Logica (I\&E)

najaar 2018

http://liacs.leidenuniv.nl/~vlietrvan1/logica/

> Rudy van Vliet
> kamer 140 Snellius, tel. 071-527 2876 rvvliet(at)liacs(dot)nl
> college 2, maandag 10 september 2018
> 1.4 Semantics of propositional logic 1.2 Natural deduction

Ik hou van werken zolang het werken is waarvan ik hou.

A slide from lecture 1:

1.4. Semantics of propositional logic

Definition 1.28.

1. The set of truth values contains two elements T and F, where T represents 'true' and F represents 'false'.
2. A valuation of model of a formula ϕ is an assignment of each propositional atom in ϕ to a truth value.

Part of a slide from lecture 1:
(4) All Martians like pepperoni on their pizza.

A slide from lecture 1:

Truth table for conjunction

ϕ	ψ	$\phi \wedge \psi$
T	T	T
T	F	F
F	T	F
F	F	F

Truth tables

$$
\begin{array}{c|c|c}
\phi & \psi & \phi \wedge \psi \\
\hline \mathrm{T} & \mathrm{~T} & \mathrm{~T} \\
\mathrm{~T} & \mathrm{~F} & \mathrm{~F} \\
\mathrm{~F} & \mathrm{~T} & \mathrm{~F} \\
\mathrm{~F} & \mathrm{~F} & \mathrm{~F} \\
\phi & \psi & \phi \rightarrow \psi \\
\hline \cdots & \cdots & \cdots
\end{array}
$$

Truth table for implication

ϕ	ψ	$\phi \rightarrow \psi$
T	T	T
T	F	F
F	T	T
F	F	T

ϕ	ψ	$\neg \phi \vee \psi$
T	T	T
T	F	F
F	T	T
F	F	T

Semantically equivalent

Determining truth value in tree

$$
\neg p \wedge q \rightarrow p \wedge(q \vee \neg r)
$$

$n=3$, so 2^{3} lines in truth table $p: \top \quad q: \mathrm{F} \quad r: \top$

Determining truth value in table

$(p \rightarrow \neg q) \rightarrow(q \vee \neg p)$

p	q	$\neg p$	$\neg q$	$p \rightarrow \neg q$	$q \vee \neg p$	$(p \rightarrow \neg q) \rightarrow(q \vee \neg p)$
T	T	\ldots	\ldots	\ldots	\ldots	\ldots
T	F	\ldots	\ldots	\ldots	\ldots	\ldots
F	T	\ldots	\ldots	\ldots	\ldots	\ldots
F	F	\ldots	\ldots	\ldots	\ldots	\ldots

Determining truth value in table

$(p \rightarrow \neg q) \rightarrow(q \vee \neg p)$

p	q	$\neg p$	$\neg q$	$p \rightarrow \neg q$	$q \vee \neg p$	$(p \rightarrow \neg q) \rightarrow(q \vee \neg p)$
T	T	F	F	F	T	T
T	F	F	T	T	F	F
F	T	T	F	T	T	T
F	F	T	T	T	T	T

1.4.3. Soundness of propositional logic

Definition 1.34.
If, for all valuations in which all $\phi_{1}, \phi_{2}, \ldots, \phi_{n}$ evaluate to T , ψ evaluates to T as well, we say that

$$
\phi_{1}, \phi_{2}, \ldots, \phi_{n} \vDash \psi
$$

holds and call \vDash the semantic entailment relation.

Examples semantic entailment

1. $p \wedge q \vDash p$?
2. $p \vee q \vDash p$?
3. $\neg q, p \vee q \vDash p$?
4. $p \vDash q \vee \neg q$?

1.4.2. Mathematical induction

$$
1+2+3+4+\cdots+n=\ldots
$$

Mathematical induction

For property M of natural numbers:

1. Base case: The natural number 1 has property M, i.e., we have a proof of $M(1)$
2. Inductive step: If n is a natural number which we assume to have property $M(n)$, then we can show that $n+1$ has property $M(n+1)$; i.e., we have a proof of $M(n) \rightarrow M(n+1)$.

Mathematical induction

For property M of natural numbers:

1. Base case: The natural number 1 has property M, i.e., we have a proof of $M(1)$
2. Inductive step: If n is a natural number which we assume to have property $M(n)$, then we can show that $n+1$ has property $M(n+1)$; i.e., we have a proof of $M(n) \rightarrow M(n+1)$.

