(Parallel) Sparse Matrix Computations

Sparse Matrices arise in

- Simulation of Physical/Chemical Phenomena
 - Modeled through particles/molecules/point clouds
- (Spatial) Database Applications
- Graph Computations
- Combinatorial Optimization

Example: Finite Differences

In case of a 5x5 grid this leads to 25 grid points and the following sparse matrix:

	Number of grid points in the x direction																	
	1	x	x	0.	0.	x	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0. `	\
	1 :	x	x	x	0.	0.	x	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	
).	x	x	x	0.	0.	x	0.	0.	0.	0.	0.	0.	0.	0.	0.	
).	0.	x	x	x	0.	0.	x	0.	0.	0.	0.	0.	0.	0.	0.	
	:	x	0.	0.	x	x	x	0.	0.	x	0.	0.	0.	0.	0.	0.	0.	
_).	x	0.	0.	x	x	x	0.	0.	x	0.	0.	0.	0.	0.	0.	
).	0.	x	0.	0.	x	x	x	0.	0.	x	0.	0.	0.	0.	0.	e y direction
).	0.	0.	x	0.	0.	x	x	x	0.	0.	x	0.	0.	0.	0.	
	0).	0.	0.	0.	x	0.	0.	x	x	x	0.	0.	x	0.	0.	0.	
).	0.	0.	0.	0.	x	0.	0.	x	x	x	0.	0.	x	0.	0.	in th
).	0.	0.	0.	0.	0.	x	0.	0.	x	x	x	0.	0.	x	0.	ints
).	0.	0.	0.	0.	0.	0.	x	0.	0.	x	x	x	0.	0.	x	od p
).	0.	0.	0.	0.	0.	0.	0.	x	0.	0.	x	x	x	0.	0.	of gri
).	0.	0.	0.	0.	0.	0.	0.	0.	x	0.	0.	x	x	x	0.	ber c
).	0.	0.	0.	0.	0.	0.	0.	0.	0.	x	0.	0.	x	x	x	
	(0).	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	x	0.	0.	x	x	/♥ ≃

٠

A =

Example: Finite Elements for more complex geometries

Leads to:

(Spatial) Databases Applications:

	City	State	ZipCode	Latitude	Longitude
1	Troy	AL	36081	31.809675	-85.972173
2	Mobile	AL	36685	30.686394	-88.053241
3	Trussville	AL	35173	33.621385	-86.602739
4	Montgomery	AL	36106	32.35351	-86.265837
5	Selma	AL	36701	32.41179	-87.022234
6	Talladega	AL	35161	33.43451	-86.102689
7	Tuscaloosa	AL	35402	33.209003	-87.571005
8	Huntsville	AL	35801	34.729135	-86.584979
9	Gadsden	AL	35901	34.014772	-86.007172
10	Birmingham	AL	35266	33.517467	-86.809484
11	Montgomery	AL	36124	32.38012	-86.300629
12	Decatur	AL	35602	34.60946	-86.977029
13	Eufaula	AL	36072	31.941565	-85.239689

Stored using longitude and latitude values, normalized x10

Example: Graph Algorithms

٠

Example: Combinatorial Optimization

Solving Ax = b, with sparse A

- Direct Methods
 - -Ax = LUx = b
- Iterative Methods
 - Write Ax = b as
 - M x = (M-A) x + b, for some matrix M
 - Solve each time:

 $M x_{k+1} = (M-A) x_k + b$

– Until

 $||x_{k+1}-x_k|| < \varepsilon$, for some small ε Choose easy invertible M:

- Diagonal part of A (Jacobi's)
- Triangular part of A (Gauss Seidel)
- Combination of the two (Successive Overrelaxation)
- If M = A, then we have the direct method
- Incomplete LU Factorization

Direct Methods

Solving Ax = b through a direct methods means computing the x-values directly from the following equations:

LU Factorization

Such that A = L.U Then solving Ax = b corresponds to solving L (U x) =b This can be done in 2 steps, triangular solves: L c = b (forward substitution) U x = c (backward substitution)

