1. [0,5 point] Show that $\mathrm{p} \vee \mathrm{q}, \neg \mathrm{p} \vee \neg \mathrm{q} \models \mathrm{q} \rightarrow \neg \mathrm{p}$ using a truth table.

p	q	$\mathrm{p} \vee \mathrm{q}$	$\neg \mathrm{p} \vee \neg \mathrm{q}$	$\mathrm{q} \rightarrow \neg \mathrm{p}$
T	T	T	F	F
T	F	T	T	T
F	T	T	T	T
F	F	F	T	T

2. [1,5 points] Give a proof by means of natural deduction of the following sequents:
a) $p \rightarrow q \vdash \neg p \vee q$

2	$\begin{aligned} & p \rightarrow q \\ & p \vee \neg p \end{aligned}$	premise LEM	$\neg \mathrm{p}$	assumption$\text { vi } 3$
3	p	assumption		
4	q	$\rightarrow \mathrm{e} 3,1$	$\neg \mathrm{p} \vee \mathrm{q}$	
5	$\neg p \vee q$	vi 4		
6	$\neg \mathrm{p} \vee \mathrm{q}$	ve 2 3-5,3-4		

b) $(\mathrm{p} \rightarrow \mathrm{r}) \vee(\mathrm{q} \rightarrow \mathrm{r}) \vdash(\mathrm{p} \wedge \mathrm{q}) \rightarrow \mathrm{r}$

1	$\begin{aligned} & \mathrm{p} \wedge \mathrm{q} \\ & (\mathrm{p} \rightarrow \mathrm{r}) \vee(\mathrm{q} \rightarrow \mathrm{r}) \end{aligned}$	assumption premise		
3	$p \rightarrow r$	assumption	$\mathrm{q} \rightarrow \mathrm{r}$	assumption
4	p	\wedge e 2		\wedge e 2
5	r	$\rightarrow \mathrm{e} 4,3$		$\rightarrow \mathrm{e} 4,3$
6	r	ve 1, 3-5		
7	$(\mathrm{p} \wedge \mathrm{q}) \rightarrow \mathrm{r}$	$\rightarrow \mathrm{i} 2,6$		

c) $\mathrm{p} \rightarrow \neg \mathrm{p}, \neg \mathrm{p} \rightarrow \mathrm{p} \vdash \perp$

3. [1,5 points] Use mathematical induction to prove that $1+2^{2}+\ldots+2^{n-1}=2^{n}-3$ for all integers $\mathrm{n} \geq 3$.
Proof:
Let $n=3$. Then $2^{3}-3=8-3=5$. And on the left hand side we get $1+2^{2}=1+4=5$ Thus the statement we need to prove works for $n=3$.

Assume now the statement holds for $n=k \geq 3$; that is,

$$
1+2^{2}+2^{3}+2^{4}+\ldots+2^{k-1}=2^{k}-3
$$

Let us consider the case when $n=k+1$:

$$
\begin{aligned}
1 & +2^{2}+2^{3}+2^{4}+\ldots+2^{k-1}+2^{k} \\
& =\left(2+2^{2}+2^{3}+2^{4}+\ldots+2^{k-1}\right)+2^{k} \quad \text { (here we use the induction hypothesis!) } \\
& =\left(2^{k}-3\right)+2^{k} \\
& =2 \times 2^{k}-3 \\
& =2^{k+1}-3
\end{aligned}
$$

4. [1,5 points] Find which of the following formula is valid by computing the conjunctive normal form. Explain your answer.
a) $(p \wedge \neg q) \vee(p \wedge q)$.

We have $(\mathrm{p} \wedge \neg \mathrm{q}) \vee(\mathrm{p} \wedge \mathrm{q}) \equiv(\mathrm{p} \vee(\mathrm{p} \wedge \mathrm{q})) \wedge(\neg \mathrm{q} \vee(\mathrm{p} \wedge \mathrm{q})) \quad$ (distributive laws)

$$
\equiv(p \vee p) \wedge(p \vee q) \wedge(\neg q \vee p) \wedge(\neg q \vee q) \quad \text { (distributive laws) }
$$

Since the first three conjuncts are not valid, the entire formula is not valid.
b) $\neg(p \wedge \neg q) \wedge(q \vee \neg p)$.

