tUPL Parallel Programming
Paradigm

tUPL

* Free Computer Programming from common
artifacts like data structures, data dependencies,

explicit parallelism constructs
* Harness a compilation framework such that

— Data structures are generated automatically

— Data dependencies are turned into opportunities to
optimize performance

— Parallel execution is guaranteed

Basic tUPL Data Type

< token, data >

Formally, this basic data type is even further
stripped down to

<token >, ¢

With A the “shared” space in which data is stored, and with F,
an address function on A, s.t. data is represented as:

A [F,(<token>)]
So data == A [F,(<token>)]

12/5/19 3

Address function F,

F, can be any function, but mostly it is an affine
mapping/projection:

AR A

With n being the number of fields in token and k the
dimensionality of A. So F, can be represented as

mip miy; ™My . Mip
Addr(t) =m+MtT = .. |+| |t
Mk Mk1 Mgz . Mgy

12/5/19

NOTE!!!!
A[1,1]1=5.0

does NOT mean that element [|,]] of
Matrix A, or of a
2-Dimensional Array A

is assigned the value 5.0.

BUT:
5.0 is stored in A at [FA(l, J)], with F, = 1d, or that
the data value of <1, J >, ¢)becomes 5.0, or that
<l|,J,data>=<1,J,5.0>*

*Note that tokens can be more dimensional: token tuples t

In case tuples have more than one field, then t.i represents the
ith field of t

Multiple Shared Spaces and Associated
Address Function per Shared Space

Consider the following tUPL code fragment:
A[I,J] = A[I-1,2*J] + B[J]

Then in this code fragment we have 2 shared spaces:
A and B
and 3 address functions:
1 — —(10
Fa -Id-[01}<|,1>

-1 10
Fp2= [o] + [02} <l J>
So, for token t = <I,J> perform:
Fe= (00 <1,0> A[RLt)] < AF.2(t)] + B[F4(t)]

12/5/19

SO, data structures as we know them do not
exists in tUPL, only

single storage locations for each data item,
represented by token tuples

We need a mean to express a collection or set
of these single storage locations

=» (Token) Tuple Reservoirs

Examples of Tuple Reservoirs ()

A Digraph G(V,E):
T={<u,v>|u,veVand(u,v)ekE}

with address function Weigth [u, v] representing the
address at which the weight of edge (u,v) is stored

A Sparse Matrix A:
T={<i,3j> | atrowiand columnj
there is a nnz element}

with address function Value [i, j] representing the
address at which the value of matrix A[i, j] is stored

Examples of Tuple Reservoirs (Il)

A Linked List (of single storage locations):
T={<iy j,> | 1<=k<=n,
for every j,,1<=k<n,

there exists exactly one 1_,
such that j,=1i_, and

forall §,,1<=k <=n,
the values are different}

Together with an address function Value [1, J;]
representing the value at the k" position in the list.

OR address function Value [1,] ! (tUPL allows both)

Examples of Tuple Reservoirs (llI)

Relational Database Tables
T={< i >|1<=1i<=n,with i representing
the 1t record in the database table}

and associated address functions:
field, [1], field, [1], ..., field, [1]

tUPL Loop Structures

Two BASIC Loop Structures:

forelem (t; €t ¢ T)
whilelem (t; t ¢ T)

Both structures are inherently
parallel and non-deterministic

This means that any tuple of T can be taken at any time!!

In the forelem structure every tuple is taken exactly once,
while in the whilelem every tuple can be taken an
arbitrary number of times (details later)

Example |

Sparse Matrix-Vector Multiplication

forelem (t; t ¢ T)

{

Value C[t.1]+= Value A[t.1,t.7]]
* Value B[t.7J]

