1. **[0,5 point]** Show that $p \lor q$, $\neg p \lor \neg q \models q \rightarrow \neg p$ using a truth table.

-	-		-		
	р	q	$p \lor q$	$\neg p \lor \neg q$	$q \rightarrow \neg p$
	Т	Т	Т	F	F
	Т	F	Т	Т	Т
	F	Т	Т	Т	Т
	F	F	F	Т	Т

2. [1,5 points] Give a proof by means of natural deduction of the following sequents:
a) p→q ⊢¬p∨q

	ΨΨ		
	1 $p \rightarrow q$	premise	
	2 $p \lor \neg p$	LEM	
	3 p	assumption	¬p assumption
	4 q	→e 3,1	$\neg p \lor q \lor i 3$
	5 $\neg p \lor q$	∨i 4	
		∨e 2 3-5,3-4	
b) $(p \rightarrow r) \lor$			
$1 p \wedge$		assumption	
-	\rightarrow r) \lor (q \rightarrow r)	premise	
$3 p \rightarrow$		assumption	$q \rightarrow r$ assumption
4 p		∧e 2	q ∧e 2
5 r		→e 4, 3	r →e 4, 3
6 r		∨e 1, 3-5	
7 (p ^	$(q) \rightarrow r$	→i 2,6	
c) $p \rightarrow \neg p, \neg$	-		
	$1 p \rightarrow \neg p$	premise	
	2 $\neg p \rightarrow p$	premise	
	3 p∨¬p	LEM	
	4 p	assumption	¬p assumption
	5 ¬p	→e 4,1	$p \rightarrow e 4,2$
	6 🔟	¬e 4,5	⊥ ¬e 4,5
	7 1	∨e 3, 4-6	

3. **[1,5 points]** Use mathematical induction to prove that $1 + 2^2 + ... + 2^{n-1} = 2^n - 3$ for all integers $n \ge 3$.

Proof:

Let n = 3. Then $2^3 - 3 = 8 - 3 = 5$. And on the left hand side we get $1 + 2^2 = 1 + 4 = 5$ Thus the statement we need to prove works for n = 3.

Assume now the statement holds for $n = k \ge 3$; that is, $1 + 2^2 + 2^3 + 2^4 + ... + 2^{k-1} = 2^k - 3$

Let us consider the case when n = k + 1:

- $1 + 2^{2} + 2^{3} + 2^{4} + \dots + 2^{k-1} + 2^{k}$ = $(2 + 2^{2} + 2^{3} + 2^{4} + \dots + 2^{k-1}) + 2^{k}$ = $(2^{k} - 3) + 2^{k}$ (here we use the induction hypothesis!) = $2 \times 2^{k} - 3$ = $2^{k+1} - 3$
- 4. **[1,5 points]** Find which of the following formula is valid by computing the conjunctive normal form. Explain your answer.

a) $(p \land \neg q) \lor (p \land q)$. We have $(p \land \neg q) \lor (p \land q) \equiv (p \lor (p \land q)) \land (\neg q \lor (p \land q))$ (distributive laws) $\equiv (p \lor p) \land (p \lor q) \land (\neg q \lor p) \land (\neg q \lor q)$ (distributive laws) Since the first three conjuncts are not valid, the entire formula is not valid. b) $\neg (p \land \neg q) \land (q \lor \neg p)$. We have $\neg (p \land \neg q) \land (q \lor \neg p) \equiv (\neg p \lor \neg \neg q) \land (q \lor \neg p)$ (De Morgan's laws) $\equiv (\neg p \lor q) \land (q \lor \neg p)$ (double negation) Since the first (or the second) conjunct is not valid, the entire formula is not valid. c) $((p \rightarrow q) \lor p) \land (p \lor \neg (r \land \neg r \land q))$. We have $((p \rightarrow q) \lor p) \land (p \lor \neg (r \land \neg r \land q)) \equiv ((\neg p \lor q) \lor p) \land (p \lor \neg (r \land \neg r \land q))$ (implication) (De Morgan) $\equiv (\neg p \lor q \lor p) \land (p \lor (\neg r \lor \neg \neg r \lor \neg q))$ $\equiv (\neg \mathbf{p} \lor q \lor \mathbf{p}) \land (\mathbf{p} \lor \neg \mathbf{r} \lor \mathbf{r} \lor \neg q)$ (double negation)

Since the both conjuncts are valid, the entire formula is valid.

