈ Ψ
d(v′, w) + e(v′) otherwise

Proof. If w ∈ Φ or w /∈ Φ ∪ Ψ , the conclusion follows easily by the triangle
inequality. If w ∈ Ψ , let x be the farthest vertex from w: if x /∈ Ψ , then d(x,w) ≤
d(x, v′) + d(v′, w) ≤ h + d(v′, w). If x ∈ Ψ and r is the root of the subtree of T
consisting of vertices in Ψ , d(w, x) ≤ d(w, r) + d(r, x) = d(w, v′) + d(v′, x)− 2 ≤
d(w, v′) + e(v′)− 2. ut

Note that all values appearing in the definition of Lv(w) and Uv(w) can be
computed in linear time by performing a BFS from v.

Directed Case. In this case, the previous bounds do not hold: we will use a
weaker version, based on the following lemma, whose proof is straightforward.

Lemma 2. Let LF
v (w) := d(w, v), LB

v (w) := d(v, w), UF
v (w) := d(w, v) + eF (v)

and UB
v (w) := d(v, w) + eB(v). Then, for each v, w ∈ V ,

LF
v (w) ≤ eF (w) ≤ UF

v (w) and LB
v (w) ≤ eB(w) ≤ UB

v (v).

Note that LF
v (resp. LB

v) can be computed through a backward (forward) visit
from v, while to compute the upper bounds we need both a forward and a
backward visit from v.

4 Computing Radius and Diameter

In order to exactly compute the radius and diameter, we apply the technique of
BoundingDiameters algorithm, improved through the use of SumSweep and
generalized to directed graphs. Generally speaking, our algorithm refines lower
and upper bounds on the eccentricities of vertices, until the correct eccentricity
is found.

Undirected Case. The algorithm maintains two vectors eL and eU of lower
and upper bounds on the eccentricity of all vertices, and a vector S containing
the sum of distances from the starting points of previous BFSes.

Every time a BFS is performed from a vertex u, for each v ∈ V eL[v] (resp.
eU [v]) is updated with max(eL[v], Lu(v)) (resp. max(eU [v], Uu(v))), and S[v] is
updated with S[v] + d(u, v). Let us denote by X the set of vertices v such that
eL[v] < eU [v] and by Y the set V −X. It is worth observing that for any v ∈ Y
we have e(v) = eL[v] = eU [v].

At the beginning, for each v, eL[v] = 0 and eU [v] = +∞. The algorithm
starts by performing k iterations of SumSweep (according to our preliminary
experiments, k = 3 or k = 4 is the best), updating eL and eU after each BFS.
Then, at each step, a vertex u is selected from the set X and a BFS starting
from u is performed, updating lower and upper bounds.
Termination. The radius is found when miny∈Y (e(y)) ≤ minx∈X(eL[x]), and the
value is miny∈Y (e(y)). Analogously, the diameter is found when maxy∈Y (e(y)) ≥
maxx∈X(eU [x]), and its value is maxy∈Y (e(y)).

The selection of vertex u is crucial to speed up the computation. At each
step, we alternate the following two choices:

1. choose a vertex u ∈ X minimizing eL[u];
2. choose a vertex u ∈ X maximizing eU [u].

In order to break ties (which occur very often), we use the vector S: in the
first case, we minimize S[v] and in the second case we maximize it. Intuitively,
the first choice should improve upper bounds, while the second choice should
improve lower bounds.

Although the algorithm could perform O(|V |) BFSes in the worst case, we
will show that in practice it needs just O(1) BFSes.

Directed Case. In the directed case, we need to maintain two vectors (eFL and
eBL) containing lower bounds on forward and backward eccentricity, respectively,
and other two vectors (eFU and eBU) containing upper bounds. Moreover, we need
to keep two vectors SF and SB containing the sum of forward and backward
distances from the starting points of previous BFSes.

Every time a forward visit is performed from a vertex u, eBL [v] is updated
with max(eBL [v], LB

u (v)) and SB(v) is updated with SB(v)+d(u, v) (the backward
case is analogous). In order to update upper bounds, we need to perform both
a forward and a backward visit from a vertex u, and in that case the new value
of eFU [v] is min(eFU [v], UF

v (w)) and the new value of eBU [v] is min(eBU [v], UB
v (w)).

Let us denote by XF (resp. XB) the set of vertices v such that eFL [v] < eFU [v]
(resp. eBL [v] < eBU [v]), by Y F (resp. Y B) the set V − XF (resp. V − XB).
Observe that for any v ∈ Y F (resp. Y B) we have eF (v) = eFU [v] = eFL [v] (resp.
eB(v) = eBU [v] = eBL [v]).

