
(Parallel)	Dense	Algorithms



Need	for	standardization

• With	the	advent	of	parallel	(high	performance)	
computers	came	the	disillusion	of	bad	
performance

• The	peak	rates advertised	with	the	introduction	
of	new	machines	were	mostly	not	attainable for	
real	life	applications

• A need	arose	to	standardize	primitives	of	
computations

• This	effort	also	was	based	on	already	developed	
numerical	software	libraries:	LINPACK,	EISPACK,	
FISHPACK,	Harwell



Basic	Linear	Algebra	Subroutines	(BLAS)

Three	levels
– BLAS	1:	vector/vector	operations

– BLAS	2:	matrix/vector	operations

– BLAS	3:	matrix/matrix	operations



Input/Output Data	Reuse

BLAS	1	Example:	Dotproduct (	x,	y	)
Input	Size:	 2n
Operation	Count:	 2n-1
Output	Size:	 1
è 1	operation	per	input	element	and	2n	per	output	element

BLAS	2	Example:	y	=	Ax	
Input	Size:	 n2+n	
Operation	Count:	 2n2-n	
Output	Size:	 n
è 2 operations	per	input	element	and	2n	per	output	element

BLAS	3	Example:	C=A.B
Input	Size:	 2n2
Operation	Count:	 2n3-n2
Output	Size:	 n2
è n	operations	per	input	element	and	2n	per	output	element



More	data	reuse	leads	to

• Better	Cache/Register	Utilization
• Less	Communication	Overhead
• More	effective	input,	output,	or	intermediate	
data	decomposition



Example	Dotproduct (BLAS	1)

DO	I	=	1,	N
C	=	C	+	A(I)	*	B(I)

ENDDO

Straightforward	parallel	execution	on	P	processors:

DOALL	II	=	1,N,	N/P
DO	I	=	II,	II+N/P	– 1

C(II)	=	C(II)	+	A(I)	*	B(I)
ENDDO
C	=	C	+	C(II)

ENDDOALL

However,	communication	costs	are	involved!!!!!!!



DOALL	II	=	1,	N,	N/P										#	N/P	is	the	stride,	so	II	=	1,	1+N/P,	1+2*N/P,	…
RECEIVE	(A(II:II+N/P-1),	B(II:II+N/P-1))
DO	I	=	II,	II+N/P	– 1

C(II)	=	C(II)	+	A(I)	*	B(I)
ENDDO
C	=	C	+	C(II) çsynchronization,	i.e.	SEND	C(J)	TO	MASTER	PROCESS

ENDDOALL

So,	on	a	total	of	2N-1	computations:	2N	continuous	data	transmissions	and	P	
separate	communications	are	needed.	With	ts+mtw (ts startup	time,	tw per	word	
transmission	time)	communication	costs	for	m	words,	this	gives:

P.(ts+(2N/P)tw)+P.(ts+tw)	=
(P+P).ts+(2N+P)tw =	2Pts +	(2N+P)tw

communication	costs,	which	is	significant!	For	instance	if	ts is	comparable	to	the	
cost	of	a	computational	step,	then	the	communication	overhead	is	greater than	
the	computational	costs	(2P+1).

è BLAS	1	routines	were	mainly	used	for	VECTOR	computing	(pipelining)
vadd,	vdotpr,	vmultadd,	etc.



Example	MatVec (BLAS	2)
DO	I	=	1,	N

DO	J	=	1,	N
C(I)	=	C(I)	+	A(I,J)	*	B(J)

ENDDO
ENDDO

Parallel	execution	on	P	processors:

DO	I	=	1,	N
DOALL	JJ	=	1,	N,	N/P

DO	J	=	JJ,	JJ+N/P	– 1
C(JJ)	=	C(JJ)	+	A(I,J)	*	B(J)

ENDDO
C(I)	=	C(I)	+	C(JJ)

ENDDOALL
ENDDO

This	is	essentially	is	a	repetition	of	BLAS	1	(dotproduct)	
operations!!!!!	NOTHING	GAINED. HOWEVER…



MatVec can	also	be	computed	as:
DO	J	=1,	N

DOALL	II	=	1,	N,	N/P
DO	I=	II,	II+N/P-1

C(I)	=	C(I)+A(I,J)*B(J)
ENDDO

ENDDOALL
ENDDO

In	this	computation	the	basic	(inner)	loop	does	not	execute	a	
dotproduct,	but	a	BLAS	1	SAXPY	operation:	y	=	y	+	a.x
More	importantly,	the	vector	C(II:II+N/P-1)	can	be	stored	in	
registers	in	each	processor,	and	reused	N	times
Also	the	fan-in	computations	for	each	C(I)	are	not	needed	
anymore!!	So	only	initial	distribution	costs	are	paid	for.	So,	
overhead	is	reduced	to

Pts+(2N)tw



Example	MatMat (BLAS	3)

DO	I	=	1,	N
DO	J	=	1,	N

DO	K	=	1,	N
C(I,K)	=	C(I,K)	+	A(I,J)	*	B(J,K)

ENDO
ENDDO

ENDDO

Then	because	of	the	multi	dimensionality	we	have	
different	ways	of	executing	this	loop	in	parallel.



Middle	product	form	(K-loop	outer	loop):

DO	K	=	1,	N
DOALL	II	=	1,N,	N/√P

DOALL	JJ	=	1,N,	N/√P
DO	I	=	II,	II+N/√P-1

DO	J	=	JJ,	JJ+N/√P-1
C(I,K)	=	C(I,K)	+	A(I,J)	*	B(J,K)

ENDO
ENDDO

ENDDOALL
ENDOALL

ENDDO

In	this	implementation	the	inner	loop	is	a	BLAS	2	MatVec
routine.