Backward substitution U x = y

The factors L and U can be obtained through Gaussian Elimination

$$\begin{cases} 2x_1 + 3x_2 + x_3 = 1\\ x_1 + x_2 + 3x_3 = 2\\ 3x_1 + 2x_2 + x_3 = 3 \end{cases}$$

```
A = \left(\begin{array}{ccc} 1 & 1 & 3 \\ 3 & 2 & 1 \end{array}\right), B = \left(\begin{array}{ccc} 2 \\ 3 \end{array}\right)
DO I = 1, N
      PIVOT = A(I, I)
      DO J = I+1, N
            MULT = A(J, I)/PIVOT
            A(J, I) = MULT
            DO K = I+1, N
                  A(J, K) = A(J, K) - MULT * A(I, K)
            ENDDO
      ENDDO
ENDDO
```

This yields:

$$\tilde{A} = \begin{pmatrix} 2 & 3 & 1 \\ \frac{1}{2} & -\frac{1}{2} & 2\frac{1}{2} \\ 1\frac{1}{2} & 5 & -13 \end{pmatrix}. \text{ So, } L = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 1\frac{1}{2} & 5 & 1 \end{bmatrix} \text{ and } U = \begin{pmatrix} 2 & 3 & 1 \\ 0 & -\frac{1}{2} & 2\frac{1}{2} \\ 0 & 0 & -13 \end{pmatrix}.$$

After L and U are computed the system is solved by:

forward substitution:

back substitution:

DO I = N, 1 X(I) = C(I) DO J = I+1, N X(I) = X(I) - A(I, J) * X(J) ENDDO X(I) = X(I)/A(I, I) ENDDO

Stability in direct methods

```
DO I = 1, N

PIVOT = A(I, I)

DO J = I+1, N

MULT = A(J, I) / PIVOT

A(J, I) = MULT

DO K = I+1, N

A(J, K) = A(J, K) - MULT * A(I, K)

ENDDO

ENDDO

ENDDO
```

• What if the PIVOT IS 0 (or very small) ?

Numerical instability with small pivots

$$\left(\begin{array}{cc} 0.001 & 2.42\\ 1.00 & 1.58 \end{array}\right) \left(\begin{array}{c} x_1\\ x_2 \end{array}\right) = \left(\begin{array}{c} 5.20\\ 4.57 \end{array}\right)$$

If Gaussian elimination is performed with 3 decimal floating point arithmetic (0.123 E10), then (1.58 - 2420 = -2420 and 4.57-5200 = -5200)

$$\left(\begin{array}{cc} 0.001 & 2.42 \\ 0 & -2420 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{c} 5.20 \\ -5200 \end{array}\right)$$

Which gives as result $\tilde{x} = \begin{pmatrix} -3.00 \\ 2.15 \end{pmatrix}$ (0.001* $x_1 = 5.20 - 2.42*2.15 = -0.003$)

However 1.00*-3.00 + 1.58*2.15 = 0.397 ≠ 4.57

This is solved by partial pivoting.

→ Ensure that all multipliers < 1, or for all entries l_{ij} of L: $|l_{ij}| < 1$

This is achieved by choosing only pivots a_{kk} such that

$$|a_{kk}^{(k)}| \ge |a_{ik}^{(k)}|, i \ge k$$

This is achieved by row interchanges.

Row Interchanges for Pivoting

$$\left(\begin{array}{cc} 0 & 1 \\ 2 & 3 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{c} 4 \\ 5 \end{array}\right)$$

- → Whenever a_{kk} = 0 (or small) for some k. Look for a_{mk} which is not zero (or large)
 → Permute row m to row k (exchange row m and row k)
- $\rightarrow a_{mk}$ is now on the diagonal

$$\left(\begin{array}{cc}2&3\\0&1\end{array}\right)\left(\begin{array}{c}x_1\\x_2\end{array}\right) = \left(\begin{array}{c}5\\4\end{array}\right)$$

Example

$$A = \begin{bmatrix} 3 & 17 & 10 \\ 2 & 4 & -2 \\ 6 & 18 & -12 \end{bmatrix}$$

At the first step 6 is chosen as pivot.

