
Leiden University. The university to discover.1

Data Encryption
Not to be confused with Data Encodings!!!!!!

• Symmetric Encryption / Private Key: the same key
for both encryption and decryption

• Asymmetric Encryption/ Public Key Encryption:
one public key for encrypting and one local/private
key for decrypting

Dorothy likes marmelade… K*&-L%@#+

Encryption

Decryption
CiphertextPlain text

Leiden University. The university to discover.

In other words (pictures)

2

Public

BobAlice

Decryptio
n

Encryption

Private

BobAlice

Encryption Decryptio
n

Secret

Leiden University. The university to discover.

Symmetric-key cryptography

• Substitution ciphers: one symbol (character) at a time is
replaced with another symbol

• Monoalphabetic: a symbol is always replaced by the
same symbol regardless of its position

• Polyalphabetic: depending on its position symbol is
being replaced

• Transposition ciphers: permutes symbols in a block of
symbols

3

Traditionally as early as Caesar (warfare)

Leiden University. The university to discover.

Quiz!!!!!

Plaintext: HELLO
Cyphertext: KHOOR
What type of cipher?

Plaintext: HELLO
Cyphertext: ABNZF
What type of cipher?

Plaintext: HELLO
Cyphertext: LOHEL
What type of cipher?

4

Leiden University. The university to discover.

Sample Ciphers

Shift cipher (Caesar cipher):
A B C D E F G H I J K L M N O P ….

A B C D E F G H I J K L M N O P ….

Key is 4, four characters down.(Caesar used 3.)

5

Leiden University. The university to discover.6

XOR Cipher
Plaintext

Ciphertext

Key

Leiden University. The university to discover.7

Rotation Cipher

Plaintext

Ciphertext

Key = number of rotations

Leiden University. The university to discover.8

Substition Cipher (S-box)

Function that matches N
inputs with M outputs

N inputs

M outputs
Key-less

S-box

Leiden University. The university to discover.9

Transposition Cipher (P-box)

Straight P-box

Expansion P-box Compression P-box

Leiden University. The university to discover.10

Modern Round
Cipher: DES

Data Encryption Standard:
Ø First initial permutation (IP)
Ø Bits are split up into 2 groups

of 32 bits
Ø First group is XOR-ed with

F-function of the last 32 bits
Ø Initial last 32 bits are XOR-ed

with F-function of result bits
Ø Etc. etc. 16 rounds
Ø Final permutation (FP)

Leiden University. The university to discover.11

DES: F-function

Ø 32 bits are expanded to
48 bits(Expansion P-box)

Ø These bits are XOR-ed
with 48 bits subkey and
divided in 8 groups of 6

Ø Each group is substituted
by 4 bits (subst. box)

Ø Final 32 bits are
permuted by straight P-
box

Leiden University. The university to discover.12

DES: key schedule
Ø Permuted Choice (PC1)

selects 56 bits from
original 64 bits

Ø 56 bits are divided into
two halves of 28 bits

Ø Each half is rotated left by
one or two bits

Ø Two halves are merged
and PC2 selects 24 bits
from each half of 28 bits

Ø This is being repeated 16
times.

Leiden University. The university to discover.13

DES: Security
Breakable by brute force:

1977: Diffie and Hellman proposed a $20 Million machine to
break the code in one day

1993: Wiener proposed a $1 Million machine to break the
code within 7 hours

1998: A $250000 machine was build by the Electronic
Frontier Foundation which could break DES in 2 days

2006: COPACOBANA was build for $10000, SciEngines GmbH

è Triple DES, apply DES three times with 2 different keys
2TDES or with 3 different keys 3TDES

èAES (Advanced Encryption Standard) a new cipher was
issued by NIST in 2001

Leiden University. The university to discover.

AES (Advanced Encryption Standard)

14

Op 2 januari 1997 het Amerikaans Nationaal Instituut voor
Standaardisatie en Technologie (NIST) een wereldwijde wedstrijd om
tot een nieuwe AES (Advanced Encryption Standard) te komen die de
verouderde DES zou vervangen.

Verschillende grote kandidaten, zoals IBM en RSA Security stuurden hun
algoritmen in. Op 2 oktober 2000 werd de winnaar bekendgemaakt:
Rijndael van Vincent Rijmen en Joan Daemen uit Leuven. Hun algoritme
is gekozen vanwege de combinatie van veiligheid, prestatie, efficiëntie,
eenvoud en flexibiliteit.

In programma's zoals WinRAR, WinZip, PowerArchiver, e.d. wordt AES
als encryptie aangeboden.

Source: Wikipedia https://nl.wikipedia.org/wiki/Advanced_Encryption_Standard

Leiden University. The university to discover.15

Rijndael representeert tekst en sleutel mbv matrices en werkt in een
(variabel) aantal rondes afhankelijk van de key keuze en elke ronde bestaat
uit een SubBytes stap (elke Byte wordt vervangen door een andere Byte),
een ShiftRow stap, een MixColumn stap en een AddKey stap.

