
(Parallel)	Sparse	Matrix	
Computations

Sparse	Matrices	arise	in

• Simulation	of	Physical/Chemical	Phenomena
–Modeled	through	particles/molecules/point	
clouds

• (Spatial)	Database	Applications
• Graph	Computations
• Combinatorial	Optimization

Example:	Finite	Differences

In	case	of	a	5x5	grid	this	leads	to	25	grid	points	
and	the	following	sparse	matrix:	

•

Number	of	grid	points	in	the	x	direction

N
um

be
r	o

f	g
rid

	p
oi
nt
s	i
n	
th
e	
y	
di
re
ct
io
n

Example:	Finite	Elements	for	more	
complex	geometries

•

•

Leads	to:
•

(Spatial)	Databases	Applications:
•

Stored	using	longitude	and	latitude	
values,	normalized	x10

318

307

336

324

324

334

332

348

340

335

324

346

319

-885

-880

-875

-870

-865

-860

-855

-850

Example:	Graph	Algorithms
•

Example:	Combinatorial	Optimization
•

Solving	Ax	=	b,	with	sparse	A
• Direct	Methods	

– Ax = LU x = b
• Iterative	Methods

– Write	Ax = b as	
M x= (M-A)	x + b,	for	some	matrix	M

– Solve	each	time:
M xk+1 = (M-A)	xk + b

– Until
||	xk+1 – xk ||	<	ε ,	for	some	small	ε

Choose	easy	invertible	M:
– Diagonal	part	of	A (Jacobi’s)
– Triangular	part	of	A (Gauss	Seidel)
– Combination	of	the	two	(Successive	Overrelaxation)
– If	M = A,	then	we	have	the	direct	method
– Incomplete	LU Factorization

Direct	Methods

Solving	Ax = b through a direct methods means
computing the x-values directly from the following
equations:

LU	Factorization

Find

Such	that	A	=	L.U
Then	solving	Ax	=	b	corresponds	to	solving	

L	(U	x)	=b
This	can	be	done	in	2	steps,	triangular	solves:

L	c	=	b	(forward	substitution)
U	x	=	c	(backward	substitution)

Backward	substitution	U	x	=	y

The	factors	L	and	U	can	be	obtained	through	Gaussian	Elimination

DO	I =	1,	N
PIVOT	=	A(I,	I)
DO	J	=	I+1,	N

MULT	=	A(J,	I)/PIVOT
A(J,	I)	=	MULT
DO	K =	I+1,	N

A(J,	K)	=	A(J,	K)	- MULT	*	A(I,	K)
ENDDO

ENDDO
ENDDO

This	yields:

After	L	and	U	are	computed	the	system	is	solved	by:

forward	substitution:

DO	I	=	1,	N
C(I)	=	B(I)
DO	J	=	1,	I-1
C(I)	=	C(I)	- A(I,	J)	*	C(J)

ENDDO
ENDDO

back	substitution:

DO	I	=	N,	1
X(I)	=	C(I)
DO	J	=	I+1,	N
X(I)	=	X(I)	- A(I,	J)	*	X(J)

ENDDO
X(I)	=	X(I)/A(I,	I)

ENDDO

Stability	in	direct	methods

• What	if	the	PIVOT	IS	0	(or	very	small)	?

Numerical	instability	with	small	pivots

•

If	Gaussian	elimination	is	performed	with	3	decimal	floating	
point	arithmetic	(0.123	E10),	then	(1.58	– 2420	=	-2420	and	
4.57-5200	=	-5200)

Which	gives	as	result																												(0.001*x1 =	5.20	– 2.42*2.15	=	-0.003)

However	1.00*-3.00	+	1.58*2.15	=	0.397		≠	4.57

-3.	00
2.	15

•

This	is	solved	by	partial	pivoting.

è Ensure	that	all	multipliers	<	1,	or	
for	all	entries	lij of	L:	|lij|	<	1

This	is	achieved	by	choosing	only	pivots	akk such	that

|akk
(k)|	>=	|aik

(k)|,	i >	k

This	is	achieved	by	row	interchanges.

Row	Interchanges	for	Pivoting

è Whenever	akk = 0 (or	small)	for	some	k.	Look	for	amk
which	is	not	zero	(or	large)

è Permute	row	m to	row	k (exchange	row	m and	row	k)
è amk is	now	on	the	diagonal

Example
•

At	the	first	step	6	is	chosen	as	pivot.
So	row	1	->	row	3,	row	2	->	row	2,	and		row	3	->	row	1

This	can	be	represented	with	permutation	matrices:

The	elimination	step	can	be	represented	by:

At	the	second	step	compute:

With																																							and

In	general	all	steps	can	be	represented	as:

with																																																						and

t(i)

Solution	is	obtained	by

1. c = Pb
2. Ly = c
3. Ux = y

with: P = Pn-1 Pn-2… P2 P1 , P A = L U

Ax = b => PAx = Pb => LUx = Pb => L (Ux) = Pb

Complete	Pivoting

With	partial	pivoting	the	growth	of	the	entries	in	
the	lower	triangular	matrix	can	still	be	as	large	as	
2n-1 (if	pivot	≈	1	at	each	step,	then	entries	can	
double	at	each	step)
èNeed	for	finding	better	pivots
Instead	of

|akk
(k)|>=	max	(|aik

(k)|,	i >	k)
choose	

|akk
(k)|>=	max	(|aij

(k)|,	i ,	j >	k)

So	with	complete	pivoting	each	step	can	be	expressed	
as:

En-1 Pn-1 En-2 Pn-2 … E1 P1 A Q1 Q2 ... Qn-1 = U.

