Logica (I&E)

najaar 2018

http://liacs.leidenuniv.nl/~vlietrvan1/logica/

Rudy van Vliet kamer 140 Snellius, tel. 071-527 2876 rvvliet(at)liacs(dot)nl

college 2, maandag 10 september 2018

1.4 Semantics of propositional logic 1.2 Natural deduction

Ik hou van werken zolang het werken is waarvan ik hou.

A slide from lecture 1:

1.4. Semantics of propositional logic

Definition 1.28.

1. The set of truth values contains two elements T and F, where

- T represents 'true' and F represents 'false'.
- 2. A *valuation* of *model* of a formula ϕ is an assignment of each propositional atom in ϕ to a truth value.

Part of a slide from lecture 1:

(4) All Martians like pepperoni on their pizza.

A slide from lecture 1:

Truth table for conjunction

Truth tables

Truth table for implication

Semantically equivalent

Determining truth value in tree

 $\neg p \land q \to p \land (q \lor \neg r)$

n = 3, so 2^3 lines in truth table

 $p: \mathsf{T}$ $q: \mathsf{F}$ $r: \mathsf{T}$

7

Determining truth value in table

$$(p \to \neg q) \to (q \lor \neg p)$$

- 1	_					$(p \rightarrow \neg q) \rightarrow (q \lor \neg p)$
Т	Т	• • •	• • •	• • •	• • •	• • •
Т	F	• • •	• • •	• • •	• • •	• • •
F	Т	• • •	• • •	• • •	• • •	• • •
F	F	• • •	• • •	•••	•••	• • •

Determining truth value in table

$$(p \to \neg q) \to (q \lor \neg p)$$

1.4.3. Soundness of propositional logic

Definition 1.34.

If, for all valuations in which all $\phi_1, \phi_2, \ldots, \phi_n$ evaluate to T, ψ evaluates to T as well, we say that

$$\phi_1, \phi_2, \ldots, \phi_n \models \psi$$

holds and call ⊨ the *semantic entailment* relation.

Examples semantic entailment

1.
$$p \land q \models p$$
?

- 2. $p \lor q \models p$?
- 3. $\neg q, p \lor q \models p$?
- 4. $p \models q \lor \neg q$?

1.4.2. Mathematical induction

 $1+2+3+4+\cdots+n=\ldots$

Mathematical induction

For property M of natural numbers:

1. Base case: The natural number 1 has property M, i.e., we have a proof of M(1)

2. Inductive step: If n is a natural number which we assume to have property M(n), then we can show that n + 1 has property M(n+1); i.e., we have a proof of $M(n) \rightarrow M(n+1)$.

Mathematical induction

For property M of natural numbers:

1. Base case: The natural number 1 has property M, i.e., we have a proof of M(1)

2. Inductive step: If n is a natural number which we assume to have property M(n), then we can show that n + 1 has property M(n+1); i.e., we have a proof of $M(n) \rightarrow M(n+1)$.

Definition 1.30. The principle of mathematical induction says that, on the grounds of these two pieces of information above, every natural number n has property M(n).

The assumption of M(n) in the inductive step is called the *induction hypothesis*.

Natural numbers

Mathematics: $\mathbb{N} = \{1, 2, 3, 4, ...\}$

Computer science: $\mathbb{N} = \{0, 1, 2, 3, 4, ...\}$

Theorem 1.31. The sum $1+2+3+4+\cdots+n$ equals $n \cdot (n+1)/2$ for all natural numbers n.

Proof: $LHS_n = RHS_n...$

Definition.Let the level of the root in a binary tree be 1, the level of the children of the root be 2, ... (N.B.: different from Algoritmiek). The *height* of a binary tree is the maximum level of the tree. A binary tree of height h is called *filled*, if every level of the tree contains the maximum number of nodes.

Exercise. Prove by induction that

(a) for each level l of a filled binary tree, the number of nodes at level l equals 2^{l-1} ,

(b) the number of nodes in a filled binary tree of height h equals $2^{h}-1$,

(c) the maximum number of swaps needed for (bottom-up) heapify in a filled binary tree of height h equals $2^{h} - 1 - h$.

Variants of induction

Mathematical induction:

1. Base case: The natural number 1 has property M, i.e., we have a proof of M(1)

2. Inductive step: If n is a natural number which we assume to have property M(n), then we can show that n + 1 has property M(n+1); i.e., we have a proof of $M(n) \to M(n+1)$.

Variants of induction

Mathematical induction:

1. Base case: The natural number 1 has property M, i.e., we have a proof of M(1)

2. Inductive step: If n is a natural number which we assume to have property M(n), then we can show that n + 1 has property M(n+1); i.e., we have a proof of $M(n) \to M(n+1)$.

Course-of-values induction:

2. Inductive step: If n is a nonnegative, integer number for which we assume that $M(1) \wedge M(2) \wedge \cdots \wedge M(n)$ holds, then we can show that n+1 has property M(n+1); i.e., we have a proof of $M(1) \wedge M(2) \wedge \cdots \wedge M(n) \rightarrow M(n+1)$.

Fibonacci

(variant of Exercise 1.4.8)

$$F_1 = 1$$
,
 $F_2 = 1$,
 $F_{n+1} = F_n + F_{n-1}$ if $n \ge 2$

Use course-of-values induction to prove that F_n is even, if and only if $n \equiv 0 \pmod{3}$.

Variants of induction

Course-of-values induction:

2. Inductive step: If n is a nonnegative, integer number for which we assume that $M(1) \wedge M(2) \wedge \cdots \wedge M(n)$ holds, then we can show that n+1 has property M(n+1); i.e., we have a proof of $M(1) \wedge M(2) \wedge \cdots \wedge M(n) \rightarrow M(n+1)$.

Structural induction: induction on the structure

Formulas, trees, ...

$$(((\neg p) \land q) \rightarrow (p \land (q \lor (\neg r))))$$

Definition 1.32. Given a well-formed formula ϕ , we define its height to be 1 plus the length of the longest path of its parse tree.

Brackets in a well-formed formula

Theorem 1.33.

For every well-formed propositional logic formula, the number of left brackets is equal to the number of right brackets.

Proof...

$(((\neg p) \land q) \rightarrow (p \land (q \lor (\neg r))))$

Mathematical induction would not work...

1.2. Natural deduction

Proof rules

Premises $\phi_1, \phi_2, \ldots, \phi_n$

Conclusion ψ

Sequent $\phi_1, \phi_2, \ldots, \phi_n \vdash \psi$

The rules for conjunction

And-introduction:

$$rac{\phi \quad \psi}{\phi \wedge \psi}$$
 $\wedge \mathrm{i}$

The rules for conjunction

And-elimination:

$$\frac{\phi \wedge \psi}{\phi} \wedge e_1 \qquad \frac{\phi \wedge \psi}{\psi} \wedge e_2$$

Example 1.4. Proof of: $p \land q, r \vdash q \land r$

Example 1.4. Proof of: $p \land q, r \vdash q \land r$

1	$p \wedge q$	premise
2	r	premise
3	q	$\wedge e_2 1$
4	$q \wedge r$	∧i 3,2

In tree-like form...