Het grote voordeel van Rijndael ten opzicht van DES is dat het in software
efficiënt te implementeren is. In het DES-algoritme is het namelijk het
geval dat in veel stappen bits verwisseld worden. Rijndael is gebaseerd op
32-bit woorden en een snelle implementatie kan derhalve verkregen
worden via een software implementatie.

Op 17 augustus 2011 raakte bekend dat onderzoekers aan de Katholieke
Universiteit Leuven in samenwerking met Microsoft en de Ecole Normale
Supérieure in Parijs een zwak puntje in het algoritme gevonden hadden.
Door dit te benutten kan het kraken van het algoritme vier keer sneller
gebeuren, al duurt het nog altijd twee miljard jaar met duizend miljard
computers die duizend keer sneller zijn dan de huidige generatie
computer.

Leiden University. The university to discover.

Key Sharing!!!!!!!

16

Diffie–Hellman(-Merkle) key exchange (D-H)

two parties that have no prior knowledge of each
other jointly establish a shared secret key over an
insecure communications channel.

Leiden University. The university to discover.

In COLOURS

17

Leiden University. The university to discover.18

Asymmetric-key cryptography

Public

BobAlice

Decryptio
n

Encryption

Private

Leiden University. The university to discover.19

RSA (Rivest, Shamir and Adleman)

A little history (The Code Book, by Simon Singh, Doubleday, 1999; pp. 279-92.)

According to the British Government, public-key cryptography was originally
invented at the Government Communications Headquarters (GCHQ) in
Cheltenham, the top-secret establishment that was formed from the remnants of
Bletchley Park after the Second World War.

Looking ahead to the 1970s, senior military officials imagined a scenario in which
miniaturization of radios and a reduction in cost meant that every soldier could be
in continual radio contact with his officer. The advantages of widespread
communication would be enormous, but communications would have to be
encrypted, and the problem of distributing keys would be insurmountable.

At the beginning of 1969, the military asked James Ellis, one of Britain's foremost
government cryptographers, to look into ways of coping with the key-distribution
problem.

Leiden University. The university to discover.20

MEMORANDUM of Ellis: “Can we produce a secure encrypted message,
readable by the authorized recipient without any prior secret
exchange of the key? This question actually occurred to me in bed one night, and
the proof of the theoretical possibility took only a few minutes. We had an existence
theorem. The unthinkable was actually possible.”

Ellis's ideas were very similar to those of Diffie, Hellman and Merkle, except that he
was several years ahead of them. However, nobody knew of Ellis's work because he
was an employee of the British Government and therefore sworn to secrecy. By the
end of 1969, Ellis appears to have reached the same impasse that the Stanford trio
would reach in 1975. He had proved to himself that public-key cryptography (or non-
secret encryption, as he called it) was possible.

Then, in September 1973, a new mathematician joined the team. Clifford Cocks had
recently graduated from Cambridge University, where he had specialized in number
theory. Cocks was beginning to formulate what would be known as the RSA
asymmetric cipher. Rivest, Shamir and Adleman discovered their formula for public-key
cryptography in 1977, but four years earlier the young Cambridge graduate was going
through exactly the same thought processes. Cocks recalls: 'From start to finish,
it took me no more than half an hour. I was quite pleased with myself. I
thought, "Ooh, that's nice. I've been given a problem, and I've solved it." '

Leiden University. The university to discover.

Some basics

è If gcd (a, b) = 1: {k.a (mod b) | k ≥ 0} = {0, 1, 2, ..., b -1}

è If gcd (a, b) = 1: {ak (mod b) | k ≥ 0} ≠ {0, 1, 2, ..., b -1}

7k (mod 9) = {1, 4, 7}

è If gcd (a, b) = 1: #divisors of ab = #divisors of a * #divisors of b

è For any a: k.a + r (mod a) = r (mod a) for all k, r

21

Leiden University. The university to discover.

Totient Function φ
Euler’s totient function: φ(n) is an arithmetic function that counts the
number of positive integers less than or equal to n that are relatively
prime to n. That is, if n is a positive integer, then φ(n) is the number of
integers k in the range 1 ≤ k ≤ n for which gcd(n, k) = 1.

For example let n = 9. Then gcd(9, 3) = gcd(9, 6) = 3 and gcd(9, 9) =
9. The other six numbers in the range 1 ≤ k ≤ 9, that is, 1, 2, 4, 5, 7
and 8, are relatively prime to 9. Therefore, φ(9) = 6.

èφ(nm) = φ(n)φ(m), if gcd (n, m) = 1

èφ(p) = p – 1, if p is prime

22

Leiden University. The university to discover.23

Euler Phi Function:

October 10, 2012

1 The Euler Phi Function

This lecture is dedicated to the study of another multiplicative functions, the Euler phi
function.

Definition 1.1. Let n � 1 be an integer. Then we define the Euler phi function � by
�(n) =the number of positive integers less than n that are relatively prime to n.

So let us do some examples.

Example 1.2. �(1) = 1,�(2) = 1,�(3) = 2,�(4) = 2,�(5) = 4,�(6) = 2,�(15) = 8

The first observation is how �(n) behaves on the primes.

