
Explicit	Parallel	Platforms	

• Explicit Parallelism, Task Parallelism
• Mostly in the order of >> 10
• Requires active involvement of the programmer and 

/or compiler (no free lunch)
• Requires additional program constructs
• Requires new programming paradigms



Amdahl’s	Law
Given	a	computation	of	which	a	fraction	of	q cannot	be	
parallelized.	
Then	the	maximal	speedup with	P processors is	limited	to:

SP = T / ( q T + (1-q) T / P )

with	T the	sequential	time.

So,	with q	=	0.01				 max	speedup	<=		100	regardless	of	P
q	=	0.05 max	speedup	<=				20	regardless	of	P
q	=	0.10 max	speedup	<=				10	regardless	of	P



Flynn’s	Taxonomy

• Processing	units	in	parallel	computers	either	operate	
under	the	centralized	control of	a	single	control	unit	or	
work	independently.	

• If	there	is	a	single	control	unit that	dispatches	the	
same	instruction	to	various	processors	(that	work	on	
different	data),	the	model	is	referred	to	as	single	
instruction	stream,	multiple	data	stream	(SIMD).	

• If	each	processor	has	its	own	control	control	unit,	
each	processor	can	execute	different	instructions	on	
different	data	items.	This	model	is	called	multiple	
instruction	stream,	multiple	data	stream	(MIMD).	



SIMD	Processors	

• The	same	instruction	on	different	processors	(functional	units).	
Execution	is	tightly	synchronized.

• Some	of	the	earliest	parallel	computers	such	as	the	Illiac IV,	
MPP,	DAP,	CM-2,	and	MasPar MP-1 belonged	to	this	class	of	
machines.

• Variants	of	this	concept	have	found	use	in	co-processing units	
such	as	the	MMX units	in	Intel	processors	and	GPU’s	like	
NVIDIA.	

• SIMD	relies	on	the	regular	structure	of	computations (such	as	
those	in	image	processing).	

• It	is	often	necessary	to	selectively	turn	off	operations	on	certain	
data	items.	For	this	reason,	most	SIMD	programming	paradigms	
allow	for	an	``activity	mask'',	which	determines	if	a	processor	
should	participate	in	a	computation	or	not.	



MIMD	Processors
• In	contrast	to	SIMD	processors,	MIMD	processors can	

execute	different	programs	on	different	processors.	
• A	variant	of	this,	called	single	program	multiple	data	

streams	(SPMD)	executes	the	same	program	on	different	
processors,	but	allows	for	different	instructions	to	be	
executed	on	each	processor	(if/case	stmts)	

• It	is	easy	to	see	that	SPMD	and	MIMD	are	closely	related in	
terms	of	programming	flexibility	and	underlying	
architectural	support.	

• Examples	of	such	platforms	include	current	generation	Sun	
Ultra	Servers,	SGI	Origin	Servers,	multiprocessor	PCs,	
workstation	clusters,	and	the	IBM	SP.	



SIMD-MIMD	Comparison	
• SIMD computers	require	less	hardware than	MIMD	

computers	(single	control	unit).	
• However,	since	SIMD processors	are	tightly	synchronized	and	

therefore	specially	designed,	they	tend	to	be	expensive and	
have	long	design	cycles.	(NVIDIA	forms	an	exception	to	this,	
WHY?)	

• In	contrast,	platforms	supporting	the	MIMD/SPMD	paradigm	
can	be	built	from	inexpensive	off-the-shelf	components with	
relatively	little	effort	in	a	short	amount	of	time.	

• Not	all	applications	are	naturally	suited	to	SIMD	processors.	
• MIMD/SPMD platforms	have	relatively	large	communication	

overhead,	therefore	ask	for	large	grain	parallelism.



Communication	Model	of	Parallel	Platforms	

• There	are	two	primary	forms	of	data	exchange	
between	parallel	tasks	- accessing	a	shared	
data	space and	exchanging	messages.	

• Platforms	that	provide	a	shared	data	space	are	
called	shared-address-space	machines or	
multiprocessors.	

• Platforms	that	support	messaging	are	also	
called	message	passing	platforms or	multi-
computers.	



Shared-Address-Space	Platforms	

• Part	(or	all)	of	the	memory	is	accessible	to	all	
processors.	

• Processors	interact	by	modifying	data	objects	
stored	in	this	shared-address-space.	