We have $\neg(\mathrm{p} \wedge \neg \mathrm{q}) \wedge(\mathrm{q} \vee \neg \mathrm{p}) \equiv(\neg \mathrm{p} \vee \neg \neg \mathrm{q}) \wedge(\mathrm{q} \vee \neg \mathrm{p}) \quad($ De Morgan's laws)

$$
\equiv(\neg p \vee q) \wedge(q \vee \neg p) \quad \text { (double negation) }
$$

Since the first (or the second) conjunct is not valid, the entire formula is not valid.
c) $((p \rightarrow q) \vee p) \wedge(p \vee \neg(r \wedge \neg r \wedge q))$.

```
We have \(((p \rightarrow q) \vee p) \wedge(p \vee \neg(r \wedge \neg r \wedge q)) \equiv((\neg p \vee q) \vee p) \wedge(p \vee \neg(r \wedge \neg r \wedge q)) \quad\) (implication)
```

```
\(\equiv(\neg p \vee q \vee p) \wedge(p \vee(\neg r \vee \neg \neg r \vee \neg q))\)
```

$\equiv(\neg p \vee q \vee p) \wedge(p \vee(\neg r \vee \neg \neg r \vee \neg q))$
$\equiv(\neg p \vee q \vee p) \wedge(p \vee \neg r \vee r \vee \neg q)$
(double negation)

```

Since the both conjuncts are valid, the entire formula is valid.
5. [1,5 points] Apply the marking algorithm to check if the following Horn formulas are satisfiable:
a) \((T \rightarrow q) \wedge((p \wedge q) \rightarrow r) \wedge(q \rightarrow p)\).

Let us mark the propositions by using subscripts indicating the marking round. We have
\[
\left(\mathrm{T}_{1} \rightarrow \mathrm{q}_{2}\right) \wedge\left(\left(\mathrm{p}_{3} \wedge \mathrm{q}_{2}\right) \rightarrow \mathrm{r}_{4}\right) \wedge\left(\mathrm{q}_{2} \rightarrow \mathrm{p}_{3}\right)
\]

Thus the formula is satisfiable under any valuations mapping \(\mathrm{p}, \mathrm{q}\) and r to T .
b) \((T \rightarrow p) \wedge((p \wedge q) \rightarrow r) \wedge(p \rightarrow q) \wedge((r \wedge p) \rightarrow q)\).

Let us mark the propositions by using subscripts indicating the marking round. We have
\[
\left(\mathrm{T}_{1} \rightarrow \mathrm{p}_{2}\right) \wedge\left(\left(\mathrm{p}_{2} \wedge \mathrm{q}_{3}\right) \rightarrow \mathrm{r}_{4}\right) \wedge\left(\mathrm{p}_{2} \rightarrow \mathrm{q}_{3}\right) \wedge\left(\left(\mathrm{r}_{4} \wedge \mathrm{p}_{2}\right) \rightarrow \mathrm{q}_{3}\right) .
\]

Thus the formula is satisfiable under any valuations mapping \(\mathrm{p}, \mathrm{q}\) and r to T .
c) \((\mathrm{T} \rightarrow \mathrm{p}) \wedge(\mathrm{p} \rightarrow \mathrm{q}) \wedge((\mathrm{p} \wedge \mathrm{q}) \rightarrow \mathrm{r}) \wedge(\mathrm{q} \rightarrow \perp) \wedge(\mathrm{T} \rightarrow \mathrm{r})\).

Let us mark the propositions by using subscripts indicating the marking round. We have
\[
\left(\mathrm{T}_{1} \rightarrow \mathrm{p}_{2}\right) \wedge\left(\mathrm{p}_{2} \rightarrow \mathrm{q}_{3}\right) \wedge\left(\left(\mathrm{p}_{2} \wedge \mathrm{q}\right) \rightarrow \mathrm{r}_{2}\right) \wedge\left(\mathrm{q}_{3} \rightarrow \perp_{4}\right) \wedge\left(\mathrm{T}_{1} \rightarrow \mathrm{r}_{2}\right)
