(Parallel) Dense Algorithms

Need for standardization

- With the advent of parallel (high performance) computers came the disillusion of bad performance
- The peak rates advertised with the introduction of new machines were mostly not attainable for real life applications
- A need arose to standardize primitives of computations
- This effort also was based on already developed numerical software libraries: LINPACK, EISPACK, FISHPACK, Harwell

Basic Linear Algebra Subroutines (BLAS)

Three levels

– BLAS 1: vector/vector operations

– BLAS 2: matrix/vector operations

 $y \leftarrow By + \alpha Ax$ $y \leftarrow A^T x$ $(\alpha = \text{scalar}, A = \text{matrix}, x = \text{vector})$

- BLAS 3: matrix/matrix operations

$$C \leftarrow \beta.B + \alpha.A.B$$
$$C \leftarrow C + A.B.$$

Input/Output Data Reuse

BLAS 1 Example: Dotproduct (x, y) Input Size: 2n Operation Count: 2n-1 Output Size: 1 → 1 operation per input element and 2n per output element BLAS 2 Example: y = Ax n²+n Input Size: Operation Count: 2n²-n Output Size: n → 2 operations per input element and 2n per output element BLAS 3 Example: C=A.B Input Size: $2n^2$ Operation Count: 2n³-n² n² Output Size: n operations per input element and 2n per output element

More data reuse leads to

- Better Cache/Register Utilization
- Less Communication Overhead
- More effective input, output, or intermediate data decomposition

Example Dotproduct (BLAS 1)

```
DO I = 1, N
C = C + A(I) * B(I)
ENDDO
```

Straightforward parallel execution on P processors:

```
DOALL II = 1,N, N/P

DO I = II, II+N/P - 1

C(II) = C(II) + A(I) * B(I)

ENDDO

C = C + C(II)

ENDDOALL
```

However, communication costs are involved!!!!!!!

```
DOALL II = 1, N, N/P # N/P is the stride, so II = 1, 1+N/P, 1+2*N/P, ...

RECEIVE (A(II:II+N/P-1), B(II:II+N/P-1))

DO I = II, II+N/P - 1

C(II) = C(II) + A(I) * B(I)

ENDDO

C = C + C(II) 	synchronization, i.e. SEND C(J) TO MASTER PROCESS

ENDDOALL
```

So, on a total of 2N-1 computations: 2N continuous data transmissions and P separate communications are needed. With t_s+mt_w (t_s startup time, t_w per word transmission time) communication costs for m words, this gives:

 $P.(t_{s}+(2N/P)t_{w})+P.(t_{s}+t_{w}) = (P+P).t_{s}+(2N+P)t_{w} = 2Pt_{s} + (2N+P)t_{w}$

communication costs, which is significant! For instance if t_s is comparable to the cost of a computational step, then the communication overhead is greater than the computational costs (2P+1).

➔ BLAS 1 routines were mainly used for VECTOR computing (pipelining) vadd, vdotpr, vmultadd, etc.

Example MatVec (BLAS 2)

```
DO I = 1, N
DO J = 1, N
C(I) = C(I) + A(I,J) * B(J)
ENDDO
ENDDO
```

Parallel execution on P processors:

```
DO I = 1, N

DOALL JJ = 1, N, N/P

DO J = JJ, JJ+N/P - 1

C(JJ) = C(JJ) + A(I,J) * B(J)

ENDDO

C(I) = C(I) + C(JJ)

ENDDOALL

ENDDO
```

This is essentially is a repetition of BLAS 1 (dotproduct) operations!!!!! NOTHING GAINED. HOWEVER...

MatVec can also be computed as:

```
DO J =1, N

DOALL II = 1, N, N/P

DO I= II, II+N/P-1

C(I) = C(I)+A(I,J)*B(J)

ENDDO

ENDDOALL

ENDDO
```

In this computation the basic (inner) loop does not execute a dotproduct, but a BLAS 1 SAXPY operation: y = y + a.x

More importantly, the vector C(II:II+N/P-1) can be stored in registers in each processor, and reused N times

Also the fan-in computations for each C(I) are not needed anymore!! So only initial distribution costs are paid for. So, overhead is reduced to

 $Pt_s+(2N)t_w$

Example MatMat (BLAS 3)

```
DO I = 1, N
DO J = 1, N
DO K = 1, N
C(I,K) = C(I,K) + A(I,J) * B(J,K)
ENDO
ENDDO
ENDDO
```

Then because of the multi dimensionality we have different ways of executing this loop in parallel.

