
Parallel	Graph	Algorithms

Basic	Definitions
• An	undirected	graph G is	a	pair	(V,E),	where	V is	a	
finite	set	of	points	called	vertices and	E is	a	finite	
set	of	edges.	

• An	edge	e	∈ E is	an	unordered pair	(u,v),	where	u	
and	v	∈ V.	

• In	a	directed	graph,	the	edge	e is	an	ordered pair	
(u,v).	An	edge	(u,v) is	outgoing	edge	of vertex	u
and	is	incoming	edge	of vertex	v.	

• A	path from	a	vertex	v to	a	vertex	u is	a	sequence	
<v0,v1,v2,…,vk> of		vertices,			where	v0 =	v,	vk =	u,	
and	(vi,	vi+1)	∈ E for	i =	0,	1,…,	k-1.	

• The	length	of	a	path is	defined	as	the	number	of	
edges	in	the	path.	

Representations	(Undirected	Graphs)
•

Adjacency	matrix representation

Adjacency	list representation	

Problem	1:	Minimum	Spanning	Tree

• A	spanning	tree of	an	undirected graph	G is	a	sub-
graph	of	G, which	is	a	tree	containing	all	the	
vertices	of	G.	So	the	spanning	tree	does	not	contain	
necessarily	all	the	edges	of	G but	a	subset.	

• In	a	weighted	graph,	the	weight	of	a	sub-graph	is	
the	sum	of	the	weights	of	the	edges	in	the	sub-
graph.	

• A	minimum	spanning	tree (MST)	for	a	weighted	
undirected	graph	is	a	spanning	tree	with	minimum	
weight.	

In	a	Picture

•

Relationship	with	Traveling	Salesman	
Problem (TSP)

Ø Normally	for	TSP	complete graphs	are	used	(there	is	
always	a	route	in	between	two	cities	no	matter	how	
long	it	takes)

Ø An	incomplete	graph	for	MST	can	be	completed	by	
adding	edges	with	a	very	large	weight	(note	that	this	
will	not	have	any	effect	on	the	solution)

Ø A	solution	of	the	TSP yields	a	cycle	with	minimal	
weight.	By	deleting	any	edge	this	would	result	in	a	
spanning	tree

Ø So	a	solution	of	TSP	cannot	have	less	weight	than	the	
weight	of	the	MST

Ø So	the	weight	of	MST	is	a	lower	bound on	the	weight	of	
TSP

Sequential	Algorithms	for	MST
• Borůvka’s algorithm	(1926),	Kruskal’s
algorithm	(1956)	and	Prim’s	algorithm	(1957)

• (Historical	note)	Borůvska’s algorithm	was	
used	in	1926	to	construct	an	efficient	
electricity	network	in	Moravia	(Czech	
Republic)*

• Kruskal’s and	Prim’s	algorithm	are	both	based	
on	the	selecting	a	single	lightest	weight	edge	
in	each	step	of	the	algorithm

*The	algorithm	was	rediscovered	by	Choquet in	1938;[4] again	by	Florek,	Łukasiewicz,	
Perkal,	Steinhaus,	and	Zubrzycki[5] in	1951;	and	again	by	Sollin	[6] in	1965.	Because	Sollin	
was	the	only	computer	scientist	in	this	list	living	in	an	English	speaking	country,	this	
algorithm	is	frequently	called	Sollin's algorithm.

Light-Edge	Property
Given	a	weighted	undirected	graph	G	=	(V,	E),	then	for	
any	cut	set	S	(S	C E),	the	minimal	weighted	edge	in	S	
has	to	be	an	edge	of	the	MST

A	cut	sets	S	cuts	the	graph	into	two	sets	U	and	V\U	such	that	any	
path	from	a	node	x	in	U	to	a	node	y	in	V\U	contains	an	edge	from	S

Proof:	Assume	we	have	a	cut	set	S	which	contains	an	edge	e=(x,y)	
with	minimal	weight,	which	is	not	part	of	the	MST.	Then	there	is	a	
path	P	in	MST,	which	connects	x and	y and	which	does	not	contain	
e.	So,	because	x and	y are	on	opposite	sides	of	e,	next	to	e there	
must	be	an	edge	e’	in	S	with	e’	on	the	path	P.	Now	add	e to	the	
MST	=	MST’,	then	e and	e’	are	part	of	a	cycle	in	MST’.	Delete	e’	
from	MST’,	and	we	obtain	another	MST	with	a	lesser	weight	(w(e)	
<	w(e’)).	Contradiction.

