
Netwerken, Spring 2018 Assignment 2:
Audio Streaming Protocol

Deadlines: Tuesday April 17, 2018
Sunday May 13, 2018

1 Introduction
In the first assignment, you have implemented a system for flow control over a network connection
to achieve data transmission with high reliability over an unreliable connection. The main trade-
off for the added reliability was the delay in the transfer of packets. But, in some applications a
high or unpredictable delay is unacceptable. These applications require a different way of coping
with unreliable connections. One such application is audio streaming, where the user doesn’t want
the audio to stutter. Instead, the quality of the audio can be lowered to decrease the number of
packets and thereby lower the chance of losing one.

2 Assignment
In this assignment you will design an Audio Streaming Protocol and implement it. The program
must be written in C. You can make use of the skeleton code that is available from the website.

Protocol
As a first step you should design an Audio Streaming Protocol. This protocol should be designed
to be implemented on top of IP, but considering the fact that we have to use the shared lab rooms,
we cannot give you the privileges required to use an implementation directly on IP. Therefore,
you will use UDP/IP to encapsulate your packets. The protocol should be documented, with the
header format in an ASCII-diagram and the values of all the fields explained. A checksum of the
ASP frame is required, based on RFC 10711. You are not required to use a pseudoheader for the
checksum.

For inspiration, you can look at, for example, the definition of the UDP protocol (from RFC
7682):

0 7 8 15 16 23 24 31
+--------+--------+--------+--------+
| Source | Destination |
| Port | Port |
+--------+--------+--------+--------+
| | |
| Length | Checksum |
+--------+--------+--------+--------+
|
| data octets ...
+---------------- ...

Program
Your program should meet the following requirements:

• Your submission should consist of a server and a client program, that communicate over
UDP ports 1234 and/or 1235 (these two ports are open to use in room 306/308);

1https://tools.ietf.org/html/rfc1071
2https://tools.ietf.org/html/rfc768

1

https://tools.ietf.org/html/rfc1071
https://tools.ietf.org/html/rfc768
https://tools.ietf.org/html/rfc768
https://tools.ietf.org/html/rfc1071
https://tools.ietf.org/html/rfc768

• Your program should be able to simulate an unreliable connection. A #define-directive
should be available (and documented) to disable this simulation. The simulation should
include random dropped packages and a random delay time;

• Your protocol should implement 5 quality levels. While streaming, your program should
continually check whether the connection is reliable enough and, if necessary, adjust its
quality level accordingly. That is, if the connection is unreliable, the quality should be
decreased, and if the stability increases, the quality should do so too;

• Your client program should, when first connected, fill a buffer to allow for smooth streaming.
The size of this buffer should have a sensible default and be adjustable with a command line
argument (e.g. client -b 1024 could start the client program with a buffer size of 1024
Kbyte). You should give the user an indication of the progress;

• Your server program should be able to read a WAVE file in CD quality (Stereo, 44.1kHz,
16-bit) provided by the user as a command line argument;

• Your client program should be able to play the received audio through the ALSA API;

• A Makefile should be included to build the software. Your Makefile should include a clean
target;

• (BONUS) You can make your server able to stream to multiple clients simultaneously. Each
client should, whenever they connect, receive the sound file from the beginning and each
connection should be able to switch quality independent of the others. You can earn up to
1.0 point extra by implementing this bonus;

Documentation
A documentation file has to be written, describing how to use the program, the format and the
meaning of all the fields of your protocol, but also describing any significant choices you made in
the implementation (e.g. the behaviour of the quality selection, error handling) and anything you
want to bring under attention.

3 Submission
By April 17, a preliminary version of your implementation is due. This preliminary version should
include at least a working server-client communication and a version of your protocol definition.
Submit this preliminary version by e-mail to netwerken2018@gmail.com, make sure the subject
is equal to “Netwerken 2018 assignment 2 preliminary” and include your names and student
numbers in the e-mail.

By May 13, we ask you to send a working version of your implementation written in C together
with a Makefile and a plain text file containing the documentation of your protocol and programs.
You may work in teams of at most 2 students. Plagiarism in your submission will lead to a grade
0 immediately. Ensure that you mention your names and student numbers in all files containing
your source code and documentation. Submit your work by e-mail to netwerken2018@gmail.com,
make sure the subject is equal to “Netwerken 2018 assignment 2 final” and include your names
and student numbers in the e-mail. Please send e-mail attachments, Google Drive or Drop-Box
links are not accepted.