Observation 1. �(n) = n� 1 , n is prime.

Proof. �(n) = n� 1 , every integer in the set {1, 2, ..., (n� 1)} is relatively prime to n ,
No prime p with p < n divides n , n is prime.

So �(n) is capable of producting somewhat of a test to determine when a given integer
is a prime. Thus being able to calculate �(n) will be quite useful. The following theorem,
which might be quite surprising, facilitates this goal.

Theorem 1.3. The Euler phi function is multiplicative.

Proof. Let n and m be relatively prime integer. The statement clearly holds if n = 1 or
m = 1. So let us assume that n,m > 1. We would like to calculate �(nm) and so below we
arrange the integers from 1 to nm in m columns of n integers.

1 2 · · · r · · · m
m+ 1 m+ 2 · · · m+ r · · · 2m
2m+ 1 2m+ 2 · · · 2m+ r · · · 3m

...
...

...
...

(n� 1)m+ 1 (n� 1)m+ 2 · · · (n� 1)m+ r · · · nm

1So to calculate �(nm) we need to determine how many elements of this array are rela-
tively prime with nm, which are the elements that are relatively prime to both n and m.
So what was the point of us arranging the integers in such an array. We notice that since
gcd(km + r,m) =gcd(r,m) we see that an entry in the rth column is relatively prime to
m if and only if r is relatively prime to m, and in this case then all of the entries of the
column are relatively prime to m. So looking at it this way, there are �(m) columns with
r’s that are relatively prime to n, and so we need to show that in each column there are
�(n) entries relatively prime to n and then we will be done.

So let us choose such a column, and let r be the corresponding element of the column
(mod m). So gcd(r,m)=1. The entries of this column are

r,m+ r, 2m+ r, ..., (n� 1)m+ r.

So we see that there are n integers in this column, so we would like to consider their
equivalence class module n.

Now if [km + r]n = [lm + r]n) [km]n = [lm]n) [k]n = [l]n since gcd(n,m)=1.
However, as we can see no two of the coe�ecients of m in the column are equivalent mod n.
Thus if we look at the column there are all of the equivalence classes modulo n. Therefore
the number of them that are relatively prime to n is �(n).

So we have divided the numbers that are relatively prime to nm into �(m) columns
where in each column with �(n) such numbers in each column. Thus the total amount of
such numbers is �(n)�(m)

We would like to get a formula for �(n), and now that we know that � is multiplicative
the we only need to determine it’s value on powers of primes.

Theorem 1.4. Let p be prime and k > 0, then

�(pk) = pk � pk�1 = pk
✓
1� 1

p

◆
= pk�1(p� 1) (1)

Proof. This can be proven by a simple counting argument. The only numbers between 1
and pk that are not relatively prime to pk are the ones that are divisible by p. There are
pk

p = pk�1 of these. So we have that

�(pk) = pk � kk�1

With this knowledge we can completely calculate �(n)

Corollary 1.5. Let n be a positive integer with factorization given by n = pn1
1 · · · pnk

k . Then
�(n) is given by

�(n) =
Q

i p
ni
i

⇣
1� 1

pi

⌘
= n

Q
i

⇣
1� 1

pi

⌘

Proof. This is immediate from theorem 1.4 so we leave the proof to the reader.

2

Leiden University. The university to discover.24

So to calculate �(nm) we need to determine how many elements of this array are rela-
tively prime with nm, which are the elements that are relatively prime to both n and m.
So what was the point of us arranging the integers in such an array. We notice that since
gcd(km + r,m) =gcd(r,m) we see that an entry in the rth column is relatively prime to
m if and only if r is relatively prime to m, and in this case then all of the entries of the
column are relatively prime to m. So looking at it this way, there are �(m) columns with
r’s that are relatively prime to n, and so we need to show that in each column there are
�(n) entries relatively prime to n and then we will be done.

So let us choose such a column, and let r be the corresponding element of the column
(mod m). So gcd(r,m)=1. The entries of this column are

r,m+ r, 2m+ r, ..., (n� 1)m+ r.

So we see that there are n integers in this column, so we would like to consider their
equivalence class module n.

Now if [km + r]n = [lm + r]n) [km]n = [lm]n) [k]n = [l]n since gcd(n,m)=1.
However, as we can see no two of the coe�ecients of m in the column are equivalent mod n.
Thus if we look at the column there are all of the equivalence classes modulo n. Therefore
the number of them that are relatively prime to n is �(n).

So we have divided the numbers that are relatively prime to nm into �(m) columns
where in each column with �(n) such numbers in each column. Thus the total amount of
such numbers is �(n)�(m)

We would like to get a formula for �(n), and now that we know that � is multiplicative
the we only need to determine it’s value on powers of primes.

Theorem 1.4. Let p be prime and k > 0, then

�(pk) = pk � pk�1 = pk
✓
1� 1

p

◆
= pk�1(p� 1) (1)

Proof. This can be proven by a simple counting argument. The only numbers between 1
and pk that are not relatively prime to pk are the ones that are divisible by p. There are
pk

p = pk�1 of these. So we have that

�(pk) = pk � kk�1

With this knowledge we can completely calculate �(n)

Corollary 1.5. Let n be a positive integer with factorization given by n = pn1
1 · · · pnk

k . Then
�(n) is given by

�(n) =
Q

i p
ni
i

⇣
1� 1

pi

⌘
= n

Q
i

⇣
1� 1

pi

⌘

Proof. This is immediate from theorem 1.4 so we leave the proof to the reader.