Inner	product	form	(I-loop	outer	loop):
DO	I	=	1,	N

DO	J	=	1,	N
DOALL	KK	=	1,	N,	N/P

DO	K	=	KK,	KK+N/P-1
C(I,K)	=	C(I,K)	+	A(I,J)	*	B(J,K)

ENDO
ENDDOALL

ENDDO
ENDDO

è In	this	implementation	the	inner	loop	is	a	BLAS	1	SAXPY routine.
The	inner	product	form	has	a	second	variant:

DO	K	=	1,	N
DO	I	=	1,	N

DOALL	JJ	=	1,N,	N/P
DO	J	=	JJ,	JJ+N/P-1

C(I,K)	=	C(I,K)	+	A(I,J)	*	B(J,K)
ENDO

ENDDOALL
ENDDO

ENDDO
In	this	implementation	the	inner	loop	executes	a	BLAS	1	DOTPRODUCT



Outer	product	form	(J-loop	outer	loop):

DO	J	=	1,	N
DO	K	=	1,	N

DOALL	II	=	1,	N,	N/P
DO	I	=	II,	II+N/P-1

C(I,K)	=	C(I,K)	+	A(I,J)	*	B(J,K)
ENDO

ENDDOALL
ENDDO

ENDDO



Another	look	at	MatMat

The	original	loop	can	be	written	as	follows:

DO	II	=	1,	N,	M1
DO	JJ	=	1	,N,	M2

DO	KK	=	1,	N,	M3
DO	I	=	II,	II	+	M1	- 1

DO	J	=	JJ,	JJ	+	M2	- 1
DO	K	=	KK,	KK	+	M3	- 1

C(I,K)	=	C(I,K)	+	A(I,J)	*	B(J,K)
ENDO

ENDDO
ENDDO

ENDDO
ENDDO

ENDDO

è Any	of	these	loops	can	be	executed	in	parallel!!
è These	loops	can	be	permuted	in	any	order	as	long	as	II	becomes	before	I,	etc.
è So	many	different	implementations	possible
è M1,	M2,	and	M3	can	be	used	to	control	the	degree	of	parallelism	but	also	the	size	of	cache	

usage.



In	fact
DO	I	=	II,	II	+	M1	- 1

DO	J	=	JJ,	JJ	+	M2	- 1
DO	K	=	KK,	KK	+	M3	- 1

C(I,K)	=	C(I,K)	+	A(I,J)	*	B(J,K)
ENDO

ENDDO
ENDDO

Corresponds	to	a	sub	matrix	multiply	of	size	M1xM2	
times	M2xM3
By	choosing	M1,	M2	and	M3	carefully,	this	triple	nested	
loop	can	each	time	run	out	of	cache



Schematic:

m1

m1

m3

m3



Embeddings of	BLAS	routines

Many	scientific	computations	involve	the	
solution	of	a	system	of	linear	equations

This	is	written	as	Ax = b	where	A	is	an	n x	n
matrix	with	A[i, j] = aij,	b	is	an	n x	1 vector	[	b0, 
b1, … , bn ]T,	and	x is	the	solution.



LU	Factorization

Find

Such	that	A	=	L.U
Then	solving	Ax	=	b	corresponds	to	solving	

L	(U	x)	=b
This	can	be	done	in	2	steps,	triangular	solves:

L	c	=	b	(forward	substitution)
U	x	=	c	(backward	substitution)

Recall



Backward	substitution	U	x	=	y

Recall



The	factors	L	and	U	can	be	obtained	through	Gaussian	Elimination

DO	I =	1,	N
PIVOT	=	A(I,	I)
DO	J	=	I+1,	N

MULT	=	A(J,	I)/PIVOT
A(J,	I)	=	MULT
DO	K =	I+1,	N

A(J,	K)	=	A(J,	K)	- MULT	*	A(I,	K)
ENDDO

ENDDO
ENDDO

Recall



This	yields:

After	L	and	U	are	computed	the	system	is	solved	by:

forward	substitution:

DO	I	=	1,	N
C(I)	=	B(I)
DO	J	=	1,	I-1
C(I)	=	C(I)	- A(I,	J)	*	C(J)

ENDDO
ENDDO

back	substitution:

DO	I	=	N,	1
X(I)	=	C(I)
DO	J	=	I+1,	N
X(I)	=	X(I)	- A(I,	J)	*	X(J)

ENDDO
X(I)	=	X(I)/A(I,	I)

ENDDO

Recall



Block	LU	decomposition
Write	A	as	follows

So

Let	k be	the	dimension	of	A11 and	N-k the	dimension	of	A22
Then	the	algorithm	becomes:

And	proceed	recursively	on	B

(A21A11
-1)A11=A21

To	be	stored	as:
A11

-1 A12
L21 B



•

In	a	picture In	fact	A11
-1,B11-1,	etc are	

stored	in	these	positions



As	a	results	
è This	algorithm	only	has	only	to	compute	

the	 inverse of	A11,	otherwise	only	matrix	
multiplies are	performed

The	only	complication	is	that	back	substitution	is	
a	bit	more	tedious.



Backward	Substitution

Note	that	U4 x4 = c4 can	
be	solved	directly	by
x4 = A44

-1 c4 etc



Forward	Substitution