Example Il (LU factorization)

for (k; keN)
{
pivot = IDX_A<LjH(th();
forelem (t; t & A.<i,J>[<(k,~),k>])
{
mult = Valuel[t.i,t.j]/Valuel[t.pivot,t.pivot];
Value[t.i,t.]J] = mult;
forelem (r; r ¢ A.<i,J>[<t.j, (t.7j,)>])
{
cand = NULL
forelem (g; g ¢ A.<i,j>[<t.i,t.3>])
cand = g;
if (cand == NULL)
{
cand = <t,i,t.j>
A = A U cand;
Value[cand.i,cand.j] = 0

}

Value[cand.i,cand.]j] -= mult*Valuel[r.i,r.7j]

Example Il

SORTING

whilelem (t; t ¢ T)
{
if (X[t.i1] > X[t.3])
swap (X[t.i], X[t.3])

Example IV: MaxFlow

T={<u,v,w> | (u,v)and(v,w) (back)edges of Gand w!=u }*

whilelem (t; t ¢ T)
{ if (Deltal[t.u,t.v] > 0 && Remainder[t.v,t.w] > 0)
{
delta change = min(Remainder[t.v,t.w],Deltalt.u,t.v]);
Delta[t.v,t.w]+= delta change;
Remainder[t.v,t.w] -= delta change;
Remainder[t.w,t.v] += delta change;
Fl(t.u,t.v] += delta change;

Delta[t.u,t.v] -= delta change
}
if (Deltal[t.u,t.v] > 0 && Remainder[t.v,t.w] == 0)
{

if (t.v == ‘s’ || t.v == ‘t’)

{
Flt.u,t.v] += Deltalt.u,t.v];
Deltalt.u,t.v] = 0
}
else
{ # Reverse Flow
Delta[t.v,t.u] += Deltalt.u,t.v];
Remainder[t.v,t.u]-= Deltal[t.u,t.v];
Deltal[t.u,t.v] = 0

} *|T| = (aver_out+aver_in)*(aver_out+aver_in-1)*|V|
= aver_outh4*|V|

Scheduling whilelem (t; t ¢ T)

» For each execution of a tuple exactly one of the
tuples with a valid conditional serial code is
chosen.

» If there are no tuples left with a valid conditional
serial code, then the whilelem loop terminates.

» Any loop scheduling for a whilelem loop must
guarantee that every tuple with a valid conditional
serial code that is continuously enabled beyond a
certain point is taken infinitely many times (cf. just
computation).

Scheduling forelem (t; t ¢ T)

» For each execution of a tuple exactly one of the
tuples is chosen with a valid conditional serial
code and which has not been executed so far.

» |f there are no tuples left with a valid conditional
serial code, then the forelemloop terminates.

Note that if the conditions are not carefully chosen
it can happen that the forelemloop terminates
before all tuples have been executed.

Automatic Data Structure Generation in tUPL

ansformatior

tUPL Intermediate

forelem (t; t ¢ T) forelem (1; 1 ¢ pT)
{ {
o . T[1]
\ }
whilelem (1; 1 ¢ pT)
whilelem (t; t ¢ T) {
{ o T[1]
Lt }

}

» pT and T[i] notation allows for a more clear expression of

the materialization and concretization phase
» tUPL allows mix use of tUPL notation and intermediate

notation

Some Code Transformations™

forelem (i1i; 11 ¢ A.fieldl)

forelem (1; 1 ¢ pA)
. A[il.. f‘> forelem (i1; 1 ¢ pA.fieldl[ii])
. Af1]..

A.fieldl is the set of all possible field1 values of tuples in A: {i.fieldl | i A}

(Encapsulation,

forelem (i; i ¢ pA.fieldl) fl> forelem (i; 1 ¢ Ny)

If A.fieldl wouldbe{0, 1, 3,4,7,9, 10}, for instance. This transformation only

makes sense, if the execution of the inner loop for the other i-value’s results into a NOP. i.e.
C[i] = C[i] + BJi], and B[i] == 0 for 2, 5, 6 and 8.

*forelem is used in the examples but the trafo’s equally apply to whilelem

Some Code Transformations (2)

Loop Collapse,

forelem (1; 1 ¢ pA)
forelem (j; J ¢ pB.field b[A[1].fileld a])
.. A[1].field ¢ .. B[j].field d ..