• If	the	time	taken	by	a	processor	to	access	any	
memory	word	in	the	system	global	is	identical,	
the	platform	is	classified	as	a	uniform	memory	
access	machine (UMA).	If	this	is	not	the	case	
then	we	refer	to	a	non-uniform	memory	access	
machine	(NUMA).	



NUMA	and	UMA	Shared-Address-
Space	Platforms	

(a) Uniform-memory	access	shared-address-space	computer;	
(b) Uniform-memory-access	shared-address-space	computer	with	caches	

and	memories;	
(c) Non-uniform-memory-access	shared-address-space	computer	with	

local	memory	only.



Programming	Consequences
• In	contrast	to	UMA	platforms,	NUMA	machines	require	
locality from	underlying	algorithms	for	performance.	

• Programming	Shared-Address-Space	platforms	is	easier	
since	reads	and	writes	are	implicitly	visible	to	other	
processors.	

• However,	read-write	data	to	shared	data	must	be	
coordinated.	

• Caches	in	such	machines	require	coordinated	access	to	
multiple	copies.	This	leads	to	the	cache	coherence	
problem.	

• A	weaker	model	of	these	machines	provides	an	address	
map,	but	not	coordinated	access.	These	models	are	called	
non	cache	coherent	shared	address	space	machines.	



Message-Passing	Platforms	
• These	platforms	comprise	of	a	set	of	processors	and	
their	own	(exclusive)	memory.	

• Naturally	examples	are	clustered	workstations	and	
non-shared-address-space	multi-computers.	

• These	platforms	are	programmed	using	(variants	of)	
send and	receive	primitives.	

• Libraries	such	as	MPI	(Message	Passing	Interface)	for	
Distributed	Memory	Platforms and	PVM	(Parallel	
Virtual	Machine) for	Parallel	and	Shared	Memory	
Platforms	provide	such	primitives.	OpenMP is	an	API
for	Shared	Memory	Platforms	based	on	
multithreading.



Message	Passing	
vs.	

Shared	Memory	Platforms

• Message	passing	requires	little	hardware	
support,	other	than	a	network.	

• Shared	Memory	platforms	can	easily	emulate	
message	passing.	The	reverse	is	more	difficult	
to	do	(in	an	efficient	manner).	



Interconnection	Networks	
for	Parallel	Computers	

• Interconnection	networks	carry	data	between	
processors	and	to	memory.	

• Interconnects	are	made	of	switches	and	links	
(wires,	fiber).	

• Interconnects	are	classified	as	static or	dynamic.	
• Static	networks	consist	of	point-to-point	
communication	links among	processing	nodes	
and	are	also	referred	to	as	direct networks.	

• Dynamic	networks	are	built	using	switches and	
communication	links.	Dynamic	networks	are	also	
referred	to	as	indirect networks.



Static	and	Dynamic
Interconnection	Networks	

Classification	of	interconnection	networks:	(a)	a	static	network;	
and	(b)	a	dynamic	network.



Network	Topologies

• A	variety	of	network	topologies have	been	
proposed	and	implemented.	

• These	topologies	tradeoff	performance	for	
cost.	

• Commercial	machines	often	implement	
hybrids	of	multiple	topologies	for	reasons	of	
packaging,	cost,	and	available	components.	



Network	Topologies:	Buses	

• Some	of	the	simplest	and	earliest	parallel	machines	used	
buses.	

• All	processors	access	a	common	bus	for	exchanging	data.	
• The	distance between	any	two	nodes	is	O(1)in	a	bus.	
The	bus	also	provides	a	convenient	broadcast	media.	

• However,	the	bandwidth	of	the	shared	bus	is	a	major	
bottleneck.	

• Typical	bus	based	machines	are	limited	to	dozens	of	
nodes.	Sun	(Cray)	servers and	Intel	Core	based	shared-
bus	multiprocessors are	examples	of	such	architectures.	



Network	Topologies:	Buses	

Bus-based	interconnects	(a)	with	no	local	caches;	(b)	with	local	
memory/caches.

Since	much	of	the	data	accessed	by	processors	is	local	to	the	
processor,	a	local	memory	can	improve	the	performance.



Network	Topologies:	Crossbars

A	completely	non-blocking	crossbar	network	connecting	p	
processors	to	b	memory	banks.

A	crossbar	network	uses	an	p×m grid	of	switches	to	connect	
p	inputs	to	m	outputs	in	a	non-blocking	manner.



Network	Topologies:	Crossbars

• The	cost	of	a	crossbar	of	p processors	grows	
as	O(p2).