\]

Thus the formula is not satisfiable.
6. [2 points] Show the validity by means of natural deduction of the following sequents:
a) \(\forall \mathrm{xP}(\mathrm{x}) \vdash \mathrm{P}(\mathrm{a}) \rightarrow \mathrm{P}(\mathrm{b})\).
\begin{tabular}{lll|}
1 & \(\forall \mathrm{xP}(\mathrm{x})\) & premise \\
2 & \(\mathrm{P}(\mathrm{a})\) & assumption \\
3 & \(\mathrm{P}(\mathrm{b})\) & \(\forall \mathrm{e} 1\) \\
4 & \(\mathrm{P}(\mathrm{a}) \rightarrow \mathrm{P}(\mathrm{b})\) & \(\rightarrow \mathrm{i} 2-3\)
\end{tabular}
b) \(\mathrm{a}=\mathrm{b} \wedge \neg \mathrm{P}(\mathrm{a}, \mathrm{b}) \vdash \neg \forall \mathrm{xP}(\mathrm{x}, \mathrm{x})\).
\begin{tabular}{lll}
1 & \(\mathrm{a}=\mathrm{b} \wedge \neg \mathrm{P}(\mathrm{a}, \mathrm{b})\) & assumption \\
2 & \(\mathrm{a}=\mathrm{b}\) & ^eL 1
\end{tabular}
\begin{tabular}{lll|}
3 & \(\neg \mathrm{P}(\mathrm{a}, \mathrm{b})\) & \(\wedge \mathrm{eR} 1\) \\
4 & \(\forall \mathrm{xP}(\mathrm{x}, \mathrm{x})\) & assumption \\
5 & \(\mathrm{P}(\mathrm{a}, \mathrm{a})\) & \(\forall \mathrm{e} 4\) \\
6 & \(\neg \mathrm{P}(\mathrm{a}, \mathrm{a})\) & \(=\mathrm{e} \mathrm{2,3}\) \\
7 & \(\perp\) & \(\neg \mathrm{e} 5,6\) \\
8 & \(\neg \forall \mathrm{xP}(\mathrm{x}, \mathrm{x})\) & \(\neg \mathrm{i} 4-7\) \\
9 & \(\exists \mathrm{xP}(\mathrm{x})\) & \(\exists \mathrm{e} 2,3-8\)
\end{tabular}
c) \(\vdash \forall \mathrm{x} \forall \mathrm{y}(\mathrm{x}=\mathrm{x} \vee \mathrm{x}=\mathrm{y})\).

d) \(\vdash \neg \exists \mathrm{x} \neg(\mathrm{x}=\mathrm{x})\).
\begin{tabular}{|c|c|c|}
\hline 1 & \(\exists \mathrm{x} \neg(\mathrm{x}=\mathrm{x})\) & assumption \\
\hline 2 & \(\mathrm{x}_{0} \quad \neg\left(\mathrm{x}_{0}=\mathrm{x}_{0}\right)\) & assumption \\
\hline 3 & \(\mathrm{x}_{0}=\mathrm{x}_{0}\) & \\
\hline 4 & \(\perp\) & ᄀe 2,3 \\
\hline 5 & \(\perp\) & ヨe 1,2-4 \\
\hline 6 & \(\neg \exists \mathrm{x} \neg(\mathrm{x}=\mathrm{x})\) & ᄀi 1,5 \\
\hline
\end{tabular}
7. [1,5 points] Consider the predicate formula \(\forall x \exists y(P(x, y) \rightarrow f(x, c)=y)\), where \(c\) is a constant, \(P\) is a binary predicate and \(f\) is a binary function. Find a model which makes the formula true.
Take the model M with the set N of natural number as universe, \(\mathrm{P}^{\mathrm{M}}\) the usual order relation <, \(\mathrm{f}^{\mathrm{M}}\) the usual addition + , and \(\mathrm{c}^{\mathrm{M}}=1\) (the number 1 ). Then for every number n in N we can find a number m by taking \(\mathrm{m}=\mathrm{n}+1\) so that \(\mathrm{n}<\mathrm{m}\) and \(\mathrm{n}+1=\mathrm{m}\). Thus our model M makes the formula true.

The final score is given by the sum of the points obtained.```