Middle product form (K-loop outer loop):

```
DO K = 1, N
    DOALL II = 1, N, N/VP
        DOALL JJ = 1,N, N/VP
            DO I = II, II+N/\sqrt{P-1}
                DO J = JJ, JJ+N/VP-1
                     C(I,K) = C(I,K) + A(I,J) * B(J,K)
                ENDO
            ENDDO
        ENDDOALL
    ENDOALL
ENDDO
```

In this implementation the inner loop is a BLAS 2 MatVec routine.

Inner product form (I-loop outer loop):

```
DO I = 1, N
                DOJ = 1, N
                     DOALL KK = 1, N, N/P
                          DO K = KK, KK+N/P-1
                                C(I,K) = C(I,K) + A(I,J) * B(J,K)
                          ENDO
                     ENDDOALL
                ENDDO
          ENDDO
\rightarrow In this implementation the inner loop is a BLAS 1 SAXPY routine.
The inner product form has a second variant:
          DOK = 1, N
                DO I = 1, N
                     DOALL JJ = 1, N, N/P
                          DO J = JJ, JJ+N/P-1
                                C(I,K) = C(I,K) + A(I,J) * B(J,K)
                          ENDO
                     ENDDOALL
                ENDDO
          ENDDO
In this implementation the inner loop executes a BLAS 1 DOTPRODUCT
```

Outer product form (J-loop outer loop):

```
DOJ = 1, N
   DO K = 1, N
       DOALL II = 1, N, N/P
           DO I = II, II + N/P - 1
               C(I,K) = C(I,K) + A(I,J) * B(J,K)
           ENDO
       ENDDOALL
   ENDDO
ENDDO
```

Another look at MatMat

The original loop can be written as follows:

```
DO II = 1, N, M1

DO JJ = 1, N, M2

DO KK = 1, N, M3

DO I = II, II + M1 - 1

DO J = JJ, JJ + M2 - 1

DO K = KK, KK + M3 - 1

C(I,K) = C(I,K) + A(I,J) * B(J,K)

ENDDO

ENDDO

ENDDO

ENDDO

ENDDO

ENDDO
```

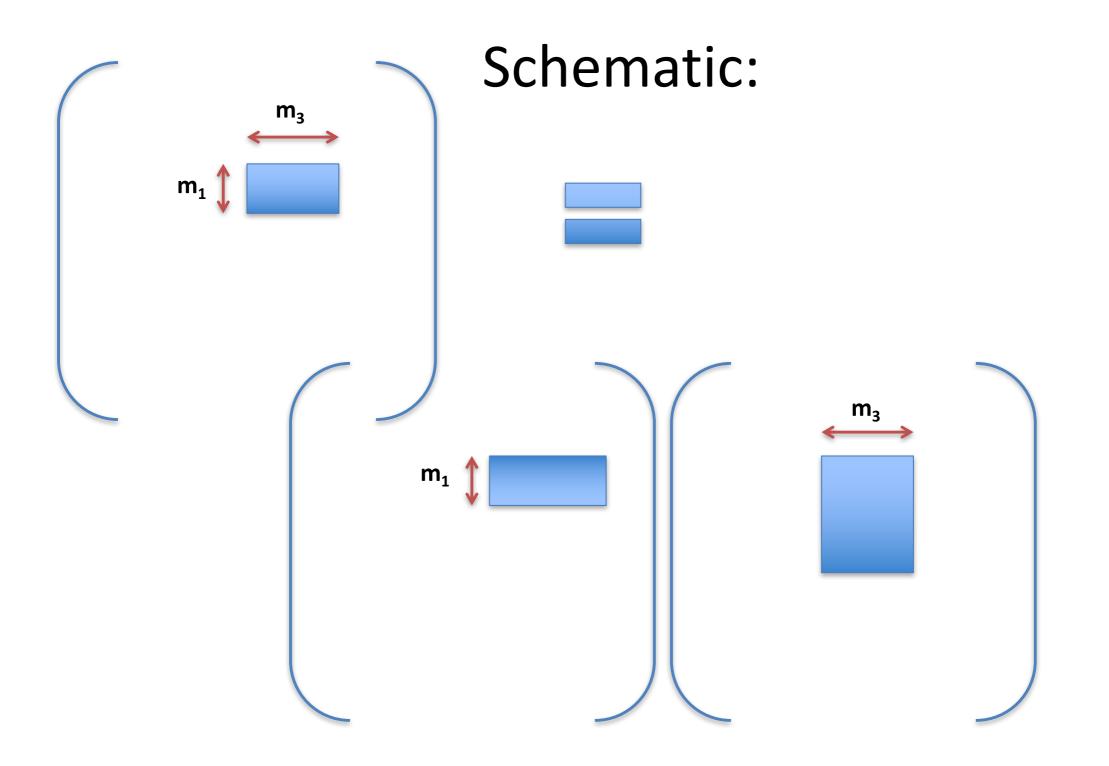
- → Any of these loops can be executed in parallel!!
- → These loops can be permuted in any order as long as II becomes before I, etc.
- → So many different implementations possible
- → M1, M2, and M3 can be used to control the degree of parallelism but also the size of cache usage.