• This	is	generally	difficult	to	scale for	large	
values	of	p.

• Examples	of	machines	that	employ	crossbars	
include	the	Sun	Ultra	HPC	10000	and	the	
Fujitsu	VPP500.



Network	Topologies:	
Multistage	Networks	

• Crossbars have	excellent	performance	scalability
but	poor	cost	scalability.	

• Buses have	excellent	cost	scalability,	but	poor	
performance	scalability.	

• Multistage	interconnects strike	a	compromise
between	these	extremes.	



Network	Topologies:	Multistage	Networks

The	schematic	of	a	typical	multistage	
interconnection	network.



•
Network	Topologies:	

Multistage	Omega	Network
• One	of	the	most	commonly	used	multistage	
interconnects	is	the	Omega	network.

• This	network	consists	of	log p stages,	where
p is	the	number	of	inputs/outputs.

• At	each	stage,	input	i is	connected	to	output	j:



•
Network	Topologies:	Omega	Network

Each	stage	of	the	Omega	network	implements	a	perfect	
shuffle as	follows:

A	perfect	shuffle	interconnection	for	eight	inputs	and	outputs.



Network	Topologies:	
Multistage	Omega	Network

• The	perfect	shuffle	patterns	are	connected	
using	2×2	switches.

• The	switches	operate	in	two	modes:	crossover
or	pass-through (switch	bit	position	or	not).

Two	switching	configurations	of	the	2	× 2	switch:	
(a)	Pass-through;	(b)	Cross-over.



•
Network	Topologies:	

Multistage	Omega	Network

A	complete	omega	network	Ω8 connecting	8	inputs	and	eight	outputs.

An	omega	network	Ωn has	n/2 * log n switching	nodes	(log n stages).

A	complete	Omega network	with	the	perfect	shuffle	interconnects	
and	switches	can	be	illustrated	as	follows:



Routing	in	Omega	Network

X1X2X3X4 -> X2X3Y4X1 -> X2X3Y4Y1 -> X3Y4Y1X2 ->
PS        Sw PS         Sw

X3Y4Y1Y2 -> Y4Y1Y2X3 -> Y4Y1Y2Y3 -> Y1Y2Y3Y4 ->
PS        Sw PS         Sw

Y1Y2Y3Y4

Connecting		X1X2X3X4 to	Y1Y2Y3Y4

Note	that	one	can	also	skip	the	first	PS and	start	by	
substituting	X4 by	Y4,	then	X1 by	Y1,	etc.	
So	the	Omega	network	is	equivalent	to	the	Omega	
network	without	the	first	Perfect	Shuffle!!!!!	



Network	Topologies:	
the	Butterfly	Network

A	variation	of
The	Omega	
network

Two	Stages;



In	Fact:	The	following	networks	are	equivalent
•



•



•



Relationship	with	FFT
•



Routing	Properties

• Clos/Benes	showed	that	RNRN
-1 can	realize	any	permutation.	Proof	

is	based	on	Hall’s	marriage	theorem:	

Imagine	two	groups;	one	of	nmen,	and	one	of	n women.	For	each	woman,	there	is	a	subset	of	the	men,	
any	one	of	which	she	would	happily	marry;	and	any	man	would	be	happy	to	marry	a	woman	who	wants	
to	marry	him.	Consider	whether	it	is	possible	to	pair	up	(in	marriage)	the	men	and	women	so	that	every	
person	is	happy.	If	we	let	Ai be	the	set	of	men	that	the	i-th woman	would	be	happy	to	marry,	then	the	
marriage	theorem	states	that	each	woman	can	happily	marry	a	man	if	and	only	for	any	subset	of	the	
women,	the	number	of	men	whom	at	least	one	of	the	women	would	be	happy	to	marry,	be	at	least	as	
big	as	the	number	of	women	in	that	subset.	It	is	obvious	that	this	condition	is	necessary,	as	if	it	does	not	
hold,	there	are	not	enough	men	to	share	among	the	women.	What	is	interesting	is	that	it	is	also	a	
sufficient condition.

• ΩN is	equivalent	with	RN
-1,	so	ΩN

-1ΩN can	also	realize	any	
permutation.	Non-blocking!!!!!

• This	is	not	the	case	for	ΩNΩN.
• ΩNΩNΩN	can	also	realize	any	permutations.	Proof	based	on	

counting	arguments,	actual	routing	is	very	complicated.