For this assignment, a maximum of 10 points can be obtained. The points are distributed as
follows: Code compiles & works (1.0 / 10) Code Layout & Quality, Makefile (2.0 / 10), Network
connection & delay and drop simulation (2.0 / 10), Audio Transfer Protocol (2.5 / 10), Dynamic
quality switching (2.5 / 10).

2

Up to 1.0 extra point can be obtained by implementing the bonus extension. Make sure to
document the extension. This bonus will only be applied if at least 7.0 points are obtained without
the bonus. The final mark for this assignment can never be higher than 10.0.

4 Hints
Sockets
For the communication between client and server, you can use the Socket API. To get an overview
of the available system calls, you can read this Introduction to the Socket API3. Also, the linux
manpages offer a lot of information. You can find some examples of client-server programs at
thegeekstuff.com4, abc.se5, pacificsimplicity.ca6 and many more sites.

The WAVE format
A WAVE file is a simple audio file format consisting of a header and a data part of samples. A
description of the header can be found here7. Code to read WAVE files is included in the skeleton
code.

The ALSA framework
For this assignment, you will use the ALSA PCM (Pulse-Code Modulation) interface8 to play the
audio on the client computer. After setting up the parameters of the output with snd_pcm_set_params(…),
you can directly write samples to its buffer. The parameters you can choose include the sample
format, the channel count and layout and the sample rate. The channel layout describes where
the samples for the different channels can be found in the buffer. Either the samples are
interleaved: for each frame (time step) the samples directly follow each other;
or they are
non-interleaved: each channel has an own region in the buffer and the samples for that channel

follow each other directly in that region.
In the skeleton code, some sample parameters are used, but you can change these to fit your
implementation.

This website explaining common ALSA terminology9 can be useful.

Simple audio compression
For the quality selection, you should implement compression. Two recommended ways of (lossy)
compressing audio streams are downsampling and bit reduction.

Downsampling

In downsampling, you simply discard every n-th frame. For example, if your source audio would
have a sample rate of 4Hz, you can discard every 4-th frame to reduce the data size by a quarter.
Alternatively, for more agressive compression, you could only pass the first frame and discard the
other three to achieve data reduction by three quarters. This compression strongly affects audio
quality and all kinds of workarounds exist to minimize this effect. For this assignment, we prefer
good audio quality, but implementation of quality optimizations is not required.

3http://phoenix.goucher.edu/~kelliher/cs43/mar19.html
4https://www.thegeekstuff.com/2011/12/c-socket-programming/
5https://www.abc.se/~m6695/udp.html
6https://www.pacificsimplicity.ca/blog/c-udp-client-and-server-example
7http://www.topherlee.com/software/pcm-tut-wavformat.html
8https://www.alsa-project.org/alsa-doc/alsa-lib/pcm.html
9https://larsimmisch.github.io/pyalsaaudio/terminology.html

3

http://phoenix.goucher.edu/~kelliher/cs43/mar19.html
https://www.thegeekstuff.com/2011/12/c-socket-programming/
https://www.abc.se/~m6695/udp.html
https://www.pacificsimplicity.ca/blog/c-udp-client-and-server-example
http://www.topherlee.com/software/pcm-tut-wavformat.html
https://www.alsa-project.org/alsa-doc/alsa-lib/pcm.html
https://larsimmisch.github.io/pyalsaaudio/terminology.html
http://phoenix.goucher.edu/~kelliher/cs43/mar19.html
https://www.thegeekstuff.com/2011/12/c-socket-programming/
https://www.abc.se/~m6695/udp.html
https://www.pacificsimplicity.ca/blog/c-udp-client-and-server-example
http://www.topherlee.com/software/pcm-tut-wavformat.html
https://www.alsa-project.org/alsa-doc/alsa-lib/pcm.html
https://larsimmisch.github.io/pyalsaaudio/terminology.html

Bit reduction

Another way to cut down on data size, is by reducing the amount of bits every sample needs. By
reducing its representation from for example 16 bits to 8 bits, the size of the data is cut in half.
This can also cause artifacts in the audio, so a balanced combination is probably best.

4

	Introduction
	Assignment
	Submission
	Hints