So row 1 -> row 3, row 2 -> row 2, and row 3 -> row 1 This can be represented with permutation matrices:

$$P_1 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \text{ and } P_1 A = \begin{bmatrix} 6 & 18 & -12 \\ 2 & 4 & -2 \\ 3 & 17 & 10 \end{bmatrix}$$

The elimination step can be represented by:

$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ -1/3 & 1 & 0 \\ -1/2 & 0 & 1 \end{bmatrix}, \text{ so } E_1 P_1 A = \begin{bmatrix} 6 & 18 & -12 \\ 0 & -2 & 2 \\ 0 & 8 & 16 \end{bmatrix}$$

At the second step compute:
$$E_2 P_2 E_1 P_1 A$$

With $P_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ and
 $E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1/4 & 1 \end{bmatrix}$ to yield $\begin{bmatrix} 6 & 18 & -12 \\ 0 & 8 & 16 \\ 0 & 0 & 6 \end{bmatrix} = U$

In general all steps can be represented as:

Solution is obtained by

1.
$$c = Pb$$

2. $Ly = c$
3. $Ux = y$

with:
$$P = P_{n-1}P_{n-2}...P_2P_1$$
, $PA = LU$

 $Ax = b \implies PAx = Pb \implies LUx = Pb \implies L(Ux) = Pb$

Complete Pivoting

With partial pivoting the growth of the entries in the lower triangular matrix can still be as large as 2^{n-1} (if pivot ≈ 1 at each step, then entries can double at each step)

Need for finding better pivots
Instead of

$$|a_{kk}^{(k)}| \ge \max(|a_{ik}^{(k)}|, i > k)$$

choose

$$|a_{kk}^{(k)}| \ge \max(|a_{ij}^{(k)}|, i, j > k)$$

So with complete pivoting each step can be expressed as:

$$E_{n-1}P_{n-1}E_{n-2}P_{n-2}\dots E_1P_1AQ_1Q_2\dots Q_{n-1}=U.$$

So,

$$PAQ = LU$$

with
$$P = P_{n-1}P_{n-2}...P_2P_1$$
, $Q = Q_1Q_2...Q_{n-2}Q_{n-1}$

So, the solution x can be obtained by

1.
$$c = Pb$$

2. $Ly = c$
3. $Uz = y$
4. $Q^{T}x = z$ ($Q^{T} = Q^{-1}$)

For many systems pivoting is not required

1. A is strictly diagonally dominant, if $|A_{ii}| > \sum_{j=1_{j\neq i}}^{n} |a_{ij}|$.

Theorem 1 If A^T is strictly diagonally dominant, then LU obtained with no pivoting has the property that $|L_{ij}| \leq 1$, for all i, j.

2. A is symmetric, if $A_{ij} = A_{ji}$ for all i, j. A is positive definite, if for every $x \neq 0$

$$x^T A x > 0$$

 $(x^T A x$ often reflects the energy of the underlying physical system and is therefore often positive.)

Theorem 2 If A is symmetric positive definite, then

$$\varrho = \max_{i,j,k} |a_{ij}^{(k)}| \le \max_{i,j} |a_{ij}|.$$

In this case LU can be written as $A = L \cdot L^T$ (or LDL^T , avoiding the calculation of square roots). This is called **Choleski Factorization**.

Iterative Methods

$$Mx_{k+1} = (M-A) x_k + b$$

with M easy invertible, meaning that in most of the cases M^{-1} can be directly expressed by a single matrix \mathcal{M}

So, the solution can be obtained by simply performing (sparse) matrix multiplications

 $x_{k+1} = \mathcal{M}\left((M-A) x_k + b\right)$

Implementation Issues

- **Data Storage**: Pointer structures, Linked lists, Linear Arrays
- **Pivot Search**: Multiple storage schemes
- Masking Operations: Gather/Scatter Operations
- **Garbage collection**: Fill-in, Explicit garbage collection
- **Permutation Issues**: Implicit and/or explicit

$$A = (a_{ij}) = \begin{pmatrix} 1. & 0. & 0. & -1. & 0. \\ 2. & 0. & -2. & 0. & 3. \\ 0. & -3. & 0. & 0. & 0. \\ 0. & 4. & 0. & -4. & 0. \\ 5. & 0. & -5. & 0. & 6. \end{pmatrix}$$

Coordinate Scheme Storage

int IRN[11], JCN[11];
float VAL[11];

	1	2	3	4	5	6	7	8	9	10	11
IRN	1	2	2	1	5	3	4	5	2	4	5
JCN	4	5	1	1	5	2	4	3	3	2	1
VAL	-1.	3.	2.	1.	6.	-3.	-4.	-5.	-2.	4.	5.

