1. $[0,5$ point $]$ Show that $\mathrm{p} \vee \mathrm{q}, \neg \mathrm{p} \vee \neg \mathrm{q} \models \mathrm{q} \rightarrow \neg \mathrm{p}$ using a truth table.
2. [1,5 points] Give a proof by means of natural deduction of the following sequents:
a) $\mathrm{p} \rightarrow \mathrm{q} \vdash \neg \mathrm{p} \vee \mathrm{q}$
b) $(\mathrm{p} \rightarrow \mathrm{r}) \vee(\mathrm{q} \rightarrow \mathrm{r}) \vdash(\mathrm{p} \wedge \mathrm{q}) \rightarrow \mathrm{r}$
c) $\mathrm{p} \rightarrow \neg \mathrm{p}, \neg \mathrm{p} \rightarrow \mathrm{p} \vdash \perp$
3. [1,5 points] Use mathematical induction to prove that $1+2^{2}+\ldots+2^{n-1}=2^{n}-3$ for all integers $\mathrm{n} \geq 3$.
4. [1,5 points] Find which of the following formula is valid by computing the conjunctive normal form. Explain your answer.
a) $(p \wedge \neg q) \vee(p \wedge q)$.
b) $\neg(p \wedge \neg q) \wedge(q \vee \neg p)$.
c) $((\mathrm{p} \rightarrow \mathrm{q}) \vee \mathrm{p}) \wedge(\mathrm{p} \vee \neg(\mathrm{r} \wedge \neg \mathrm{r} \wedge \mathrm{q}))$.
5. [1,5 points] Apply the marking algorithm to check if the following Horn formulas are satisfiable:
a) $(T \rightarrow q) \wedge((p \wedge q) \rightarrow r) \wedge(q \rightarrow p)$.
b) $(T \rightarrow p) \wedge((p \wedge q) \rightarrow r) \wedge(p \rightarrow q) \wedge((r \wedge p) \rightarrow q)$.
c) $(\mathrm{T} \rightarrow \mathrm{p}) \wedge(\mathrm{p} \rightarrow \mathrm{q}) \wedge((\mathrm{p} \wedge \mathrm{q}) \rightarrow \mathrm{r}) \wedge(\mathrm{q} \rightarrow \perp) \wedge(\mathrm{T} \rightarrow \mathrm{r})$.
6. [2 points] Show the validity by means of natural deduction of the following sequents:
a) $\forall \mathrm{xP}(\mathrm{x}) \vdash \mathrm{P}(\mathrm{a}) \rightarrow \mathrm{P}(\mathrm{b})$.
b) $\mathrm{a}=\mathrm{b} \wedge \neg \mathrm{P}(\mathrm{a}, \mathrm{b}) \vdash \neg \forall \mathrm{x} P(\mathrm{x}, \mathrm{x})$.
c) $\vdash \forall \mathrm{x} \forall \mathrm{y}(\mathrm{x}=\mathrm{x} \vee \mathrm{x}=\mathrm{y})$.
d) $\vdash \neg \exists x \neg(x=x)$.
7. [1,5 points] Consider the predicate formula $\forall x \exists y(P(x, y) \rightarrow f(x, c)=y)$, where c is a constant, P is a binary predicate and f is a binary function. Find a model which makes the formula true.

The final score is given by the sum of the points obtained.