At the beginning, for each v, all lower bounds are set to 0, all upper bounds
are set to +∞, SF and SB are set to 0. The algorithm starts by performing k
iterations of SumSweep (according to our preliminary experiments, k = 6 is
the best), updating lower and upper bounds after each BFS. Then, at each step,

a vertex u is selected and a BFS starting from u is performed, updating lower
and upper bounds.
Termination. The radius is found when miny∈Y F (eF (y)) ≤ minx∈X(eFL [x]), and
the value is miny∈Y F (eF (y)). Analogously, the diameter is found when

max(max
y∈Y B

(eB(y)), max
y∈Y F

(eF (y))) ≥ min(max
x∈XF

(eFU [x]), max
x∈XB

(eBU [x])).

The diameter value is then the left side of this inequality.
Once again, the selection of the vertex for the next visit is crucial for the effi-

ciency of the algorithm. The choices are made alternating the following strategies
(in the order in which they appear).

1. Choose a vertex u ∈ XF which minimizes eFL [u] and perform a forward BFS.
2. Choose a vertex u ∈ XF ∩ XB minimizing eFL [u] + eBL [u], and perform a

forward and backward BFS.
3. Choose a vertex u ∈ XB maximizing eBU [u] and perform a backward BFS.
4. Choose a vertex u ∈ XF maximizing eFU [u] and perform a forward BFS.
5. Repeat Item 2.

In Items 1, 2 and 5 we break ties by choosing u minimizing SF [u], in Item 3
and 4 by maximizing SB [u] and SF [u], respectively. Intuitively, Item 1 aims to
improve the forward upper bound of u (in order to find the radius), Items 2 and
5 aim to improve upper bounds on all the vertices; both Item 3 and Item 4 aim
to improve lower bounds: in particular, Item 3 improves the forward eccentricity,
while Item 4 improves the backward eccentricity.

5 Experimental Results

In order to compare the different methods, we analyzed a dataset of 34 undirected
graphs and 29 directed graphs, taken from the Stanford Large Network Dataset
Collection. This dataset is well-known and covers a large set of network types
(see [14] for more details). These experiments aim to show that the SumSweep
method improves the time bounds, the robustness, and the generality of all the
existing methods, since they are outperformed for both radius and diameter
computation, both in the directed and in the undirected case.

More detailed results about the comparison, together with the code used, are
available at amici.dsi.unifi.it/lasagne.

Undirected Case. In the undirected case, we compared our method with the
state of the art: the iFub algorithm for the diameter and the BoundingDiam-
eters (BD) algorithm both for the radius and for the diameter.

Indeed, this latter algorithm, used in [16] just to compute the diameter, can
be easily adjusted to also compute the radius, using the same vertex selection
strategy and updating rules for the eccentricity bounds. In particular, it bounds
the eccentricity of vertices similarly to our method, by using the fact that, after
a visit from a vertex v is performed, d(v, w) ≤ e(w) ≤ d(v, w) + e(v) (it is a

Table 1. The average performance ratio p, percentage of the number of BFSes used
by the different methods, with respect to the number of vertices (number of visits in
the worst-case)

Method p Std Error

SumSweep 0.023 % 5.49E-5
BD 0.030 % 9.62E-5

(a) Radius in Undirected Graphs

Method p Std Error

SumSweep 0.27 % 8.02E-4
HR >3.20 % 8.51E-3

(c) Radius in Directed Graphs

Method p Std Error

SumSweep 0.084 % 2.73E-4
BD 0.538 % 2.77E-3
iFubHd >0.677 % 3.34E-3
iFub4S >1.483 % 7.72E-3

(b) Diameter in Undirected Graphs

Method p Std Error

SumSweep 0.39 % 1.23E-3
diFubHdIn 3.06 % 1.47E-2
diFubHdOut 2.37 % 1.03E-2
diFub2In 1.12 % 4.68E-3
diFub2Out 1.02 % 4.45E-2

(d) Diameter in Directed Graphs

weaker version of Lemma 1). It does not perform the initial SumSweep and
simply alternates between vertices v with the largest eccentricity upper bound
and the smallest eccentricity lower bound.

For the diameter computation, we compared SumSweep not only with BD,
but also with two variations of iFub: iFubHd, starting from the vertex of highest
degree, and iFub4S, starting by performing a 4Sweep and choosing the central
vertex of the second iteration (see [6] or the section on related work for more
details about 2Sweep and 4Sweep).