Kruskal’s Algorithm

As	decribed by	Kruskal in	1956:

“Perform	the	following	step	as	many	times	
as	possible:	Among	the	edges	of	G	not	yet	
chosen,	choose	the	shortest	edge	which	
does	not	form	any	loops	with	those	edges	
already	chosen”

Prim’s	Algorithm
•

PRIM_MST(V,	E,	w,	r):	Given	V,	E,	and	w	weight	function,	build	
MST	starting	from	vertex	r

3

3

3

3

Prim's	Algorithm:	Parallel	Formulation	

• The	algorithm	works	in	n outer	iterations	- it	is	hard	to	
execute	these	iterations	concurrently.	

• The	inner	loop	is	relatively	easy	to	parallelize.	Let	p be	the	
number	of	processes,	and	let	n be	the	number	of	vertices.	

• The	adjacency	matrix	is	partitioned	in	a	1-D	block	fashion	
(column	slices),	with	distance	vector	d partitioned	
accordingly.	See	next	slide.

• In	each	step,	each	processor	selects	the	locally	closest
node,	followed	by	a	global	reduction	to	select	globally
closest	node.	

• This	node	is	inserted	into	MST,	and	the	choice	is	
broadcasted	to	all	processors.	

• Each	processor	updates	its	part	of	the	d vector	locally.

Computational	Aspects

• The	cost	to	select	the	minimum	entry	is	O(n/p	+	log	p).	
• The	cost	of	a	broadcast	is	O(log	p).	
• The	cost	of	local	update	of	the	d vector	is	O(n/p).	
• The	parallel	time	per	iteration	is	O(n/p	+	log	p).	
• The	total	parallel	time	(n iterations)	is	given	by	O(n2/p	+	
n	log	p).	

Borůvka’s Algorithm	(1926)

While	there	are	edges	remaining:	
(1) select	the	minimum	weight	edge	out	of	each	vertex	

and	contract	each	connected	component	defined	
by	these	edges	into	a	vertex;	

(2) remove	self	edges,	and	when	there	are	redundant	
edges	keep	the	minimum	weight	edge;	and	

(3) add	all	selected	edges	to	the	MST.	

Note	that	this	formulation	is	inherently	parallel	
while	computers	were	not	invented	at	that	time,	or	
maybe	because computers	were	not	invented	yet

Example
•

1

2

7

35

6
4 4

2

5
4è è

2

3

1

4

6

Example	(other	execution	order)
•

1

2

7

35

6
4 3

2

5
3

7

6

è è

2

3

1

4

6

The	Same!!!!

Notes	to	Borůvka’s Algorithm

• At	each	step	the	contractions	of	nodes	u and	v
with	(u,v)	a	minimal	edge	can	be	executed	in	
parallel	with	the	contraction	of	nodes	x and	w
with	(x,w)	a	minimal	edge,	if	v ≠	x and	u ≠	w.	
(Note,	u ≠	x and	v ≠	w automatically	holds)

• So	at	each	step	at	least	½	|V|	vertices	are	
eliminated	è at	most	log	(n)	steps	are	required

• However,	also	the	amount	of	available	parallelism	
is	reduced	by	an	half	after	each	step	è uneven	
load	balance