2

Leiden University. The university to discover.

The first 1000 values of φ(n)

25

Leiden University. The university to discover.26

The Algorithm
Choose two distinct prime numbers p and q. For security purposes, the
integers p and q should be chosen at random, and should be of similar bit-length.

Compute n = pq. n is used as the modulus for both public and private keys, its
length, usually expressed in bits, is the key length.

Compute φ(n) = φ(p)φ(q) = (p − 1)(q − 1), where φ is Euler’s totient
function.

Choose an integer e such that 1 < e < φ(n) and gcd(e,φ(n))=1, i.e. e

and φ(n) are coprime.

e is released as the public key exponent. e having a short bit-length i.e.
216 + 1 = 65537 results in more efficient encryption, but e should not be too small

Solve for d given de ≡ 1 (mod φ(n)). d is kept as the private key exponent.

The public key consists of the modulus n and the public (or encryption) exponent e.
The private key consists of the modulus n and the private (or decryption) exponent
d, which must be kept secret.
p, q, and φ(n) must also be kept secret because they can be used to calculate d.

Leiden University. The university to discover.27

Encryption
Alice transmits her public key (n, e) to Bob and keeps the private key
secret. Bob then wishes to send message M to Alice.
He first turns M into an integer m, such that 0 ≤ m < n by using an
agreed-upon reversible protocol known as a padding scheme. He then
computes the ciphertext c corresponding to

c = me (mod n)

Decryption
Alice can recover m from c by using her private key exponent d via
computing

m = cd (mod n)

Given m, she can recover the original message M by reversing the padding
scheme.

Leiden University. The university to discover.28

Why does this work???
Lemma
For any prime p:

(x+y)p = xp+ yp (mod p)
Proof
(x+y)p = Σi=0, p xp-i yi, with = p! / ((p-i)! i!).
The binomial coefficients are all integers and when 0 < i < p,
neither of the terms in the denominator includes a factor p,
leaving the coefficient itself to possess a prime factor of p
which must exist in the numerator, implying that = 0 (mod
p). So the only remainder coefficients are i = 0 and i = p. ∎

P
i

P
i

P
i

Leiden University. The university to discover.29

Why does this work???
Fermat’s Little Theorem
If p is prime, then for all integer a:

ap = a (mod p)
Proof (by induction)
Assume kp = k (mod p), and consider (k+1)p. By the lemma we
have (k+1)p = kp +1p (mod p). Using the induction hypothesis, we
have that kp ≡ k (mod p), and, trivially, 1p = 1. Thus

(k+1)p = k +1 (mod p)
which is the statement of the theorem for a = k+1. ∎

Note ap = a (mod p) is equivalent to ap-1 = 1 (mod p)
if a≠ 0 (mod p)

Leiden University. The university to discover.30

Why does this work???
Proof using Fermat's little theorem
The proof of the correctness of RSA is based on Fermat's little theorem. This theorem states that if p is prime and p
does not divide an integer a then

We want to show that (me)d ≡ m (mod pq) for every integer m when p and q are distinct prime numbers and e and d
are positive integers satisfying

We can write

for some nonnegative integer h.
To check two numbers, like med and m, are congruent mod pq it suffices (and in fact is equivalent) to check they are
congruent mod p and mod q separately. To show med ≡ m (mod p), we consider two cases: m ≡ 0 (mod p) and m is not
equivalent to 0 (mod p). In the first case med is a multiple of p, so med ≡ 0 ≡ m (mod p). In the second case

where we used Fermat's little theorem to replace mp−1 mod p with 1.
The verification that med ≡ m (mod q) proceeds in a similar way, treating separately the cases m ≡ 0 (mod q) and m is
not equivalent to 0 (mod q), using Fermat's little theorem for modulus q in the second case.
This completes the proof that, for any integer m,

∎

Leiden University. The university to discover.

Illustration

31

https://www.youtube.com/watch?v=tXXnHXslVhw

Leiden University. The university to discover.

A simple Example

32

Leiden University. The university to discover.

Efficient decrypting

33

Based On Chinese Remainder Theorem:
cd = cd(mod(q-1))(mod q) + q(qinv x (cd(mod(p-1)) - cd(mod(q-1)))) (mod p) (mod pq)

Leiden University. The university to discover.

Security Considerations

If n is 300 bits or shorter, it can be factored in a few hours on a personal computer,
using software already freely available. Keys of 512 bits have been shown to be
practically breakable in 1999 when RSA-155 was factored by using several hundred
computers and are now factored in a few weeks using common hardware.