So,	
PAQ = LU

with	P = Pn-1 Pn-2… P2 P1 ,	Q = Q1 Q2… Qn-2 Qn-1

So,	the	solution	x can	be	obtained	by
1. c = Pb
2. Ly = c
3. Uz = y
4. QTx = z (QT = Q-1)

For	many	systems	pivoting	is	not	required

Iterative	Methods

Mxk+1 = (M-A) xk + b

with	M easy	invertible,	meaning	that	in	most	of	
the	cases	M-1 can	be	directly	expressed	by	a	
single	matrixM
èSo,	the	solution	can	be	obtained	by	simply	

performing	(sparse)	matrix	multiplications
xk+1 = M ((M-A) xk + b)

Implementation	Issues

• Data	Storage:	Pointer	structures,	Linked	lists,	Linear	Arrays
• Pivot	Search:	Multiple	storage	schemes
• Masking	Operations:	Gather/Scatter	Operations	
• Garbage	collection:	Fill-in,	Explicit	garbage	collection
• Permutation	Issues:	Implicit	and/or	explicit

Coordinate	Scheme	Storage

int IRN[11],	JCN[11];
float	 VAL[11];

ØNo	explicit	order	of	the	nonzero	entries	is	enforced
ØFetching	row/column	requires	the	whole	data	
structure	to	be	searched

ØInsertion	and/or	deletion	of	nonzero	entries	is	simple

Sparse	Compressed	Row/Column	Format
int LENROW[5],	POINTER[5],	ICN[11]
float VAL[11]

Ø LENCOL,	POINTER,	and	IRN	are	used	for	compressed	column	
format

Ø Fetching	row	or	column	is	very	easy	in	corresponding	format
Ø Insertion	of	nonzero	elements	is	a	big	problem	– expanded	
row/column	is	put	at	the	end,	and	the	LENROW/LENCOL	is	
updated	correspondingly

Ø Instead	of	LENROW/LENCOL	the	last	element	in	each	row	in	ICN	
is	negated

Linked	List	(Pointer)	Implementations

ØVery	flexible
ØAccess	to	data	very	inefficient

ØPointer	chasing
ØAddresses	not	consecutive:	bad	spatial	locality

ExtendedColumn/ITpack/JaggedDiagonal Format

Shift	all	nonzero	entries	to	the	beginning	of	each	
row

int INDEX[5][max]
float VALUE[5][max]

ØEspecially	suited	for	vector	processing
ØCommonly	used	in	sparse	matrix	multiplication
ØVery	good	use	of	spatial	locality

Full	Dense	Format

float A[i][j]

Ø Seems	wasteful
ØMostly	restricted	to	sub-blocks	of	the	matrix	which	
contain	many	nonzero’s

ØUsed	to	locally	expand	rows	and/or	columns
ØOften	used	in	hybrid	storage	schemes	with	other	
formats

Pivot	Search

§ When	doing	Gaussian	Elimination:	rows	are	
added	to	other	rows

§ Compressed	row	storage	seems	to	be	the	natural	
choice

§ However,	for	partial	pivoting	for	instance:	each	
time	all	elements	in	a	column	need	to	be	
inspected

èBoth	row	AND	column	compressed	storage	 are	
required

Masking	Operations	(GATHER/SCATTER)
Adding	one	sparse	row	to	another:
– Two	incrementing	pointers
– Scattering	target	row	into	a	dense	row,	with	a	
masking	array	indicating	which	position	in	the	row	
are	nonzero

DO	J	=		POINTER	(K),	POINTER	(K+1)	– 1 |
TARGET	(ICN	(K))	=	VAL	(K) |	SCATTER
MASK	(ICN	(K))	=	TRUE |

DO	J	=		POINTER	(I),	POINTER	(I+1)	– 1
TARGET	(ICN	(J))	=	TARGET	(ICN	(J))	+ PIV	*	VAL	(J)
IF	MASK	(ICN(J))	=	FALSE	THEN	MASK	(ICN(J))	=	True

DO	J	=	1,	N
IF	(MASK	(ICN(J))	=	TRUE)	THEN	write	TARGET	(ICN(J))	back |	GATHER

Fill-in	/	Garbage	Collection

• Note	that	the	write	back	will	cause	problems	
in	general

• Additional	space	is	reserved	to	store	the	
expanded	columns	or	rows	and	the	old	
location	will	have	to	be	released	at	some	point

• In	direct	solvers	this	is	mostly	explicitly	
controlled!!!!!

• In	any	case:	it	is	extremely	important	to	
minimize	the	amount	of	fill-in

Fill-in	Control	(Markowitch counts)

r(k)
i =	the	number	of	nonzero	elements	in	row	i of	the	

active	(n-k)x(n-k) sub-matrix
c(k)

j =	the	number	of	nonzero	elements	in	column	j of	the	
active	(n-k)x(n-k) sub-matrix
è Instead	of	complete	pivoting,	choose	pivot	based	on:

u (0	<	u <=	1)	is	thresshold parameter	balancing	between	
stability	and	fill-in	control

Permutations

ØIf	Q = PT then	PAQ (=	PAPT)	is	a	symmetric	
permutation
ØDiagonal	elements	stay	on	the	diagonal
ØThe	associated	(di)graph	stays	the	same

ØPermutations	can	be	executed	explicitly	
(beforehand),	on	the	fly,	or	implicitly	by	
referring	each	time	to	P(I)	instead	of	I

Lab	Assignment

Write	a	C-program	which	implements	LU	
factorization	with	partial	pivoting.

See	course	website	for	details.