- =

forelem (1; 1 ¢ pAxB.field blfield a])
. AxB[i].field c .. AxB[1].field d ..

AxB is the cross product of the two tuple sets Aand B: {<i,j>|ieAandjeB}

Some Code Transformations (3)

forelem (1; 1 ¢ pA) forelem (j; 7] ¢ pB)
forelem (j; 7] ¢ pB) ‘ forelem (i; 1 ¢ pA)

. A[i] .. B[3] ..

. A[i] .. B3] ..

forelem (i; i & pA) ‘
.. A[1].field2 .. A[1].field3 ..

forelem (i; 1 ¢ pA’)

. A'[1i].f1eld?2 .. AT [1].f1eld3 .

With A’ = { <field2,field3> | <field1,field2,field3> € A}

Materialization

forelem (1; 1 ¢ pA.fi1eld[X])
. A[1]..

— =

forelem (i; 1 & N¥*)
. PA[1]..

N* represents theset {1, 2, ..., | PA| }, with PA an

enumeration of the set:
{i|ieAandi.field ==X}

DO NOT CONFUSE PA with a linear array data structure

Some more code transformations

—

forelem (i; i ¢ A.field) forelem (i; 1 & Ny)
forelem (k; k ¢ pB.field[i]) [> forelem (k; k e pB.field[1])
. B[k].value Blk].value ..

forelem (i; 1 & Nyg) forelem (1; 1 & Ny)
[> forelem (k; k & N¥*) forelem (k; k g N¥%)

. Bl[1][k].value .. . Bl[1].valuelk]

2 dimensional materialization into B[][] necessary because of outerloop dependence.

Some more code transformations (2)

forelem (i; i € Ny,)
forelem (k; k g N¥%)
. A[1][k] ..

-

forelem (i; 1 & Ny,)
forelem (k; k ¢ PA len[1])
. A[1][k] ..

Some more code transformations (3)

——

forelem (i; 1 & pA)
. B [A[1]]

—

forelem (1; 1 & pA’)
. A’ [1].field B ..

Here the tuples in reservoir A are being extended to include the data at address
@B[A[i].field k}.SoA ={<t,B[t] > | teA} Bydefault, this
transformation is only allowed for read only data at B.

Regrouping of Single Storage Locations (Tuples)

121 (11310 (10D
Gy,

X
@:u...) (3|1D XX
Col11.0> XX

21010 @141 (21310

Regrouping as a result of orthogonalization on the
first field

Regrouping after Materialization and
Loop Interchange

Regrouping after orthogonalization on the second field
followed by materialization and loop interchange

Concretization

forelem (1; 1 & N¥)
. PA[1]..

@

forelem (1; 1 ¢ PA len[1])
. PA[1] ..

for (i = 0; i < PA_len; i++)
.. PA[i] ...

Some Concretization Steps

forelem (i; 1 & pA)
DAL

forelem (i; i & Nyg)
D A[1]...

forelem (1i; 1 & Ny)
forelem (k; k ¢ PA len[1])
. A[1] [Kk]

forelem (i; 1 & Ny,)
forelem (k; k ¢ PA len[1])
.A[1] [k] .value .

forelem (1i; 1 & Ny)
forelem (k; k ¢ PA len[1])
. A[l1] .valuelk]

Linked list of struct’s

An array of struct’s

An array of arrays of struct’s

An array of arrays of struct’s

An array of arrays of values

Example

forelem (1;1¢ pA)
Al1]]..
Data Localization
forelem (i'ie PA’)
i].field B ..

aterialization
forelem (1;1¢ PA’ len)
. PA’[1] .field B ..
Typle Splitting
forelem (1;1¢ pA’ len)
.field B[1]..

Hgrizontal Iteration Space Reduction
forelem (1;1¢ pA’ len)

PA’ .field B[i]..