In fact

```
DO I = II, II + M1 - 1
DO J = JJ, JJ + M2 - 1
DO K = KK, KK + M3 - 1
C(I,K) = C(I,K) + A(I,J) * B(J,K)
ENDO
ENDDO
ENDDO
```

Corresponds to a sub matrix multiply of size M1xM2 times M2xM3

By choosing M1, M2 and M3 carefully, this triple nested loop can each time run out of cache

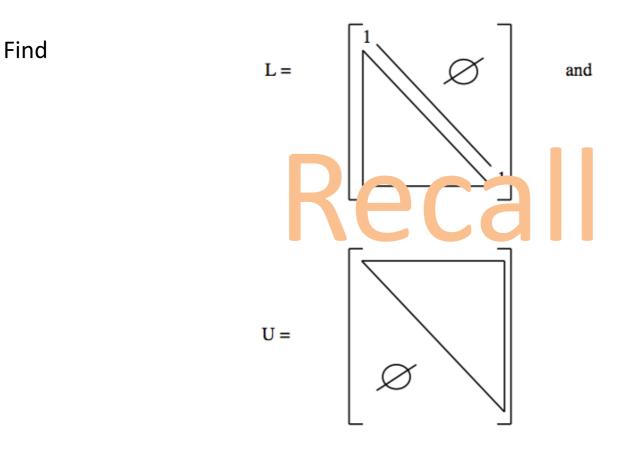


Embeddings of BLAS routines

Many scientific computations involve the solution of a system of linear equations

This is written as Ax = b where A is an $n \ge n$ matrix with $A[i, j] = a_{ij}$, b is an $n \ge 1$ vector [b_0 , b_1 , ..., b_n]^T, and x is the solution.

LU Factorization



Such that A = L.U Then solving Ax = b corresponds to solving L(U x) = bThis can be done in 2 steps, triangular solves: L c = b (forward substitution) U x = c (backward substitution)

Backward substitution U x = y

The factors L and U can be obtained through Gaussian Elimination

$$\begin{cases} 2x_1 + 3x_2 + x_3 = 1\\ x_1 + x_2 + 3x_3 = 2\\ 3x_1 + 2x_2 + x_3 = 3 \end{cases}$$

$$PROI = 1, N$$

$$PIVOT = A(I, I)$$

$$DO J = I+1, N$$

$$MULT = A(J, I)/PIVOT$$

$$A(J, I) = MULT$$

$$DO K = I+1, N$$

$$A(J, K) = A(J, K) - MULT * A(I, K)$$

$$ENDDO$$

$$ENDDO$$

This yields:

$$\tilde{A} = \begin{pmatrix} 2 & 3 & 1 \\ \frac{1}{2} & -\frac{1}{2} & 2\frac{1}{2} \\ 1\frac{1}{2} & 5 & -13 \end{pmatrix}. \text{ So, } L = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 1\frac{1}{2} & 5 & 1 \end{bmatrix} \text{ and } U = \begin{pmatrix} 2 & 3 & 1 \\ 0 & -\frac{1}{2} & 2\frac{1}{2} \\ 0 & 0 & -13 \end{pmatrix}.$$

After L and U are computed the system is solved by:

forward substitution:

back substitution:

DO I = N, 1 X(I) = C(I) DO J = I+1, N X(I) = X(I) - A(I, J) * X(J) ENDDO X(I) = X(I)/A(I, I) ENDDO

Block LU decomposition

Write A as follows

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} I & 0 \\ L_{21} & I \end{pmatrix} \begin{pmatrix} A_{11} & A_{12} \\ 0 & B \end{pmatrix}$$

