1. [1 point] Draw the parse tree of the formula $p \rightarrow((q \wedge \neg \neg p) \vee \neg(q \rightarrow p))$ and list all its subformulas.
2. [2 points] Give a proof by means of natural deduction of the following sequents:
a) $\vdash \mathrm{p} \rightarrow((\mathrm{p} \rightarrow \mathrm{q}) \rightarrow \mathrm{q})$.

b) $\neg \mathrm{p} \vdash \mathrm{p} \rightarrow(\mathrm{p} \rightarrow \mathrm{q})$.

1	$\neg \mathrm{p}$	premise
2	p	assumption
3	\perp	$\neg \mathrm{e} 1,2$
4	$\mathrm{p} \rightarrow \mathrm{q}$	$\perp \mathrm{e} 3$
5	$\mathrm{p} \rightarrow(\mathrm{p} \rightarrow \mathrm{q})$	$\rightarrow \mathrm{i} 2-6$

c) $(\mathrm{p} \rightarrow \mathrm{q}) \vee(\mathrm{r} \rightarrow \mathrm{q}) \vdash(\mathrm{p} \wedge \mathrm{r}) \rightarrow \mathrm{q}$

1	$(\mathrm{p} \rightarrow \mathrm{q}) \vee(\mathrm{r} \rightarrow \mathrm{q})$	premise		
2	$\mathrm{p} \wedge \mathrm{r}$	assumption	$\mathrm{r} \rightarrow \mathrm{q}$ assumption r ^e 2 q $\rightarrow \mathrm{e} 4,3$	
3	$\mathrm{p} \rightarrow \mathrm{q}$	assumption		
4	p	\wedge e 2		
5	q	$\rightarrow \mathrm{e} 4,3$		
6	q	ve 1, 3-5		
7	$(\mathrm{p} \wedge \mathrm{r}) \rightarrow \mathrm{q}$	$\rightarrow \mathrm{i} 2,6$		

d) $\neg p,(p \vee q) \vdash q$.

1	$\begin{aligned} & \neg \mathrm{p} \\ & \mathrm{p} \vee \mathrm{q} \end{aligned}$	premise premise	
3	p	assumption	q assumption
4	\perp	ᄀe 1,3	
5	q	Le 4	
6	q	ve 2,3-5,3	

3. [1 point] Use mathematical induction to prove that $\sum_{i=1}^{n} \frac{1}{i(i+1)}=\frac{n}{n+1}$ for all $\mathrm{n} \geq 1$.

Proof:
Let $n=1$. Then the left hand side is $\frac{1}{1(1+1)}=\frac{1}{2}$ which is clearly equal to the right hand. Thus the statement we need to prove holds for $n=1$.

Assume now the statement holds for $n=k$; that is, $\sum_{i=1}^{k} \frac{1}{i(i+1)}=\frac{k}{k+1}$, and let us consider the case when $n=k+1$:

$$
\begin{array}{ll}
\sum_{i=1}^{k+1} \frac{1}{i(i+1)}=\sum_{i=1}^{k} \frac{1}{i(i+1)}+\frac{1}{(k+1)(k+2)} & \text { splitting the sum in two parts } \\
=\frac{k}{k+1}+\frac{1}{(k+1)(k+2)} & \text { here we use the induction hypothesis! } \\
=\frac{k(k+2+1}{(k+1)(k+2)} & \text { algebraic calculation } \\
=\frac{(k+1)^{2}}{(k+1)(k+2)} & \text { algebraic calculation } \\
=\frac{k+1}{(k+2)} & \text { algebraic calculation }
\end{array}
$$

4. [2 points] Compute the conjunctive normal form of the following formulas and check which formulas are valid. Explain your answer.
a) $(p \wedge \neg q) \vee(p \wedge q)$.

$$
\begin{array}{ll}
\text { We have }(p \wedge \neg q) \vee(p \wedge q) \equiv(p \vee(p \wedge q)) \wedge(\neg q \vee(p \wedge q)) & \text { (distributive laws) } \\
\equiv(p \vee p) \wedge(p \vee q) \wedge(\neg q \vee p) \wedge(\neg q \vee q) & \text { (distributive laws) }
\end{array}
$$

Since the first three conjuncts are not valid, the entire formula is not valid.
b) $\neg(p \wedge \neg q) \wedge(q \vee \neg p)$.

