Logica (I\&E)

$$
\text { najaar } 2018
$$

http://liacs.leidenuniv.nl/~vlietrvan1/logica/

Rudy van Vliet
kamer 140 Snellius, tel. 071-527 2876 rvvliet(at)liacs(dot)nl
college 14, maandag 10 december 2018

Semantic tableaux for predicate logic
2.5. Undecidability of predicate logic
2.6. Expressiveness of predicate logic

Als Italianen één kans krijgen, maken ze er twee.

A slide from lecture 13:

Voorbeeld 9.6.

$$
\forall y \exists x R(x, y) / \exists x \forall y R(x, y)
$$

Valid or not?

Infinite branch,
which yields counter example with infinite domain.
E.g. $D \stackrel{\text { def }}{=} \mathbb{N}, \quad R^{\mathcal{M}} \stackrel{\text { def }}{=}>^{\prime}$

9.3. Een verfijning van de methode

Voorbeeld 9.7.

$$
\forall y \exists x R(x, y) / \exists x \forall y R(x, y)
$$

9.4. Samenvatting en opmerkingen

Possible situations:

1. Tableau closes (and is finite), hence gevolgtrekking is valid
2. There is a non-closing branch
2.1 finite
2.2 infinite
describing counter example

Adequacy

A gevolgtrekking is valid, if and only if there is a closed tableau.

Undecidability

How to decide that we are on an infinite branch?

2.5. Undecidability of predicate Iogic

Deciding $\vDash \phi$ in propositional logic...

Deciding $\vDash \phi$ in predicate logic. .

Decision problem: problem for which the answer is 'yes' or 'no':

Given ... , is it true that ...?

Given an undirected graph $G=(V, E)$, does G contain a Hamiltonian path?

Given a list of integers $x_{1}, x_{2}, \ldots, x_{n}$, is the list sorted?

Given a state in a chess game, will the white player win (assuming both players play optimally) ?

Solution to a decision problem...

Definition. Validity in predicate logic.

Given a logical formula ϕ in predicate logic, does $\vDash \phi$ hold ?

Post correspondence problem = PCP

Instance:

1
101

10
00

011
11

Solution...

Instance:

1
101
:---:
00

Solution:

1	011	10	011
101	11	00	11
1	3	2	3

Instance:

No solution

Definition. The Post correspondence problem.
Given a finite sequence of pairs $\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right), \ldots,\left(s_{k}, t_{k}\right)$ such that all s_{i} and t_{i} are binary strings of positive length, is there a sequence of indices $i_{1}, i_{2}, \ldots, i_{n}$ with $n \geq 1$ such that the concatenation of strings $s_{i_{1}} s_{i_{2}} \ldots s_{i_{n}}$ equals $t_{i_{1}} t_{i_{2}} \ldots t_{i_{n}}$?
$i_{1}, i_{2}, \ldots, i_{n}$ need not all be distinct.

Exercise.

In each case below, either find a match for the instance of PCP or show that none exists.
a.

100	
10	101 01\quad110 1010${ }^{2}$

b.

1
10
:---:
101
:---:
101

http://jamesvanboxtel.com/projects/pcp-solver

Problem reduction

Given: $P C P$ is undecidable

Theorem 2.22. (Church, 1936)
The decision problem of validity in predicate logic is undecidable: no program exists which, given any ϕ, decides whether $\vDash \phi$.

Proof:

Assume that Validity is decidable.
Then an algorithm for PCP would be:

- Given an instance $\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right), \ldots,\left(s_{k}, t_{k}\right)$ of PCP, construct formula ϕ (such that ...)
- Decide whether or not $\vDash \phi$
ϕ contains:
- constant e ('empty string')
- unary function symbols f_{0} and f_{1} ('append 0/1 to string')
- binary predicate symbol P (' $P(s, t)$: there is sequence of indices $i_{1}, i_{2}, \ldots, i_{m}$ with $m \geq 1$, such that $s=s_{i_{1}} s_{i_{2}} \ldots s_{i_{m}}$ and $\left.t=t_{i_{1}} t_{i_{2}} \ldots t_{i_{m}}{ }^{\prime}\right)$

0100110

$$
\phi \stackrel{\text { def }}{=} \phi_{1} \wedge \phi_{2} \rightarrow \phi_{3}
$$

with

$$
\begin{aligned}
& \phi_{1} \stackrel{\text { def }}{=} \bigwedge_{i=1}^{k} P\left(f_{s_{i}}(e), f_{t_{i}}(e)\right) \\
& \phi_{2} \\
& \stackrel{\text { def }}{=} \\
& \phi_{3}
\end{aligned} \stackrel{.}{=} \ldots
$$

$$
\phi \stackrel{\text { def }}{=} \phi_{1} \wedge \phi_{2} \rightarrow \phi_{3}
$$

with

$$
\begin{aligned}
& \phi_{1} \stackrel{\text { def }}{=} \ldots \\
& \phi_{2} \stackrel{\text { def }}{=} \forall v \forall w\left(P(v, w) \rightarrow \bigwedge_{i=1}^{k} P\left(f_{s_{i}}(v), f_{t_{i}}(w)\right)\right) \\
& \phi_{3} \stackrel{\text { def }}{=} \ldots
\end{aligned}
$$

$$
\phi \stackrel{\text { def }}{=} \phi_{1} \wedge \phi_{2} \rightarrow \phi_{3}
$$

with

$$
\begin{array}{ll}
\phi_{1} & \stackrel{\text { def }}{=} \\
\phi_{2} & \ldots \\
& \stackrel{\text { def }}{=} \\
\phi_{3} & \stackrel{\text { def }}{=} \\
& \exists z P(z, z)
\end{array}
$$

```
Suppose that \vDash\phi...
```

Suppose that $\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right), \ldots,\left(s_{k}, t_{k}\right)$ has some solution $\left(i_{1}, i_{2}, \ldots, i_{n}\right) \ldots$

Corollary 1.

Satisfiability for predicate logic

Corollary 2.
Provability: $\vdash \phi$

2.6. Expressiveness of predicate logic

Reachability

```
int A[10];
int main ()
{ ...
    A[x*(y-1)] = 42;
    return 0;
}
```

Good state vs bad state

Reachability: Given nodes n and n^{\prime} in a directed graph, is there a finite path of transitions from n to n^{\prime} ?

Reachability: Given nodes n and n^{\prime} in a directed graph, is there a finite path of transitions from n to n^{\prime} ?

Example 2.23.
Take $R^{\mathcal{M}}=\left\{\left(s_{0}, s_{1}\right),\left(s_{1}, s_{0}\right),\left(s_{1}, s_{1}\right),\left(s_{1}, s_{2}\right),\left(s_{2}, s_{0}\right),\left(s_{3}, s_{0}\right),\left(s_{3}, s_{2}\right)\right\}$

Theorem 2.26.

Reachability is not expressible in predicate logic: there is no predicate-logic formula ϕ with u and v as its only free variables and R as its only predicate symbol (of arity 2), such that ϕ holds in directed graphs iff there is a path in that graph from the node associated to u to the node associated to v.