FYI



Network	Topologies:	
Completely	Connected	Network

• Each	processor	is	connected	to	every	other	
processor.

• The	number	of	links	in	the	network	scales	as	
O(p2).

• While	the	performance	scales	very	well,	the	
hardware	is	not	realizable	for	large	values	of	p.

• In	this	sense,	these	networks	are	static	
counterparts	of	crossbars.



•
Network	Topologies:	Completely	

Connected and	Star	Connected	Networks

(a)	A	completely-connected	network	of	eight	nodes;	
(b)	a	star	connected	network	of	nine	nodes.



Network	Topologies:	
Star	Connected	Network

• Every	node	is	connected	only	to	a	common	
node	at	the	center.

• Distance	between	any	pair	of	nodes	is	O(1).
However,	the	central	node	becomes	a	
bottleneck.

• In	this	sense,	star	connected	networks	are	
static	counterparts	of	buses.



•
Network	Topologies:	

Linear	Arrays,	Meshes,	and	k-dMeshes

• In	a	linear	array,	each	node	has	two	neighbors,	
one	to	its	left	and	one	to	its	right.	If	the	nodes	at	
either	end	are	connected,	we	refer	to	it	as	a	1-D	
torus or	a	ring.

• A	generalization	to	2	dimensions has	nodes	with	
4	neighbors,	to	the	north,	south,	east,	and	west.

• A	further	generalization	to	d dimensions has	
nodes	with	2d neighbors.

• A	special	case	of	a	d-dimensional	mesh is	a	
hypercube.	Here,	d	=	log	p,	where	p is	the	total	
number	of	nodes.



•
Network	Topologies:	

Two- and	Three	Dimensional	Meshes

Two	and	three	dimensional	meshes:	(a)	2-D	mesh	with	no	wraparound;	
(b)	2-D	mesh	with	wraparound	link	(2-D	torus);	and	(c)	a	3-D	mesh	with	

no	wraparound.



•
Network	Topologies:	

Hypercubes and	their	Construction

Construction	of	hypercubes from	hypercubes of	lower	dimension.



Properties	of	Hypercubes

• The	distance	between	any	two	nodes	is	at	most	
log	p.

• Each	node	has	log	p neighbors.
• The	distance between	two	nodes	is	given	by	the	
number	of	bit	positions	at	which	the	two	nodes	
differ,	and	therefore	is	limited	to	log	p.



•
Network	Topologies:	Tree-Based	Networks

Complete	binary	tree	networks:	(a)	a	static	tree	network;	and	(b)	a	
dynamic	tree	network.



Network	Topologies:	Tree	Properties	

• The	distance	between	any	two	nodes	is	no	
more	than	2	log	p.	

• Links	higher	up	the	tree	potentially	carry	more	
traffic than	those	at	the	lower	levels.	

• For	this	reason,	a	variant	called	a	fat-tree,	
fattens	the	links	as	we	go	up	the	tree.	

• Trees	can	be	laid	out	in	2D with	no	wire	
crossings	in	Ω (√n log	n)	space	area.	



•
Network	Topologies:	Fat	Trees

A	fat	tree	network	of	16	processing	nodes.	Bandwidth	
each	times	doubles	when	going	up	one	level.	



Routing	Mechanisms	
for	Interconnection	Networks	

How	does	one	compute	the	route	that	a	message	
takes	from	source	to	destination?	

– Routing	must	prevent	deadlocks	- for	this	reason,	we	
use	dimension-ordered	or	e-cube	routing.	

– Routing	must	avoid	hot-spots	- for	this	reason,	two-
step	routing	is	often	used.	In	this	case,	a	message	
from	source	s to	destination	d is	first	sent	to	a	
randomly	chosen	intermediate	processor	i and	then	
forwarded	to	destination	d.	



•
Case	Studies:	SUMMIT	(4608	nodes)	

Cores(21)	per	CPU,	
3	additional	cores	
are	reserved	for	
GPU	interconnect
4	Threads	per	Core



•
Case	Studies:	

The	IBM	Blue-Gene	Architecture	

64*32	GF	=
2	TF

64X16	TF	=
1	PF



•
Case	Studies:	

The	Cray	T3E	Architecture

Interconnection	network	of	the	Cray	T3E:	
(a)	node	architecture;	(b)	network	topology.



•
Case	Studies:	

The	SGI	Origin	3000	Architecture



The	Cedar	Architecture
•



MasPar MP	1