5. **[1,5 points]** Apply the marking algorithm to check if the following Horn formulas are satisfiable:

a) (T→q) ∧ ((p ∧ q) → r) ∧ (q → p).
Let us mark the propositions by using subscripts indicating the marking round. We have (T₁ → q₂) ∧ ((p₃ ∧ q₂) → r₄) ∧ (q₂ → p₃)
Thus the formula is satisfiable under any valuations mapping p,q and r to T.
b) (T → p) ∧ ((p ∧ q) → r) ∧ (p → q) ∧ ((r ∧ p) → q).
Let us mark the propositions by using subscripts indicating the marking round. We have (T₁ → p₂) ∧ ((p₂ ∧ q₃) → r₄) ∧ (p₂ → q₃) ∧ ((r₄ ∧ p₂) → q₃).
Thus the formula is satisfiable under any valuations mapping p,q and r to T.
c) (T → p) ∧ (p → q) ∧ ((p ∧ q) → r) ∧ (q → ⊥) ∧ (T → r).
Let us mark the propositions by using subscripts indicating the marking round. We have (T₁ → p₂) ∧ ((p₂ → q₃) ∧ ((p₂ ∧ q) → r₂) ∧ (q₃ → ⊥₄) ∧ (T₁ → r₂)
Thus the formula is not satisfiable.

- 6. **[2 points]** Show the validity by means of natural deduction of the following sequents:
 - a) $\forall x P(x) \vdash P(a) \rightarrow P(b)$.

, , , , , , , , , , , , , , , , , , ,	1	$\forall x P(x)$	premise	
	2	P(a)	assumption	
	3	P(b)	$\forall e 1$	
	4	$P(a) \rightarrow P(b)$	→i 2-3	
b) $a = b \land \neg P(a,b) \models \neg \forall x P(x,x)$.				
	1	$\mathbf{a} = \mathbf{b} \land \neg \mathbf{P}(\mathbf{a}, \mathbf{b})$	assumption	
	2	$\mathbf{a} = \mathbf{b}$	∧eL 1	

3	$\neg P(a,b)$	∧eR 1
4	$\forall x P(x,x)$	assumption
5	P(a,a)	∀e 4
6	$\neg P(a,a)$	=e 2,3
7	\perp	¬e 5,6
8	$\neg \forall x P(x,x)$	−i 4-7
9	$\exists x P(x)$	∃e 2,3-8
c) $\vdash \forall x \forall y(x = x)$	$\forall x = y)$.	
1 x	$x_0 = x_0$	=i
2	$y_0 x_0 = x_0 \lor x_0 = y_0$	∨il 1
3	$\forall \mathbf{y}(\mathbf{x}_0 = \mathbf{x}_0 \lor \mathbf{x}_0 = \mathbf{y})$	∀i 2-2
4	$\forall x \forall y \ (x = x \ \lor x = y))$	∀i 1-3
d) $\vdash \neg \exists x \neg (x = x)$.		
1	$\exists x \neg (x = x)$	assumption
2	$\mathbf{x}_0 \neg(\mathbf{x}_0 = \mathbf{x}_0)$	assumption
3	$\mathbf{x}_0 = \mathbf{x}_0$	=i
4		¬e 2,3
5	\perp	∃e 1,2-4
6	$\neg \exists x \neg (x = x)$	¬i 1,5

7. **[1,5 points]** Consider the predicate formula $\forall x \exists y (P(x,y) \rightarrow f(x,c) = y)$, where c is a constant, P is a binary predicate and f is a binary function. Find a model which makes the formula true. Take the model M with the set N of natural number as universe, P^M the usual order relation <, f^M the usual addition +, and c^M = 1 (the number 1). Then for every number n in N we can find a number m by taking m = n+1 so that n < m and n+1 = m. Thus our model M makes the formula true.

The final score is given by the sum of the points obtained.