Input	Data	Partitioning
• Recall	separator	sets (nested	dissection)	for	undirected	graphs,	

based	on	levellization (BFS).
• The	set	of	nodes	V	is	divided	into	P	disjoint	subsets	and	separator	

sets:
V	=	V1	U	S2U	V2 U	S3 …	SPU	VP

P	=	number	of	processors	and	|Vi|	about	equal	for	all	i
• Distribute	the	edges	E	such	that	each	processor	i has

Ei =	{	(u,v)	|	u	ε Vi and	v	ε Vi	},	and
Left_Ei =	{	(u,v)	|	u	ε Si and	v	ε Vi	},	and
Right_Ei =	{	(u,v)	|	u	ε Vi and	v	ε Si+1	}

è First	phase	every	processor	computes	in	parallel	an	MST	for	each	Ei
è Second	these	partial	MST’s	are	knitted	together	by	synchronizing	

the	choice	of	minimum	weight	edge	of	Left_Ei with	Right_Ei+1

Problem	2:	Single-Source	Shortest	Paths	

• For	a	weighted	graph	G	=	(V,E,w,s),	the	single-
source	shortest	paths problem	is	to	find	the	
shortest	paths	from	a	vertex	s ∈ V to	all	other	
vertices	in	V	(w is	the	weigth function	of	the	
edges).	

• Dijkstra's algorithm	is	similar	to	Prim's	algorithm.	
It	maintains	a	set	of	nodes	for	which	the	shortest	
paths	are	known.	

• It	grows	this	set	based	on	the	node	closest	to	
source	using	one	of	the	nodes	in	the	current	
shortest	path	set.	

Dijkstra's Algorithm

Similarities!!!!!!!!!
Prim’s	Algorithm	for	MST

Dijkstra’s	Algorithm	for	Single	Source	Shortest	Path

Dijkstra's Algorithm:	Parallel	Formulation

• Very	similar	to	the	parallel	formulation	of	
Prim's	algorithm	for	minimum	spanning	trees.	

• The	weighted	adjacency	matrix	is	partitioned	
using	the	1-D	block	mapping	(column	slicing).	

• Each	process	selects,	locally,	the	node	closest	
to	the	source,	followed	by	a	global	reduction	
to	select	next	node.	

• The	node	is	broadcast	to	all	processors	and	
the	l-vector	updated.	

Problem	3:	All-Pairs	Shortest	Paths	

• Given	a	weighted	graph	G(V,E,w),	the	all-pairs	
shortest	paths problem	is	to	find	the	shortest	
paths	between	all	pairs	of	vertices	vi	,	vj ∈ V.	

• A	number	of	algorithms	are	known	for	solving	
this	problem:	Matrix-Multiplication	Based
algorithm,	Dijkstra’s algorithm,	Floyd’s	
algorithm.	

Matrix-Multiplication	Based	Algorithm	
• Consider	the	multiplication	of	the	weighted	
adjacency	matrix	with	itself	- except,	in	this	case,	
we	replace	the	multiplication	operation in	matrix	
multiplication	by	addition,	and	the	addition	
operation by	minimization.	

• Notice	that	the	product	of	weighted	adjacency	
matrix	with	itself	returns	a	matrix	that	contains	
shortest	paths	of	length	2	between	any	pair	of	
nodes.	

• It	follows	from	this	argument	that	An contains	all	
shortest	paths.

In	a	Picture
•

Computational	Aspects
• For	(semi)	complete	graphs	and	sequential	execution:

– An is	computed	by	doubling	powers	- i.e.,	as	A,	A2,	A4,	A8,	and	so	
on.	

– We	need	log	n (dense)	matrix	multiplications,	each	taking	time	
O(n3).	

– The	serial	complexity	of	this	procedure	is	O(n3log	n).
• For	(semi)	complete	graphs	and	parallel	execution:

– Each	of	the	log	nmatrix	multiplications	can	be	performed	in	
parallel.	

– We	can	use	n3 processors	to	compute	each	matrix-matrix	
product	in	time	log	n.	

– The	entire	process	takes	O(log2n) time.