Exploits using 512-bit code-signing certificates that may have been factored were
reported in 2011. A theoretical hardware device named TWIRL and described by
Shamir and Tromer in 2003 called into question the security of 1024 bit keys. It is
currently recommended that n be at least 2048 bits long

34

Leiden University. The university to discover.35

Harrys-MacBook-Pro:~ harryw$ openssl genrsa -out private_key.pem 1024
Generating RSA private key, 1024 bit long modulus
...................................++++++
...++++++
e is 65537 (0x10001)
Harrys-MacBook-Pro:~ harryw$ openssl rsa -pubout -in private_key.pem -out
public_key.pem
writing RSA key
Harrys-MacBook-Pro:~ harryw$ openssl rsa -text -in private_key.pem
Private-Key: (1024 bit)
modulus:

00:de:c0:ef:f7:ed:10:6a:4f:1f:58:80:1f:4b:67:
d8:9d:64:71:01:21:d4:89:d1:3e:56:8e:e5:85:36:
1d:e7:6f:67:14:4e:fe:f9:35:64:ef:ab:32:01:e2:
63:ec:88:13:68:94:dc:55:2b:5f:3f:a6:0f:7d:3b:
3a:c8:fb:4b:92:d8:02:f0:80:72:cb:f5:2c:25:5b:
6b:20:01:1a:94:96:23:aa:f2:d8:19:0f:86:c5:0e:
da:02:4b:0f:31:6b:2a:0b:ef:8a:6e:a8:6d:8c:b7:
b4:bd:8f:52:3c:8f:0a:eb:44:05:74:50:09:c6:13:
8d:65:23:15:30:51:6c:82:23

publicExponent: 65537 (0x10001)

Example RSA generation

Leiden University. The university to discover.36

privateExponent:
00:c4:a4:b0:73:3e:dd:51:ec:1d:70:e4:52:3c:20:
25:b2:f4:5b:6a:33:72:4c:63:e2:d3:48:fc:c7:b7:
79:78:b8:f8:d7:8d:d1:3b:30:ee:b5:41:7d:38:fa:
a1:59:ca:da:cf:65:32:89:21:6b:c9:65:90:a0:ee:
2b:bc:07:53:b3:5d:a9:4d:90:86:86:30:8d:48:a0:
9d:0a:67:8b:75:3c:29:c6:f8:39:e4:bf:68:c9:24:
66:aa:91:3d:19:d0:87:52:c1:7c:79:cd:67:a6:34:
cb:70:e9:09:a3:10:1a:32:1d:f8:50:0e:8e:e8:f6:
c0:b3:f2:70:a2:1a:b5:65:59

prime1:
00:f5:07:fc:cd:d0:0b:a7:f5:62:36:13:9e:31:74:
d9:a7:cf:bb:e1:4f:08:df:60:9f:13:7a:b9:ad:a4:
ea:5c:09:0c:63:5e:bc:97:99:dc:7b:67:63:c0:2b:
a1:34:06:84:9a:2d:68:fa:40:8c:a4:da:45:f2:14:
a1:7e:0e:ea:af

prime2:
00:e8:b9:a7:42:59:a8:83:64:e8:87:0a:27:f6:3b:
94:32:8c:db:e9:cd:01:ca:ed:97:83:97:9b:97:17:
ef:69:c7:c1:a9:90:60:a0:75:cb:72:4a:97:4c:9d:
7a:eb:07:02:be:bc:76:cb:14:8a:bb:55:d2:17:94:
2d:72:43:ac:cd

Leiden University. The university to discover.37

exponent1:
61:66:6a:6c:59:6d:b8:b7:06:f2:1d:fc:3d:06:88:
da:76:ed:e5:12:e8:a0:fa:a4:61:36:e0:86:10:cf:
04:04:a8:c2:fb:4e:96:28:98:07:09:c3:12:09:85:
cb:cb:67:7c:6d:de:93:d3:82:d4:a8:db:32:ee:56:
7f:68:68:8b

exponent2:
42:e5:0a:94:e1:dc:b4:58:0f:16:b1:ee:a6:b2:9d:
78:a2:50:9c:35:d7:6c:13:3b:58:11:fe:21:42:3a:
09:37:e8:0c:eb:79:3a:e6:61:22:6b:1a:6e:65:5d:
ed:ac:c8:37:37:49:16:3a:c3:5d:f1:df:3f:f3:d1:
d4:64:6b:89

coefficient:
0e:30:15:15:74:5d:9b:ad:e4:7a:03:93:11:66:14:
e6:49:a8:23:82:be:3f:1f:7a:1a:79:78:c3:f8:48:
b2:8e:98:2e:f6:60:8c:be:54:34:51:c7:c9:41:3a:
82:b2:1f:ef:83:5a:d8:03:aa:bc:27:24:f7:35:13:
cd:d6:a9