A linked list of struct’s: A +
A multidimensional array: B

An linked list of struct’s: A

An array of struct’s A’

Several Arrays for each field

of A’

Just one array of field_B
values

The Transformation Search Space

26,33,46,59,66 V}\}
\ :s 32,45, €8, es““’“

30,857,506, 70 23,35.43.61.68 \\

\"’ 36,4962, 69 Im‘.u'//'
i/ &

\W

|
1
I
1
1
41,54 40,53 1 J ptal
- a7 :‘==F . / tmpss
m,,:o / : trpS . 3 /k 18
: h e 1 mpsy
1 he
: . T 2 -
I i onpsd
2 4 ! et L
3 K w5 . 24,31,44,57,64 T A N b2 K g 2o
enpTl W mpT0 S ek - ====== I L I i A R R
- L e \ V4
s K. wnpts e 15
1
9
=~ ¢ d { g U3 e 101014
‘e 64 ‘7 & wnpl
2 P P
b pse / Y
-7 t 100,113
x_ tmp6?
. - « tmpes -
-~
0 Tl —— 41004, 117,124 wpt — > WS e
M x %.97.110,123, 130
74 d mpd \
mpta £9.96.109, 122, 129
‘ mps
tmp2S K /g o~
)4 ‘X £5,95,108, 121,128
wmp26 tmpl$ \
' '
a2 ‘// < et
X ump2l
n -— .
tmp2? /(86,93, 106,119,126
Kk ¢
/ tnpls uepl6 m-;ﬁ ¢
1ep23 \
f 1 wmpl0
rep22 E:P \z

£5,92,105,118, 128

K; L94,107,120,127
enpl?
tmpl 9
smp2t f mp
~ K mplz
J v X
i
2 ” n tepld
102,115

103, 116

Legend
loop interchange
orthogonalization row
orthogonalization col
materalize
padl rows
struct split
horiz, 1S reduction
dimensionality reduction
N* sort
transpose
concretios

K TR~ ANTH

98,111 99,112

Ko SO - AN DOR

Legend
loop Interchange
orthogonalization row
orthogonalization col
materalize
pad rows
struct spiit
horiz, 1S reduction
dimensionality reduction
N* sort
Lranspose
concretioe

Algorithmic Optimization

* tUPL will automatically choose sequences of valid
serial codes to be executed one after the other, so that
their execution is being optimized.

* So, next to the automatic generation of data structures
tUPL will also automatically optimize and change the
order in which operations are performed and by doing
so will change the actual algorithm being used to
compute the results.

 These sequences are being identified as chains of pairs
of tuples and serial codes:

(t,, Serial Code 1i)*
representing
Serial Code 1 (< t, >)
*Note that Cond 1 has to evaluate to true for every t,

Recap

tUPL Loop Body:
if (Cond 1)

{

Serial Code 1 (< t >)
}
if (Cond 2)

Serial Code 2 (< t >)

if (Cond n)

Serial Code n (< t >)

Different kind of chains

* Mono Chains (MC), every element in the chain
has the same serial code:

(t,, Serial Code 1i),(t, Serial Code 1),..
 Two Typed Chains:

— Alternating Chains (AC), consecutive elements in the

chain alternate between serial Code i and
Serial Code 7

— Cascading Chains (CC), first part of the chain uses
Serial Code i the second part of the chain uses

Serial Code j
(t;, Serial Code 1i),(t, Serial Code 1i),..,
(t, Serial Code 7j),(t,,;,Serial Code 7j),..

e Hybrid Chains (HC)

Profitable Chain

A chain Cis profitable™ iff

» The consecutive execution of the elements in
C can be optimized such that the execution
time of the whole chain is less than the sum of
the execution times of the individual elements

» AND the chain is minimal in such a way that
the chain C cannot be broken into smaller
chains C; and C,suchthatC=C, || C, and

Exec (C) = Exec (C,) + Exec (C,)
* Cis being referred to as a profit chain

Main Theorem |

For every profit chain C:

all consecutive elements in C:
(t;, Serial Code i), (t,, Serial Code j)

have a data dependence on an address function

A used in both serial codes: Serial Code i,
Serial Code j,l.e.