Note	that	for	incomplete	graphs	(leading	to	sparse	matrices)	
this	complexity	does	not	change	very	much,	because	sparse	x	
sparse	matrix	multiply	very	easily	lead	to	full	matrices.

Dijkstra’s Algorithm	for	All-Pairs	Shortest	Paths

Sequential	Execution:
– Execute	n instances	of	the	single-source	shortest	
path	problem,	one	for	each	of	the	n source	
vertices.

– Complexity	is	O(n3).
Parallel	Execution:
– execute	each	of	the	n shortest	path	problems	on	a	
different	processor	(source	partitioned),	or

– use	a	parallel	formulation	of	the	shortest	path	
problem	to	increase	concurrency	(source	parallel)

Source	Partitioned	Formulation

• Use	n processors,	each	processor	Pi finds	the	shortest	
paths	from	vertex	vi to	all	other	vertices	by	executing	
Dijkstra's sequential	single-source	shortest	paths	
algorithm.	

• It	requires	no	interprocess communication	(provided	
that	the	adjacency	matrix	is	replicated	at	all	processes).	

• The	parallel	run	time	of	this	formulation	is:	O(n2).	O(n2)
is	the	same	time	complexity	as	Prim’s	algorithm.	

• While	the	algorithm	is	cost	optimal,	it	can	only	use	n
processors.	

Source	Parallel	Formulation

In	this	case,	each	of	the	shortest	path	problems	is	
further	executed	in	parallel.	We	can	therefore	use	
up	to	n2 processors.	

Floyd’s	Algorithm

• For	any	pair	of	vertices	vi	,	vj ∈ V,	consider	all	paths	
from	vi to	vj whose	intermediate	vertices	belong	to	
the	set	{v1,v2,…,vk}.	Let	pi(,kj) (of	weight	di(,kj))	be	the	
minimum-weight	path	among	them.	

• If	vertex	vk is	not	in	the	shortest	path	from	vi to	vj,	
then	pi(,kj) is	the	same	as	pi(,kj-1).

• If	vk is	in	pi(,kj),	then	we	can	break	pi(,kj) into	two	paths
– one	from	vi to	vk and	
– one	from	vk to	vj
Each	of	these	paths	uses	vertices	from	{v1,v2,…,vk-1}.

As	a	consequence:

•

From	these	observations,	the	following	
recurrence	relation	follows:	

This	equation	must	be	computed	for	each	
pair	of	nodes	and	for	 k	=	1,	n.	The	serial	
complexity	is	O(n3).	

In	(pseudo)	code
•

Floyd's	Algorithm:	Parallel	Execution	

• Matrix	D(k) is	divided	into	p blocks	of	size	(n	/	√p)	x	(n	/	√p).	
• Each	processor	updates	its	part	of	the	matrix	during	each	

iteration.	
• To	compute	dl(,kr-1) processor	Pi,j must	get	dl(,kk-1) for	all	k	≠	r,	

and	dk(,kr-1) for	all	k	≠	l.
• In	general,	during	the	kth iteration,	each	of	the	√p processes	

containing	part	of	the	kth row send	it	to	the	√p - 1	processes	
in	the	same	column.	

• Similarly,	each	of	the	√p processes	containing	part	of	the	kth
column sends	it	to	the	√p	- 1 processes	in	the	same	row.	

In	a	Picture

•

In	a	Picture:	continued

•

In	(pseudo)	code
•

Computational	Aspects

• During	each	iteration	of	the	algorithm,	the	kth row	and	
kth column	of	processors	perform	a	one-to-all	
broadcast	along	their	rows/columns.	

• The	size	of	this	broadcast	is	2	times	n/√p elements,	
taking	time	O((n	log	p)/	√p).	

• The	synchronization	step	takes	time	O(log	p),	so	
neglicible.	

• The	computation	time	is	O(n2/p).	
• The	total	parallel	run	time	(n step)	of	the	2-D	block	
mapping	formulation	of	Floyd's	algorithm	is	giving	a	
total	of	O(n3/p)	+	O(n2log	p/ √p)