To be stored as:

$$\begin{pmatrix}
A_{11}^{-1} & A_{12} \\
L_{21} & B
\end{pmatrix}$$

So

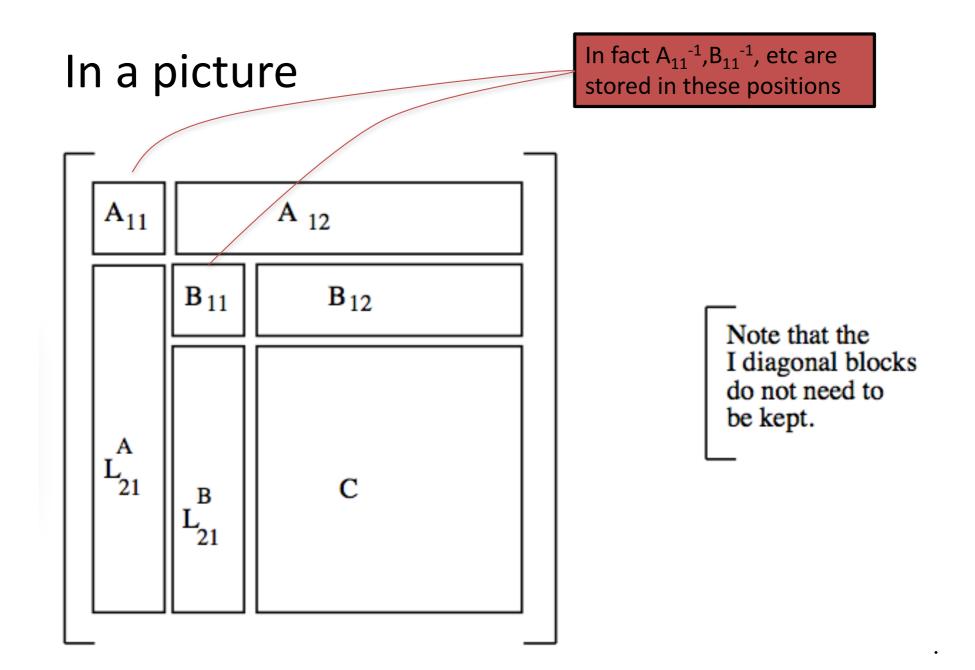
$$A = \begin{pmatrix} A_{11} & A_{12} \\ L_{21}A_{11} & L_{21}A_{12} + B \end{pmatrix}$$

Let k be the dimension of A_{11} and N-k the dimension of A_{22} Then the algorithm becomes:

$$A_{11} \leftarrow A_{11}^{-1} \\ A_{21} \leftarrow L_{21} = A_{21}A_{11} \\ A_{22} \leftarrow B = A_{22} - L_{21}A_{12}$$

$$(A_{2l}A_{ll}^{-l})A_{ll}=A_{2l}$$

And proceed recursively on B

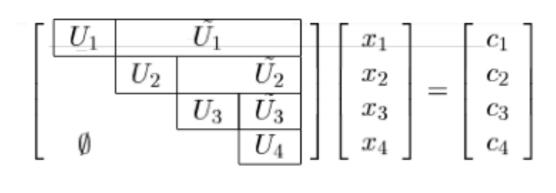


As a results

This algorithm only has only to compute the inverse of A_{11} , otherwise only matrix multiplies are performed

The only complication is that back substitution is a bit more tedious.

Backward Substitution



Note that $U_4 x_4 = c_4$ can be solved directly by $x_4 = A_{44}^{-1} c_4$ etc 1. Solve $U_4 x_4 = c_4$

2.
$$c_3 = c_3 - \tilde{U}_3 \cdot x_4$$

3. Solve
$$U_3 x_3 = c_3$$

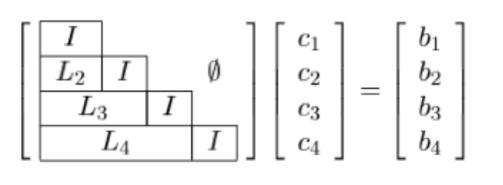
4.
$$c_2 = c_2 - \tilde{U}_2 \cdot \begin{bmatrix} x_3 \\ x_4 \end{bmatrix}$$

5. Solve $U_2 x_2 = c_2$

6.
$$c_1 = c_1 - \tilde{U}_1 \cdot \begin{bmatrix} x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

7. Solve $U_1 x_1 = c_1$

Forward Substitution



1.
$$c_1 = b_1$$

2. $c_2 = b_2 - L_2 \cdot c_1$
3. $c_3 = b_3 - L_3 \cdot \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$
4. $c_4 = b_4 - L_4 \cdot \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}$