Leiden University. The university to discover.38

writing RSA key
-----BEGIN RSA PRIVATE KEY-----
MIICWwIBAAKBgQDewO/37RBqTx9YgB9LZ9idZHEBIdSJ0T5WjuWFNh3nb2cUTv75
NWTvqzIB4mPsiBNolNxVK18/pg99OzrI+0uS2ALwgHLL9SwlW2sgARqUliOq8tgZ
D4bFDtoCSw8xayoL74puqG2Mt7S9j1I8jwrrRAV0UAnGE41lIxUwUWyCIwIDAQAB
AoGBAMSksHM+3VHsHXDkUjwgJbL0W2ozckxj4tNI/Me3eXi4+NeN0Tsw7rVBfTj6
oVnK2s9lMokha8llkKDuK7wHU7NdqU2QhoYwjUignQpni3U8Kcb4OeS/aMkkZqqR
PRnQh1LBfHnNZ6Y0y3DpCaMQGjId+FAOjuj2wLPycKIatWVZAkEA9Qf8zdALp/Vi
NhOeMXTZp8+74U8I32CfE3q5raTqXAkMY168l5nce2djwCuhNAaEmi1o+kCMpNpF
8hShfg7qrwJBAOi5p0JZqINk6IcKJ/Y7lDKM2+nNAcrtl4OXm5cX72nHwamQYKB1
y3JKl0ydeusHAr68dssUirtV0heULXJDrM0CQGFmamxZbbi3BvId/D0GiNp27eUS
6KD6pGE24IYQzwQEqML7TpYomAcJwxIJhcvLZ3xt3pPTgtSo2zLuVn9oaIsCQELl
CpTh3LRYDxax7qaynXiiUJw112wTO1gR/iFCOgk36AzreTrmYSJrGm5lXe2syDc3
SRY6w13x3z/z0dRka4kCPw4wFRV0XZut5HoDkxFmFOZJqCOCvj8fehp5eMP4SLKO
mC72YIy+VDRRx8lBOoKyH++DWtgDqrwnJPc1E83WqQ==
-----END RSA PRIVATE KEY-----
Harrys-MacBook-Pro:~ harryw$

Leiden University. The university to discover.

openssl rsa -text -in private_key.pem
basically results in:

39

All parts of private_key.pem are printed to the screen. This includes
the modulus (also referred to as public key and n), public exponent
(also referred to as e and exponent; default value is 0x010001),
private exponent, and primes used to create keys (prime1, also
called p, and prime2, also called q), a few other variables used to
perform RSA operations faster, and the Base64 PEM encoded
version of all that data. (The Base64 PEM encoded version of all that
data is identical to the private_key.pem file).

Leiden University. The university to discover.

Base64 encoding

40

0 A 16 Q 32 g 48 w
1 B 17 R 33 h 49 x
2 C 18 S 34 i 50 y
3 D 19 T 35 j 51 z
4 E 20 U 36 k 52 0
5 F 21 V 37 l 53 1
6 G 22 W 38 m 54 2
7 H 23 X 39 n 55 3
8 I 24 Y 40 o 56 4
9 J 25 Z 41 p 57 5
10 K 26 a 42 q 58 6
11 L 27 b 43 r 59 7
12 M 28 c 44 s 60 8
13 N 29 d 45 t 61 9
14 O 30 e 46 u 62 +
15 P 31 f 47 v 63 /

Leiden University. The university to discover.41

• modulus = prime1 x prime2
• publicExponent x exponent1 = 1 mod (prime1 - 1)
• publicExponent x exponent2 = 1 mod (prime2 – 1)
• prime2 x coeeficient = 1 mod (prime1)
• publicExponent x privateExponent = 1 mod (prime1

– 1)(prime2 – 1)
• So, privateExponent = exponent1 mod (prime1 – 1)
• And privateExponent = exponent2 mod (prime2 – 1)

Leiden University. The university to discover.42

SSH at LIACS (via ssh-keygen)

Leiden University. The university to discover.43

HTTP Secure

Ø HTTPS URLs begin with "https://" and use port 443 by default
(HTTP URLs begin with "http://" and use port 80 by default)

Ø HTTPS is not a separate protocol, but refers to use of
ordinary HTTP over an encrypted SSL/TLS connection.

Ø To prepare a web server to accept HTTPS connections,
the administrator must create a public key certificate
for the web server.

Ø This certificate must be signed by a trusted certificate authority
Ø This is done by sending a certificate signing request (CSR)
Ø Before doing so the server creates private/public key openSSL
Ø If the request is successful, the certificate authority will send

back an identity certificate that has been digitally signed with
the private key of the certificate authority.

Leiden University. The university to discover.

Certificate Authorities

44

A CA issues digital certificates that contain a public key and the
identity of the owner. The matching private key is not made available
publicly, but kept secret by the end user who generated the key pair.
The certificate is also a confirmation or validation by the CA that the
public key contained in the certificate belongs to the person,
organization, server or other entity noted in the certificate. A CA's
obligation in such schemes is to verify an applicant's credentials, so that
users and relying parties can trust the information in the CA's
certificates. CAs use a variety of standards and tests to do so. In
essence, the certificate authority is responsible for saying "yes, this
person is who they say they are, and we, the CA, certify that"

Leiden University. The university to discover.

Certificate Authorities

45

More than 50 root certificates are trusted in the most popular web browser
versions. A W3Techs survey from November 2016 shows:

Leiden University. The university to discover.46

Typical information required in a CSR (Certificate
Signing Request)

Leiden University. The university to discover.47

Sa
m

pl
e

C
er

tif
ic

at
e

Leiden University. The university to discover.