Definition 1.30. The principle of mathematical induction says that, on the grounds of these two pieces of information above, every natural number n has property $M(n)$.
The assumption of $M(n)$ in the inductive step is called the induction hypothesis.

Natural numbers

Mathematics: $\mathbb{N}=\{1,2,3,4, \ldots\}$

Computer science: $\mathbb{N}=\{0,1,2,3,4, \ldots\}$

Theorem 1.31. The sum $1+2+3+4+\cdots+n$ equals $n \cdot(n+1) / 2$ for all natural numbers n.

Proof: $\mathrm{LHS}_{n}=\mathrm{RHS}_{n} \ldots$

Definition. Let the level of the root in a binary tree be 1, the level of the children of the root be $2, \ldots$ (N.B.: different from Algoritmiek). The height of a binary tree is the maximum level of the tree. A binary tree of height h is called filled, if every level of the tree contains the maximum number of nodes.

Exercise.Prove by induction that
(a) for each level l of a filled binary tree, the number of nodes at level l equals 2^{l-1},
(b) the number of nodes in a filled binary tree of height h equals $2^{h}-1$,
(c) the maximum number of swaps needed for (bottom-up) heapify in a filled binary tree of height h equals $2^{h}-1-h$.

Variants of induction

Mathematical induction:

1. Base case: The natural number 1 has property M, i.e., we have a proof of $M(1)$
2. Inductive step: If n is a natural number which we assume to have property $M(n)$, then we can show that $n+1$ has property $M(n+1)$; i.e., we have a proof of $M(n) \rightarrow M(n+1)$.

Variants of induction

Mathematical induction:

1. Base case: The natural number 1 has property M, i.e., we have a proof of $M(1)$
2. Inductive step: If n is a natural number which we assume to have property $M(n)$, then we can show that $n+1$ has property $M(n+1)$; i.e., we have a proof of $M(n) \rightarrow M(n+1)$.

Course-of-values induction:
2. Inductive step: If n is a nonnegative, integer number for which we assume that $M(1) \wedge M(2) \wedge \cdots \wedge M(n)$ holds, then we can show that $n+1$ has property $M(n+1)$; i.e., we have a proof of $M(1) \wedge M(2) \wedge \cdots \wedge M(n) \rightarrow M(n+1)$.

Fibonacci

(variant of Exercise 1.4.8)
$F_{1}=1$,
$F_{2}=1$,
$F_{n+1}=F_{n}+F_{n-1}$ if $n \geq 2$

Use course-of-values induction to prove that F_{n} is even, if and only if $n \equiv 0 \quad(\bmod 3)$.

Variants of induction

Course-of-values induction:
2. Inductive step: If n is a nonnegative, integer number for which we assume that $M(1) \wedge M(2) \wedge \cdots \wedge M(n)$ holds, then we can show that $n+1$ has property $M(n+1)$; i.e., we have a proof of $M(1) \wedge M(2) \wedge \cdots \wedge M(n) \rightarrow M(n+1)$.

Structural induction: induction on the structure

Formulas, trees, ...

$$
(((\neg p) \wedge q) \rightarrow(p \wedge(q \vee(\neg r))))
$$

Definition 1.32. Given a well-formed formula ϕ, we define its height to be 1 plus the length of the longest path of its parse tree.

Brackets in a well-formed formula

Theorem 1.33.
For every well-formed propositional logic formula, the number of left brackets is equal to the number of right brackets.

Proof...

$$
(((\neg p) \wedge q) \rightarrow(p \wedge(q \vee(\neg r))))
$$

Mathematical induction would not work...

1.2. Natural deduction

Proof rules

Premises $\phi_{1}, \phi_{2}, \ldots, \phi_{n}$
Conclusion ψ

Sequent $\phi_{1}, \phi_{2}, \ldots, \phi_{n} \vdash \psi$

The rules for conjunction

And-introduction:

$$
\frac{\phi \quad \psi}{\phi \wedge \psi} \wedge i
$$

The rules for conjunction

And-elimination:

$$
\frac{\phi \wedge \psi}{\phi} \wedge e_{1} \quad \frac{\phi \wedge \psi}{\psi} \wedge e_{2}
$$

Example 1.4. Proof of: $p \wedge q, r \vdash q \wedge r$

Example 1.4. Proof of: $p \wedge q, r \vdash q \wedge r$

1	$p \wedge q$	premise
2	r	premise
3	q	$\wedge \mathrm{e}_{2} 1$
4	$q \wedge r$	$\wedge i 3,2$

In tree-like form. . .

