Data Link Layer

"Data is being packaged into frames"

- Frame Synchronization: Begin & End of Frame must be detectable
- Flow Control: Sender should not send frames faster than the Receiver can handle
- Error Control: Error detection and correction
- Addressing: Source and Destination address
- Control & Data Integration: Control and Data have to packed and unpacked in the same frame
- Link Management: Procedures for initiation, maintenance and termination

FRAMING

Frame Synchronization

- I. Character Count
- 2. Starting & Ending Characters with Character Stuffing
- 3. Starting & Ending Flags with Bit Stuffing
- 4. Physical Layer Coding Violations

I. Character Count

8 | 2 3 4 5 6 7 4 | 2 3 5 | 2 3 4 6 | 2 3 4 5

What if through a bit error character field gets a different number?

A MESS !!!!!!!! Recovery not possible

3. Bit Stuffing

0111110 0111110

Now every sequence of 5 one's in the payload is replaced by IIIII0 (bit stuffing)

So: 0||||||||00|0 ↓ stuffing 0|||||00|0 ↓ destuffing 0||||||||00|0

4. Physical Layer Code Violations Using redundancy in physical layer encoding

So error code can be used as escapes.

FLOW CONTROL I. Stop-and-Wait Flow Control Only send the next packet (frame), when an explicit ACK of the previous packet has been received. S FRAME 0 FRAME Transmission time per frame: t + 2a instead of t + aSo if a (latency) is comparable to t (frame processing time), then 30% efficiency loss !!!!!!

RRn (Received & Ready):

Received frames up till n-l and ready to receive frame n

Often Combined with:

RNRn (Received but Not Ready):

Received frames up till n-l, but not ready to receive frame n

Piggy Backing

Normally data communication is bi-directional: So communication is between S/R and R/S

In this case, pack both **Frame Id** as well as **Frame Ack Id** in the same Frame.

If there is no data to be send: send separate ACK

If there is no ACK to be send: repeat previous ACK

Flow Control & Error Control

Two types of Errors

- LOST FRAMES
- DAMAGED FRAMES (as detected by CRC, for instance)

In general solved by a combination of:

- I. Error detection
- 2. Positive ACK (for error free frames)
- 3. Retransmission after Time
- 4. Negative ACK & Retransmission

These four mechanisms together form an **Automatic Repeat ReQuest (ARQ)** protocol

Stop_and_Wait ARQ

Principle:

- After sending a frame, sender starts a timer
- If timer expires and sender has not received a positive ACK, then sender does a RETRANSMIT of the frame

2 Cases:
> Receiver gets a damaged frame, then simply discard
> Sender gets a damaged ACK:
PROBLEM

This is solved by numbering the frames & ACK 0, 1, 0, 1,.... (ACK 0 acknowledges correct receipt of frame 1 and vice versa. Or ACK 0 tells sender that a frame with number 0 can be send.

Go_back_N ARQ

Principle: Pipelined version of Stop_and_Wait ARQ

Frames are numbered sequentially modulo a number N

Two additional messages:

- RR Ready to Receive
- REJ Reject, all remaining frames in the pipeline are discarded

I Damaged (Lost) Frame

S → Frame i
R detects error on Frame i and Frame i-1 was received correctly
Then R discards Frame i, now two cases:
a) Within a certain amount of time
S → Frame i+1
R receives Frame i+1 out of order
R → REJ i
S retransmits Frame i and following Fr.
b) Within a certain amount of time
S → nothing; R → nothing; etc.
Timer S expires
S → RR Frame with poll-bit (P) = 1
R → RR i
S → retransmits Frame i

2 Damaged (Lost) RR S → Frame i R → RR i+I

RR i+1 gets lost

Two cases

a) Before Timer S expires:
R → RR j, with j > i+1
Everything is OK
b) Timer S expires

S \rightarrow RR with P-bit = I S turns on P-bit timer if P-bit timer expires, retry, retry,..... if not succesfull after a number of times S \rightarrow RESET

3 Damaged REJ

Equivalent to **Ib**: If S is out of its window or will run out of its window and then S will expect a RR message in order to proceed. R is waiting for Frame I so will not send an RR. So nothing will happen and timer S expires Then the same actions are taken as under **Ib**.

Selective Reject ARQ

Principle:

 Only retransmit those frames who actually went lost, and who caused a SREJ message to be sent.