@A[tl —= @A[tz]

Profit Chains in SpMxV

forelem (t; t ¢ T)

{
Value C[t.1]+= Value A[t.i,t.]]

* Value BTt.7j]

(<1,1>, Serial_Code_lL(<l,2>, Serial_Code_lL."
can be optimized such that subsequent reads of
Value C[t.i] are eliminated. So these chains are
identified as profit chains.

In fact, the orthogonalization code optimization is a
direct result of this chaining

Covering Chain Set

A covering chain set CCS is a set of Chains C.
such that for every tuple (t,, Serial Code i)
there is an i such that

(t,, Serial Code 1i)eC

Note that if the possible set of profit chains is

not covering then this set can be completed
with single (non-profit) chains, consisting out of
the (t,, Serial Code i) pairs which were not
covered, to obtain a covering chain set.

Main Theorem Il

If
whilelem (t; t ¢ T)
is just scheduled, then if
whilelem (C; C ¢ CCS)
forelem (t; t ¢ C)

is also just scheduled, then both loop structures are
semantically equivalent.

forelem (t; t ¢ T)

and

forelem (C; C ¢ CCS)
forelem (t; t ¢ C)

are semantically equivalent just based on the
covering property of CCS.

Examples of profit chains |

whilelem (t; t ¢ T)

{
if (X[t.i] > X[t.3])
swap (X[t.1i], X[t.3J])

(<1,2>, Serial Code 1),

(<2,3>, Serial Code 1),

(<3,4>, Serial Code 1),..(<n-1,n>, Serial Code 1)
with X[1]>X[2], X[2]>X[3], etc, results in a sequence of n swaps,
whereas it can be optimized by executing just one insert!!!

Examples of profit chains Il

whilelem (t; t ¢ T)
{ if (Deltal[t.u,t.v] > 0 && Remainder[t.v,t.w] > 0)
{
delta change = min(Remainder[t.v,t.w],Deltalt.u,t.v]);
Serial Code 1 Delta[t.v,t.w]+= delta change;

B B Remainder[t.v,t.w] -= delta change;
Remainder[t.w,t.v] += delta change;
Fl[t.u,t.v] += delta change;

Delta[t.u,t.v] —-= delta change
}
if (Deltal[t.u,t.v] > 0 && Remainder[t.v,t.w] == 0)
{

else

{ # Reverse Flow

Deltal[t.v,t.u] += Deltalt.u,t.v];
Serial Code 2 Remainder[t.v,t.u]l-= Deltal[t.u,t.v];

]_
Deltal[t.u,t.v] = 0

Then (<s,4,6>,Serial Code 1), (<4,6,52>,

Serial _Code_1),...,(<100,105,107>, Serial_Code_1), (<105, 107,111>,
Serial _Code_2), (<111,107, 105>, Serial_Code_1), ... (<6,4,s>,

Serial Code 1) with Remainder[4, 6]>0, with
Remainder[6,52]>0, .. etc., and
Remainder[107,111]1==0 isa profit chain.

As well as

(<s,4,6>,Serial_Code 1), (<4,6,52>,

Serial _Code_1),...,(<100,105,107>, Serial _Code_1), (<105, 107, t>,
Serial_Code 1), with Remainder[4,6]>0, with
Remainder[6,52]>0, .. etc.

Note that the latter profit chain is in fact the augmented
path as defined by Ford and Fulkerson!!!

Parallel Programming Il (this spring)

* tUPL will automatically choose sequences of valid
serial codes to be executed one after the other,
so that their execution is being optimized.

* So, next to the automatic generation of data
structures tUPL will also automatically optimize
and change the order in which operations are
performed and by doing so will change the actual
algorithm being used to compute the results.

* |n fact within tUPL new algorithms can be
automatically generated which will not only
execute in parallel but will also be adaptive to the
underlying problem to be solved.

END OF COURSE