Signing

48

Leiden University. The university to discover.

Verification of signed data

The hash
function is
initially agreed
upon between
server and
client during
SSL/TLS
handshake,
when selecting
a cipher suite.
An example is
“SHA1”.

Leiden University. The university to discover.

In
 t

el
eg

ra
af

.n
l,

23
 F

eb
 2

01
7

50

Leiden University. The university to discover.

SSL/TLS

51

Transport Layer Security (TLS) and its predecessor,
Secure Sockets Layer (SSL), are cryptographic protocols
that provide communication security over the Internet. They use
Ø asymmetric cryptography for authentication of key exchange,
Ø symmetric encryption for confidentiality and
Ø message authentication codes for message integrity.

Several versions of the protocols are in widespread use in
applications such as

web browsing (HTTPS), electronic mail, Internet faxing,
instant messaging and voice-over-IP (VoIP).

Leiden University. The university to discover.

Revision History

52

Any moment now

Leiden University. The university to discover.

TLS Handshake in A Diagram

53

Leiden University. The university to discover.

More precise description SSL/TLS
handshake protocol

54

Ø The client sends the server the client's SSL version number, cipher settings, session-specific data,
and other information that the server needs to communicate with the client using SSL.

Ø The server sends the client the server's SSL version number, cipher settings, session-specific data,
and other information that the client needs to communicate with the server over SSL. The server
also sends its own certificate, and if the client is requesting a server resource that requires client
authentication, the server requests the client's certificate.

Ø The client uses the information sent by the server to authenticate the server. If the server cannot
be authenticated, the user is warned of the problem and informed that an encrypted and
authenticated connection cannot be established. If the server can be successfully authenticated,
the client proceeds to the next step.

Ø Using all data generated in the handshake thus far, the client (with the cooperation of the server,
depending on the cipher in use) creates the pre-master secret for the session, encrypts it with the
server's public key (obtained from the server's certificate, sent in step 2), and then sends the
encrypted pre-master secret to the server.

Ø If the server has requested client authentication (an optional step in the handshake), the client also
signs another piece of data that is unique to this handshake and known by both the client and
server. In this case, the client sends both the signed data and the client's own certificate to the
server along with the encrypted pre-master secret.

Leiden University. The university to discover.55

Ø If the server has requested client authentication, the server attempts to authenticate the client. If
the client cannot be authenticated, the session ends. If the client can be successfully
authenticated, the server uses its private key to decrypt the pre-master secret, and then
performs a series of steps (which the client also performs, starting from the same pre-master
secret) to generate the master secret.

Ø Both the client and the server use the master secret to generate the session keys, which are
symmetric keys used to encrypt and decrypt information exchanged during the SSL session and
to verify its integrity (that is, to detect any changes in the data between the time it was sent and
the time it is received over the SSL connection).

Ø The client sends a message to the server informing it that future messages from the client will be
encrypted with the session key. It then sends a separate (encrypted) message indicating that the
client portion of the handshake is finished.

Ø The server sends a message to the client informing it that future messages from the server will
be encrypted with the session key. It then sends a separate (encrypted) message indicating that
the server portion of the handshake is finished.

Leiden University. The university to discover.56

Freier, et al. Historic [Page 12]

RFC 6101 The SSL Protocol Version 3.0 August 2011

The session state includes the following elements:

session identifier: An arbitrary byte sequence chosen by the server to identify an active
or resumable session state.

peer certificate: X509.v3 [X509] certificate of the peer. This element of the state may
be null.

compression method: The algorithm used to compress data prior to encryption.

cipher spec: Specifies the bulk data encryption algorithm (such as null, DES, etc.) and a
MAC algorithm (such as MD5 or SHA). It also defines cryptographic attributes such as
the hash_size. (See Appendix A.7 for formal definition.)

master secret: 48-byte secret shared between the client and server.

is resumable: A flag indicating whether the session can be used toinitiate new
connections.

Fragment of RFC 6101 formally specifying SSL 3.0
M

es
sa

ge
 A

ut
he

nt
ic

at
io

n
C

od
e

Leiden University. The university to discover.57

The connection state includes the following elements:
server and client random: Byte sequences that are chosen by the server and client for each
connection.

server write MAC secret: The secret used in MAC operations on data written by the
server.

client write MAC secret: The secret used in MAC operations on data written by the client.

server write key: The bulk cipher key for data encrypted by the server and decrypted by
the client.

client write key: The bulk cipher key for data encrypted by the client and decrypted by the
server.

initialization vectors: When a block cipher in Cipher Block Chaining (CBC) mode is used, an
initialization vector (IV) is maintained for each key. This field is first initialized by the SSL
handshake protocol. Thereafter, the final ciphertext block from each record is preserved for
use with the following record.

sequence numbers: Each party maintains separate sequence numbers for transmitted and
received messages for each connection. When a party sends or receives a change cipher
spec message, the appropriate sequence number is set to zero. Sequence numbers are of
type uint64 and may not exceed 2^64-1.