Seems more efficient, BUT buffering is required BOTH at Sender and Receiver next to (re)ordering logic

- → Extra LOGIC
- ➔ More costly

Putting it Together "The HDLC protocol"

- High Level Data Link Protocol (ISO 3009, ISO 4335)
- ➢ IBM: SDLC (Synchronous DLC) → ANSI/ISO (1975)
- CCITT → LAP (Link Access Procedure) for X.25 in 1976 (Orange Book for WAN)
- ANSI ADCCP (Advanced Data Communication Control Procedure)

ISO → HDLC, both in 1979

CCITT → LAPD as part of ISDN to make it more compatible with HDLC in 1993

CCITT: Comité Consultatif International Telegraphique et Telephonique predecessor of the ITU: International Telecommunication Union

The HDLC protocol

- ♦ 3 TYPES STATIONS:
 - Primary Stations issue COMMAND frames Secondary Stations issue RESPONSE frames Combined Stations issue both frames
- ♦ 2 CONFIGURATIONS:

Unbalanced Configuration:

The HDLC protocol

3 Data Transfer Modes: **Normal Response Mode (NRM) Unbalanced Configuration** Used on "multi-drop" lines (host-terminals) **Asynchronous Balanced Mode (ABM) Balanced Configuration** Both stations can initiate communication; no permission is required Used for point to point connections **Asynchronous Response Mode (ARM) Unbalanced Configuration** Secondary station can initiate transmission without explicit permission of the primary, primary stays responsible for error recovery etc.

The HDLC protocol Frame Structure

Flag

Bit stuffing is: after every five I's insert a 0.

→ Still "strange" things can happen with single bit errors 01011110 → 0111110 in the information field

Address

Address of the secondary station.

01110010

IIIIIII means broadcast from primary to all secondaries

Extendible:

01001110 111011010

The HDLC protocol Frame Structure

Control

I-frames (Information frames): Data+Control data (piggyback.). S-frames (Supervisory frames): ARQ mechanism if no piggyback. U-frames (Unnumbered frames): Additional link control funct.

The HDLC protocol Frame Structure

Information Field

A variable number of octets (8 bits, byte). Maximum number determined by the system parameters

Frame Check Sequence Field (FCS)

16-bit CRC-CCITT on all bits except Flags and FCS bits possibly 32-bit CRC for large frames or high reliability

The HDLC protocol Commands & Responses

Туре	C/R	Description
Information (I)	C/R	Exchange User Data
Supervisory (S)		
Receive Ready (RR)	C/R	Ready to receive I-frame
Received Not Ready (RNR)	C/R	Ack. But not ready to receive
Reject (REJ)	C/R	Go back N
Selective Reject (SREJ)	C/R	Selective Reject
Unnumbered (U)		
Set Normal Response Mode / Extended (SNRM/SNRME)	С	Set mode, extended: 7 bit sequence number
Set Asynchronous Response Mode / Extended (SARM/SARME)	С	Set mode, extended: 7 bit sequence number
Set Asynchronous Balanced Mode / Extended (SABM/SABME)	С	Set mode, extended: 7 bit sequence number
Set Initialization Mode (SIM)	С	Initialize Link Control function
Disconnect (DISC)	С	Terminate
Unnumbered Acknowledgement (UA)	R	Acknowledgement of the set mode commands
Disconnect Mode (DM)	С	Terminate
Request Disconnect (RD)	R	Request for DISC
Request Initialization Mode (RIM)	R	Request for SIM
Unnumbered Information (UI)	C/R	Exchange Control Information
Unnumbered Poll (UP)	С	Ask Control Information

The HDLC protocol Commands & Responses (cont.)

Туре	C/R	Description
Reset (RSET)	С	Reset N(S) and N(R)
Exchange Identification (XID)	C/R	Request/Report Status
Test (TEST)	C/R	Exchange Identical Info Fields for checking
Frame Reject (FRMR)	R	Unacceptable Frame

The HDLC protocol Examples

Why Error Detection

Even with a bit error rate of 10⁻⁹, so 1 bit out of 1000 000 000 is wrong, then

With a line of I Mbps and 1000 bit frames:

(1000 000 x 3600 x 24 x 10⁻⁹) bit errors = 86.4 bit errors per day ≈

75* wrong frames a day!!!!!!

With 100 Mbps: 7500 wrong frames a day.

* K balls in N buckets. The expected number of buckets with at least one ball = N * $(1 - ((N-1)/N)^{K})$ (N = 1000000 x 3600 x 24 /1000, K = 86.4)

A Simple Scheme

 Odd/Even Parity

 Odd parity: 0110
 →
 01101

 Even parity: 0110
 →
 01100

Theory

In general: If data to be send consists of m bits, then **add r redundant bits**.

So m bits are being packed into m + r (= n)bits words called "code words", think of encrypting signals.

Hamming Distance: number of bits in which two code words differ.

So, Hamming distance H(101010,110010) = 2, and can be computed by taking a bit-wise XOR and counting the number of 1's.

2^m code words
in a 2ⁿ space,
So r determines the amount of
Space between the code words

Theory (3)

Theorem: If the minimal Hamming distance between any two code words is d, then all (dl) bit errors can be detected and any ceiling(d/2) – l bit errors can be corrected.

Examples:

Odd/Even parity: Hamming distance is 2. So I bit error detection possible but NO correction.

Cyclic Redundance Check (CRC) "a Practical Error Detection Test"

Makes use of **polynomial codes**:

 $|0|00| \rightarrow X^5 + X^3 + X^0 = X^5 + X^3 + |$

Arithmetic is performed MOD 2 or by XOR

E.g.
$$X^5 + X^3 + I$$

$$X^4 + X^3 + |$$
 +

 $X^{5} + X^{4}$

So, addition and subtraction are the same !!!!!!!!!