The results of the comparison are summarized in Table 1: for each method
and for each graph in our dataset, we have computed the corresponding per-
formance ratio, that is the percentage of the number of visits performed by the
method with respect to the number of vertices of the network (i.e. the number
of visits in the worst case). In Table 1 we report the average of these values
together with the corresponding standard error.

In the radius computation, the SumSweep method is slightly more effective
than the BD algorithm. It is also more robust: in our dataset, it never needs
more than 18 BFSes, while the BD algorithm needs at most 29 BFSes. Moreover,
there are only 3 graphs where the BD algorithm beats the SumSweep algorithm
by more than one BFS.

In the diameter computation, the improvement is even more evident in Ta-
ble 1 (b). Again, we see that the new method is much more robust than the
previous ones: the computation of the diameter for SumSweep always ends in
less than 500 BFSes, while the old methods need up to 5000 BFSes.

Directed Case. In the directed case, the only efficient known method to
compute the radius is explained in [10], which we will refer to as HR. Ba-
sically, it works as follows: given the farthest pair of vertices x and y found
by the directed version of 2Sweep, order the vertices v according to g(v) =
max{d(v, x), d(v, y)}; scan the eccentricities of the vertices in this order and
stop when the next vertex w has a value of g(w) which is greater than the min-
imum eccentricity found. It is easy to see that all the vertices with minimum
eccentricity must always be scanned (which is not necessary for our algorithm).

Since this method is the only algorithm to compute the radius, we compared our
method just with this one. The results are shown in Table 1(c).

For the diameter computation, we compared our results to the four variations
of the diFub method:

diFubHdIn: starts from the vertex with highest in-degree;
diFubHdOut: starts from the vertex with highest out-degree;
diFub2In: starts from the central vertex of a 2Sweep performed from the

vertex with highest in-degree;
diFub2Out: starts from the central vertex of a 2Sweep performed from the

vertex with highest out-degree.

The results are shown in Table 1(d).
In the radius computation, the SumSweep algorithm performs about 12

times better than the old method. We also remark that the robustness of Sum-
Sweep applies also to the directed case: at most 40 BFSes are needed to find
the radius of any graph of our dataset.

In the diameter computation, the best previous method is diFub2Out: the
new SumSweep method performs about 2.5 times better. We note again the
robustness: the maximum number of BFSes is 93, against the maximum number
for diFub which is 482.

Overall, we conclude that the new method is more general (it is the only one
which is able to deal with both directed and undirected cases, both in the radius
and in the diameter computation), more robust, and more efficient than the best
previous methods.

Finally, we observe that, for each of the algorithms considered, the number
of BFSes for computing the radius or diameter is very low (often no more than
5) when D ≈ 2R. When D < 2R, then there are two other factors that appear
to influence performance. First, the relation D / 2R between the diameter and
radius appears to be of influence: the closer this value is to 1, the faster the
computation, in most cases. Second, the actual value of the diameter itself plays
a role: the diameter of graphs with a very small diameter is often harder to
compute, as there is little diversity in the eccentricity values and therefore little
opportunity for vertices to effectively influence the lower and upper eccentricity
bounds of neighboring vertices.

6 Internet Movies Database Case Study

This section applies the SumSweep algorithm to the Internet Movies Database,
in particular to the so-called actor graph, in which two actors are linked if they
played together in a movie (we ignore TV-series in this work). All data have been
taken from the website http://www.imdb.com. According to [12], we decided
to exclude some genres from our database: awards-shows, documentaries, game-
shows, news, realities and talk-shows. We analyzed snapshots of the actor graph,
taken every 5 years from 1940 to 2010, and 2014.

Fig. 1. Actor graph evolution in terms of radius, diameter, and actor eccentricity.

1
9
4
0

1
9
4
5

1
9
5
0

1
9
5
5

1
9
6
0

1
9
6
5

1
9
7
0

1
9
7
5

1
9
8
0

1
9
8
5

1
9
9
0

1
9
9
5

2
0
0
0

2
0
0
5

2
0
1
0

2
0
1
4

7
8
9

10
11
12
13
14
15
16
17
18
19

Year

V
a
lu
e

Radius

Diameter

Kevin Bacon

Bruce Willis

Carl Auen

Dasari Kotiratnam

Running Time Analysis. First, we compared the performances of our algo-
rithm to the BoundingDiameters method. Similarly to the previous experi-
ments, we found that the new method improves the previous one in the diameter
computation, and it has similar results in the radius computation. However, in
this latter case, the new method needed a smaller number of BFSes for big ac-
tor graphs (the most recent ones), where a BFS is more expensive in terms of
computation time.