Leiden University. The university to discover.58

ToC of RFC 5246 formally specifying TLS 1.2
Network Working Group T. Dierks
Request for Comments: 5246 Independent
Obsoletes: 3268, 4346, 4366 E. Rescorla
Updates: 4492 RTFM, Inc.
Category: Standards Track August 2008

The Transport Layer Security (TLS) Protocol
Version 1.2

Status of This Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.

Abstract
This document specifies Version 1.2 of the Transport Layer Security
(TLS) protocol. The TLS protocol provides communications security
over the Internet. The protocol allows client/server applications to
communicate in a way that is designed to prevent eavesdropping,
tampering, or message forgery.

Table of Contents
1. Introduction ..4

1.1. Requirements Terminology5
1.2. Major Differences from TLS 1.15

2. Goals ...6
3. Goals of This Document ..7
4. Presentation Language ...7

4.1. Basic Block Size ...7
4.2. Miscellaneous ..8
4.3. Vectors ..8
4.4. Numbers ..9

4.5. Enumerateds ..9
4.6. Constructed Types ...10

4.6.1. Variants ...10
4.7. Cryptographic Attributes12
4.8. Constants ...14

5. HMAC and the Pseudorandom Function14
6. The TLS Record Protocol ..15

6.1. Connection States ...16
6.2. Record Layer ..19

6.2.1. Fragmentation19
6.2.2. Record Compression and Decompression20
6.2.3. Record Payload Protection21

6.2.3.1. Null or Standard Stream Cipher22
6.2.3.2. CBC Block Cipher22
6.2.3.3. AEAD Ciphers24

6.3. Key Calculation ...25
7. The TLS Handshaking Protocols26

7.1. Change Cipher Spec Protocol27
7.2. Alert Protocol ..28

7.2.1. Closure Alerts29
7.2.2. Error Alerts30

7.3. Handshake Protocol Overview33
7.4. Handshake Protocol ..37

7.4.1. Hello Messages38
7.4.1.1. Hello Request38
7.4.1.2. Client Hello39
7.4.1.3. Server Hello42
7.4.1.4. Hello Extensions44

7.4.1.4.1. Signature Algorithms45
7.4.2. Server Certificate47
7.4.3. Server Key Exchange Message50
7.4.4. Certificate Request53
7.4.5. Server Hello Done55
7.4.6. Client Certificate55

Leiden University. The university to discover.59

7.4.7. Client Key Exchange Message57
7.4.7.1. RSA-Encrypted Premaster Secret Message58
7.4.7.2. Client Diffie-Hellman Public Value61

7.4.8. Certificate Verify62
7.4.9. Finished ...63

8. Cryptographic Computations64
8.1. Computing the Master Secret64

8.1.1. RSA ..65
8.1.2. Diffie-Hellman65

9. Mandatory Cipher Suites ..65
10. Application Data Protocol65
11. Security Considerations65
12. IANA Considerations ...65
Appendix A. Protocol Data Structures and Constant Values68

A.1. Record Layer ..68
A.2. Change Cipher Specs Message69
A.3. Alert Messages ..69
A.4. Handshake Protocol ..70

A.4.1. Hello Messages71
A.4.2. Server Authentication and Key Exchange Messages72
A.4.3. Client Authentication and Key Exchange Messages74
A.4.4. Handshake Finalization Message74

A.5. The Cipher Suite ..75
A.6. The Security Parameters77
A.7. Changes to RFC 449278

Appendix B. Glossary ..78
Appendix C. Cipher Suite Definitions83
Appendix D. Implementation Notes85

D.1. Random Number Generation and Seeding85
D.2. Certificates and Authentication85
D.3. Cipher Suites ...85
D.4. Implementation Pitfalls85

Appendix E. Backward Compatibility87
E.1. Compatibility with TLS 1.0/1.1 and SSL 3.087
E.2. Compatibility with SSL 2.088
E.3. Avoiding Man-in-the-Middle Version Rollback90

Appendix F. Security Analysis91
F.1. Handshake Protocol ..91

F.1.1. Authentication and Key Exchange91
F.1.1.1. Anonymous Key Exchange91
F.1.1.2. RSA Key Exchange and Authentication92
F.1.1.3. Diffie-Hellman Key Exchange with

Authentication92
F.1.2. Version Rollback Attacks93
F.1.3. Detecting Attacks Against the Handshake Protocol ...94
F.1.4. Resuming Sessions94

F.2. Protecting Application Data94
F.3. Explicit IVs ..95
F.4. Security of Composite Cipher Modes95
F.5. Denial of Service ...96
F.6. Final Notes ...96

Normative References ..97
Informative References ..98
Working Group Information ..101
Contributors ...101

Leiden University. The university to discover.60

Browser support for SSL/TLS as of 2015

Leiden University. The university to discover.

As of 2017

61

Leiden University. The university to discover.62

Leiden University. The university to discover.63

Leiden University. The university to discover.64

Leiden University. The university to discover.

…...............

65

Four more slides!!
https://en.wikipedia.org/wiki/Transport_Layer_Security