Cyclic Redundance Check (CRC) The algorithm

Sender and Receiver agree on a Generator Polynomial: G[X], eg. $X^4 + X + I$

For sending M[X]:

I.lf r is the degree of G[X] (r = 4). Add r (low order) bits to M[X], in other words: X^r .M[X]

2.Divide X^r.M[X] by G[X] using MOD 2 arithmetic

3.Subtract the remainder (\leq r bits) from X^r.M[X] = T[X]

4.Transmit T[X]

5.Receiver checks whether T[X] is divisible by G[X]

Cyclic Redundance Check (CRC) Detection of single bit errors **WHAT IF RECEIVED T[X] IS NOT DIVISIBLE BY G[X]** Then T[X] + E[X] is received with E[X] having I's where a bit error occurred And the remainder of (T[X] + E[X])/G[X] = E[X]/G[X]

Lemma I: If $E[X] = X^i$ and G[X] has two or more components, then $G[X] \nmid E[X]$.

Proof: Suppose G[X] | E[X], then E[X] = G[X] . P[X] = $(X^m + X^n + ...)$. P[X], with X^m representing the largest term in G[X] and Xⁿ representing the smallest term in G[X]. Then m \neq n, m > n. Let X^k be the largest component in P[X] and X^l the smallest component in P[X] (so k>=l). Then X^{m+k} as well as X^{n+l} belongs to E[X], with m + k \neq n + l. Contradiction !!!!!! QED

So if $|G[X]| \ge 2$, all single bit errors are detected.

Cyclic Redundance Check (CRC) Detection of double bit errors

Lemma 2: If $E[X] = X^i + X^j$ with i > j, $X \nmid G[X]$, and $G[X] \nmid X^k + I$ for all $k \le M$ with M the maximum possible difference between i and j, then $G[X] \nmid E[X]$

Proof: Write $E[X] = X^{j} (X^{i-j} + I)$. Assume G[X] | E[X], then G[X] = P[X].Q[X] with $P[X] \neq I$, $P[X] | X^{j}$ and $Q[X] | (X^{i-j} + I)$. So, $P[X] = X^{m}$ for some m \neq 0. Thus X | P[X]. Contradiction. QED

So if $X \neq G[X]$, and $G[X] \neq X^k + I$ for all $k \leq M$, then all double bit errors are detected.

Example: $X^{15} + X^{14} + I$ is not a divider of $X^k + I$, for all k<32768

Intermezzo

Why was in the previous proof: G[X] | E[X] => G[X] = P[X].Q[X] with $P[X] | X^{j}$ and $Q[X] | (X^{i-j}+1)$

Polynomial Rings and therefore also Polynomial Rings over a Field GF(2) ("Galois Field") also called Polynomial Codes or Binary Polynomials, have the property that:

any P[X] can be uniquely factored into prime polynomials.

Binary Prime Polynomials: X X+I X²+X+I X³+X+I X³+X²+I X⁴+X³+I X⁴+X+I X⁴+X³+X²+X+I X⁵.....

Cyclic Redundance Check (CRC) Detection of odd number of bit errors

Lemma 3: If |E[X]| is odd and (X + I) | G[X], then $G[X] \nmid E[X]$ **Proof:** Assume G[X] | E[X]. Then, because (X+I) | G[X], (X+I) | E[X]. So E[X] = (X + I).Q[X]. So E[I] = 0. However, |E[X]| is odd, so E[I] = I. Contradiction. QED

So, if (X + I) | G[X], then any odd number of bit errors is detected

Cyclic Redundance Check (CRC) Burst Errors

Lemma 4: If there is a burst error of length k and I is part of G[X] and k-I < degree(G[x]), then G[X] $\not\uparrow$ E[X] **Proof**: Write E[X] = Xⁱ(X^{k-1} + X^{k-2} + + I). So a burst error starting at bit i and of length k. Assume G[X] | E[X]. Then, because I is part of G[X], there is no P[X] | G[X] such that P[X] | Xⁱ. So G[X] | (X^{k-1} + X^{k-2} + + I), but this is in contradiction with the fact that degree(G[X]) > k-1. QED

So, if I is part of G[X] and degree(G[X]) > k-I, then any burst of length \leq k is detected.

Cyclic Redundance Check (CRC) Summary

Favorable Conditions

$$\begin{split} |G[X]| &\geq 2\\ X \not\downarrow G[X], \text{ and } G[X] \not\downarrow X^k + 1 \text{ for all } k \leq M\\ (X + I) \mid G[X]\\ I \text{ is part of } G[X] \text{ and } degree(G[X]) > k-I \end{split}$$

Some Standards

CRC-12: $X^{12} + X^{11} + X^3 + X^2 + X + I$ CRC-16: $X^{16} + X^{15} + X^2 + I$ CRC-CCITT: $X^{16} + X^{12} + X^5 + I$ CRC-32: $X^{32} + X^{26} + X^{23} + X^{22} + X^{16} + X^{12} + X^{11} + X^{10} + X^8 + X^7 + X^5 + X^4 + X^2 + X + I$. Used in ppp !!!!!!!!