Analysis of the Actor Graph. Figure 1 shows the evolution of the diam-
eter, the radius and the eccentricity of some actors. It shows that the radius
and diameter of the graph increased between 1940 and 1955, then they started
decreasing, as also observed in [8] as a property of large evolving graphs. The
first increase might be explained by the fact that the years between the forties
and the sixties are known as the golden age for Asian cinema, especially Indian
and Japanese. This trend is also confirmed by the names of the central actors
during that period. In 1940, they are almost all western, usually German (like for
instance Carl Auen). By 1955, we find both western and eastern actors. Later,
in the sixties, the increase of independent producers and production companies
led to an increase of power of individual actors. This can explain the decreasing
size of the graph during those years: the number of contacts between actors from
different countries increased (consider for instance the first James Bond movie,
Dr. No). For further historical film information we refer the reader to [17]. The
decreasing of the graph diameter and radius halted in the eighties, and there
were little changes until the present. Now it seems that the radius is slightly
increasing again, but the number of central actors is increasing as well.

Almost all actors seem to have decreasing eccentricity over time, even actors
that are no longer active (like Dasari Kotiratnam and Carl Auen). Instead, the
periphery is usually made by recent actors. We finally remark that Kevin Bacon
has not minimum eccentricity until the present, and he never gets eccentricity 6,
as required by the game “Six Degrees of Kevin Bacon”. Hence not all the actors
can be linked to Kevin Bacon by using at most 6 edges.

7 Conclusion

In this paper, we proposed a new heuristic to upper and lower bound respec-
tively the radius and diameter of large graphs and a new algorithm for computing
their exact value. We performed experiments on a large number of graphs, in-
cluding the IMDb actor graph of which we analyzed the radius, diameter and
actor eccentricity over time in order to verify the hypothesis of six degrees of
separation.

In future work we would like to investigate theoretically how the observations
from the experiments regarding the link between the diameter, radius and the
number of BFSes can be exploited in the diameter and radius computation itself.

References

1. Bavelas, A.: Communication Patterns in Task-Oriented Groups. The Journal of
the Acoustical Society of America 22(6), 725–730 (Nov 1950)

2. Broder, A.Z., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R.,
Tomkins, A., Wiener, J.L.: Graph Structure in the Web. Computer Networks 33(1-
6), 309–320 (2000)

3. Chechik, S., Larkin, D., Roditty, L., Schoenebeck, G., Tarjan, R.E., Williams, V.V.:
Better approximation algorithms for the graph diameter. In: SODA. pp. 1041–1052
(2014)

4. Clemesha, A.: The Wiki Game. http://thewikigame.com (2013)
5. Crescenzi, P., Grossi, R., Lanzi, L., Marino, A.: On Computing the Diameter of

Real-World Directed (Weighted) Graphs. In: SEA. pp. 99–110 (2012)
6. Crescenzi, P., Grossi, R., Habib, M., Lanzi, L., Marino, A.: On Computing the

Diameter of Real-World Undirected Graphs. Theor. Comput. Sci. 514, 84–95 (2013)
7. Gurevich, M.: The Social Structure of Acquaintanceship Networks (1961), PhD

Thesis
8. Leskovec, J., Kleinberg, J.M., Faloutsos, C.: Graph Evolution: Densification and

Shrinking Diameters. TKDD 1(1) (2007)
9. Magnien, C., Latapy, M., Habib, M.: Fast Computation of Empirically Tight

Bounds for the Diameter of Massive Graphs. Journal of Experimental Algorithmics
13 (2009)

10. Marino, A.: Algorithms for Biological Graphs: Analysis and Enumeration (2013),
PhD Thesis, Dipartimento di Sistemi e Informatica, University of Florence

11. Milgram, S.: The Small World Problem. Psychology Today 2, 60–67 (1967)
12. Reynolds, P.: The Oracle of Kevin Bacon. http://oracleofbacon.org (2013)
13. Roditty, L., Williams, V.V.: Fast Approximation Algorithms for the Diameter and

Radius of Sparse Graphs. In: STOC. pp. 515–524 (2013)
14. SNAP: Stanford Network Analysis Package (SNAP) Website. http://snap.

stanford.edu (2009)
15. Takes, F.W., Kosters, W.A.: Determining the Diameter of Small World Networks.

In: CIKM. pp. 1191–1196 (2011)
16. Takes, F.W., Kosters, W.A.: Computing the Eccentricity Distribution of Large

Graphs. Algorithms 6(1), 100–118 (2013)
17. Thompson, K., Bordwell, D.: Film History: an Introduction. McGraw-Hill Higher

Education (2009)