No explicit order of the nonzero entries is enforced
 Fetching row/column requires the whole data structure to be searched
 Insertion and/or deletion of nonzero entries is simple

Sparse Compressed Row/Column Format

int LENROW[5], POINTER[5], ICN[11] float VAL[11]

LENROW	2	3	1	2	3						
POINTER	1	3	6	$\overline{7}$	9						
ICN	4	1	5	1	3	2	4	2	3	1	5
VAL	-1.	1.	3.	2.	-2.	-3.	-4.	4.	-5.	5.	6.

LENCOL, POINTER, and IRN are used for compressed column format

> Fetching row or column is very easy in corresponding format

- Insertion of nonzero elements is a big problem expanded row/column is put at the end, and the LENROW/LENCOL is updated correspondingly
- Instead of LENROW/LENCOL the last element in each row in ICN is negated

Linked List (Pointer) Implementations

Very flexible

- Access to data very inefficient
 - Pointer chasing
 - Addresses not consecutive: bad spatial locality

ExtendedColumn/ITpack/JaggedDiagonal Format

Shift all nonzero entries to the beginning of each row

int INDEX[5][max]
float VALUE[5][max]

INDEX:
$$\begin{pmatrix} 1 & 4 & 0 \\ 1 & 3 & 5 \\ 2 & 0 & 0 \\ 2 & 4 & 0 \\ 1 & 3 & 5 \end{pmatrix}$$
 and VALUE:
$$\begin{pmatrix} 1. & -1. & 0. \\ 2. & -2. & 3. \\ -3. & 0. & 0. \\ 4. & -4. & 0. \\ 5. & -5. & 6. \end{pmatrix}$$

Especially suited for vector processing
 Commonly used in sparse matrix multiplication
 Very good use of spatial locality

Full Dense Format

float A[i][j]

Seems wasteful

- Mostly restricted to sub-blocks of the matrix which contain many nonzero's
- Used to locally expand rows and/or columns
- Often used in hybrid storage schemes with other formats

Pivot Search

- When doing Gaussian Elimination: rows are added to other rows
- Compressed row storage seems to be the natural choice
- However, for partial pivoting for instance: each time all elements in a column need to be inspected

Both row AND column compressed storage are required

Masking Operations (GATHER/SCATTER)

Adding one sparse row to another:

- Two incrementing pointers
- Scattering target row into a dense row, with a masking array indicating which position in the row are nonzero

```
DO J = POINTER (K), POINTER (K+1) - 1
TARGET (ICN (K)) = VAL (K)
MASK (ICN (K)) = TRUE
```

SCATTER

```
DO J = POINTER (I), POINTER (I+1) – 1
TARGET (ICN (J)) = TARGET (ICN (J)) + PIV * VAL (J)
IF MASK (ICN(J)) = FALSE THEN MASK (ICN(J)) = True
```

DO J = 1, N

IF (MASK (ICN(J)) = TRUE) THEN write TARGET (ICN(J)) back | GATHER

Fill-in / Garbage Collection

- Note that the write back will cause problems in general
- Additional space is reserved to store the expanded columns or rows and the old location will have to be released at some point
- In direct solvers this is mostly explicitly controlled!!!!!
- In any case: it is extremely important to minimize the amount of fill-in

Fill-in Control (Markowitch counts)

 $r^{(k)}_{i}$ = the number of nonzero elements in row *i* of the active (n-k)x(n-k) sub-matrix

 $c^{(k)}_{j}$ = the number of nonzero elements in column *j* of the active (n-k)x(n-k) sub-matrix

➔ Instead of complete pivoting, choose pivot based on:

 $|a_{ij}^{(k)}| \ge u.|$ values in column j of the active submatrix | such that $(r_i^{(k)} - 1)(c_j^{(k)} - 1)$ is minimized.

u (0 < *u* <= 1) is thresshold parameter balancing between stability and fill-in control

Permutations

- ➢ If $Q = P^T$ then PAQ (= PAP^T) is a symmetric permutation
 - > Diagonal elements stay on the diagonal
 - The associated (di)graph stays the same
- Permutations can be executed explicitly (beforehand), on the fly, or implicitly by referring each time to P(I) instead of I

Lab Assignment

Write a C-program which implements LU factorization with partial pivoting.

See course website for details.