
How	are	high	speeds	being	realized?

• Implicit	Parallelism Faster	and	faster	processors	
combined	with	multiple	core	shared	memory	systems

• Explicit	Parallelism	More	and	more	medium/coarse	
grain	parallelism,	utilizing	distributed	memory	systems	
with	explicit	message	passing

• Implicit/Explicit	Parallelism	Medium/Coarse	grain	
parallelism	facilitated	through	physically	Shared	
Memory	Systems



Single	Core	Implicit	Parallelism

• Serial	Parallelism,	Peephole	Optimizations,	
Pipelining

• Mostly	in	the	order	of	2-6
• Inherently	part	of	processor/cache/memory	
design

• Requires	no	active	involvement	of	the	
programmer	(it’s	for	free)

• Enabled	through	the	explosion	of	transistor	on	
chip	(billions	on	a	processor	IC,	tens	of	billions	on	
a	memory	IC)



(Past)Trends	in	Single	Core	Architectures:
è Substantial	Increase	in	clock	speeds	and	

transistor	counts

• How	to	utilize	these	resources	in	an	efficient	
manner.

• Current	processors	use	these	resources	in	
multiple	functional	units	and	execute	multiple	
instructions	in	the	same	cycle.	

• The	precise	manner	in	which	these	
instructions	are	selected	and	executed	
provided	impressive	diversity	in	architectures.	



Pipelining	and	Superscalar	Execution	

• The	speed	of	a	pipeline	is	eventually	limited	by	the	
slowest	stage.	

• For	this	reason,	conventional	processors	rely	on	very	
deep	pipelines	(up	to	20	stage	pipelines	in	state-of-the-
art	Intel	Core	processors).	

• However,	in	typical	program	traces,	every	5-6th	
instruction	is	a	conditional	jump!	This	requires	very	
accurate	branch	prediction.	

• The	penalty	of	a	miss-prediction	grows	with	the	depth	
of	the	pipeline,	since	a	larger	number	of	instructions	
will	have	to	be	flushed.	

èèè Multiple	Pipelines	(Superscalar)



Superscalar	Execution	
Scheduling	of	instructions	is	determined	by	a	
number	of	factors:	

– True	Data	Dependency:	The	result	of	one	operation	is	
an	input	to	the	next.	

– Resource	Dependency:	Two	operations	require	the	
same	resource.	

– Branch	Dependency:	Scheduling	instructions	across	
conditional	branch	statements	cannot	be	done	
deterministically	a-priori.	

– Instruction	Issuing	Mechanisms:	the	scheduler	looks	
at	a	large	number	of	instructions	in	an	instruction	
queue	and	selects	appropriate	number	of	instructions	
to	execute	concurrently	based	on	these	factors.	

– In-order	vs	out-of-order	instruction	scheduling	
– The	complexity	of	this	scheduler	is	an	important	
constraint	on	superscalar	processors.



Superscalar	Execution:	
Efficiency	Considerations	

• Not	all	functional	units	can	be	kept	busy	at	all	times.	
• If	during	a	the	execution	of	a	pipeline,	the	pipeline	is	
flushed,	this	is	referred	to	as	vertical	waste.	

• If	during	a	cycle,	only	some	of	the	functional	units	are	
utilized,	this	is	referred	to	as	horizontal	waste.	

• Due	to	limited	parallelism	in	typical	instruction	traces,	
dependencies,	or	the	inability	of	the	scheduler	to	
extract	parallelism,	the	performance	of	superscalar	
processors	is	eventually	limited.	

• Conventional	microprocessors	typically	support	four-
way	superscalar	execution.	



Alternative:	Very	Long	Instruction	
Word	(VLIW)	Processors	

• The	hardware	cost	and	complexity	of	the	superscalar	
scheduler	is	a	major	consideration	in	processor	design.	

• To	address	this	issues,	VLIW	processors	rely	on	compile	
time	analysis	to	identify	and	bundle	together	
instructions	that	can	be	executed	concurrently.	

• These	instructions	are	packed	and	dispatched	together,	
and	thus	the	name	very	long	instruction	word.	

• This	concept	was	used	with	some	commercial	success	
in	the	Multiflow Trace	machine	(circa	1984).	

• Variants	of	this	concept	are	employed	in	the	Intel	IA64	
processors.	



Very	Long	Instruction	Word	(VLIW)	
Processors:	Considerations	

• Issue	hardware	is	simpler.	
• Compiler	has	a	bigger	context	from	which	to	select	co-
scheduled	instructions.	

• Compilers,	however,	do	not	have	runtime	information	
such	as	cache	misses.	Scheduling	is,	therefore,	
inherently	conservative.	

• Branch	and	memory	prediction	is	more	difficult.	
• VLIW	performance	is	highly	dependent	on	the	
compiler.	A	number	of	techniques	such	as	loop	
unrolling,	speculative	execution,	branch	prediction	are	
critical.	

• Typical	VLIW	processors	are	limited	to	4-way	to	8-way	
parallelism.	



Limitations	of	
Memory	System	Performance	

• Memory	system,	and	not	processor	speed,	is	
often	the	bottleneck	for	many	applications.	

• Memory	system	performance	is	largely	captured	
by	two	parameters:	latency and	bandwidth.	

• Latency	can	be	improved	by	providing	caches	
between	processor	and	memory

• Bandwidth	can	be	improved	by	increasing	the	
amount	of	memory	interleaving	(banks)	and	
thereby	increasing	memory	block	size.



Impact	of	Memory	Bandwidth:	an	Example	

Consider	the	following	code	fragment,	which	sums	columns	of	
the	matrix	b	into	a	vector column_sum:
for (i = 0; i < 1000; i++) 

column_sum[i] = 0.0;
for (j = 0; j < 1000; j++)

column_sum[i] += b[j][i];

èNormally	the	vector	column_sum is	small	and	easily	fits	
into	the	cache.

èThe	matrix	b is	accessed	in	a	column	order,	resulting	in	very
bad	striding	behavior,	reducing	memory	bandwidth	
significantly



Impact	of	Memory	Bandwidth:	an	Example

We	can	fix	the	code	as	follows:
for (i = 0; i < 1000; i++)

column_sum[i] = 0.0;
for (j = 0; j < 1000; j++)

for (i = 0; i < 1000; i++)
column_sum[i] += b[j][i];

In	this	case,	the	matrix	is	traversed	in	a	row-order	and	
performance	can	be	expected	to	be	significantly	better.



Other	ways	of	reducing	(memory)	latencies

ØMultithreading	allows	delays	to	be	hidden	by	
delaying	execution	of	one	thread	in	favor	of	a	
thread	which	is	not	delayed.

ØPrefetching	allows	data	to	be	put	in	cache	
before	the	processor	actually	needs	the	data



Multiple	Core	Implicit	Parallelism

• Basis	was	laid	down	in	the	60’s,70’s	and	80’s
• Based	on	Shared	Memory	Architectures
• Enriched	with	Multiple	Layers	of	Shared	and	
Private/Local	Cache

• Main	Issue:	Fast/Parallel	Shared	Memory	
Access	&	Data	Coherence

• Therefore:	Scalability	Issues



Parallel	Shared	Cache/Memory	Access

• For	Multi	Core	(8/16	cores)	solved	by	
providing	Memory	Bus	bandwidth	sufficiently	
large,	so	that	relatively	large	cache	lines	can	
be	simultaneously	accessed.

• For	larger	scale	parallel	platforms	
interconnection	networks	are	needed,	see	the	
slides	on	explicit	parallelism



Data	Coherence