We have $\neg(\mathrm{p} \wedge \neg \mathrm{q}) \wedge(\mathrm{q} \vee \neg \mathrm{p}) \equiv(\neg \mathrm{p} \vee \neg \neg \mathrm{q}) \wedge(\mathrm{q} \vee \neg \mathrm{p}) \quad($ De Morgan's laws)

$$
\equiv(\neg p \vee q) \wedge(q \vee \neg p) \quad \text { (double negation) }
$$

Since the first conjunct is not valid, the entire formula is not valid.
c) $((\mathrm{p} \rightarrow \mathrm{q}) \vee \mathrm{p}) \wedge(\mathrm{p} \vee \neg(\mathrm{r} \wedge \neg \mathrm{r} \wedge \mathrm{q}))$.

We have $((p \rightarrow q) \vee p) \wedge(p \vee \neg(r \wedge \neg r \wedge q)) \equiv((\neg p \vee q) \vee p) \wedge(p \vee \neg(r \wedge \neg r \wedge q)) \quad$ (implication)

$$
\begin{array}{ll}
\equiv(\neg p \vee q \vee p) \wedge(p \vee(\neg r \vee \neg \neg r \vee \neg q)) & \text { (De Morgan) } \\
\equiv(\neg p \vee q \vee p) \wedge(p \vee \neg r \vee r \vee \neg q) & \text { (double negation) }
\end{array}
$$

Since the both conjuncts are valid, the entire formula is valid.
d) Construct a formula ϕ in conjunctive normal form from the truth table

p	q	ϕ
T	T	F
T	F	T
F	T	T
F	F	F

The formula ϕ is obtained as the conjunction of the disjunction of the opposite atoms of the line where ϕ is false: $(\neg p \vee \neg q) \wedge(p \vee q)$
5. [1 point] Apply the marking algorithm to check if the following Horn formulas are satisfiable:
a) $(\mathrm{T} \rightarrow \mathrm{p}) \wedge((\mathrm{p} \wedge \mathrm{q}) \rightarrow \mathrm{r}) \wedge(\mathrm{p} \rightarrow \mathrm{q}) \wedge((\mathrm{r} \wedge \mathrm{p}) \rightarrow \mathrm{q})$.

Let us mark the propositions by using subscripts indicating the marking round. We have

$$
\left(\mathrm{T}_{1} \rightarrow \mathrm{p}_{2}\right) \wedge\left(\left(\mathrm{p}_{2} \wedge \mathrm{q}_{3}\right) \rightarrow \mathrm{r}_{4}\right) \wedge\left(\mathrm{p}_{2} \rightarrow \mathrm{q}_{3}\right) \wedge\left(\left(\mathrm{r}_{4} \wedge \mathrm{p}_{2}\right) \rightarrow \mathrm{q}_{3}\right)
$$

Thus the formula is satisfiable under any valuations mapping p, q and r to T .
b) $(\mathrm{T} \rightarrow \mathrm{p}) \wedge(\mathrm{p} \rightarrow \mathrm{q}) \wedge((\mathrm{p} \wedge \mathrm{q}) \rightarrow \mathrm{r}) \wedge(\mathrm{q} \rightarrow \perp) \wedge(\mathrm{T} \rightarrow \mathrm{r})$.

Let us mark the propositions by using subscripts indicating the marking round. We have

$$
\left(\mathrm{T}_{1} \rightarrow \mathrm{p}_{2}\right) \wedge\left(\mathrm{p}_{2} \rightarrow \mathrm{q}_{3}\right) \wedge\left(\left(\mathrm{p}_{2} \wedge \mathrm{q}\right) \rightarrow \mathrm{r}_{2}\right) \wedge\left(\mathrm{q}_{3} \rightarrow \perp_{4}\right) \wedge\left(\mathrm{T}_{1} \rightarrow \mathrm{r}_{2}\right)
$$

Thus the formula is not satisfiable.
6. [2 points] Show the validity by means of natural deduction of the following sequents:
a) $\forall \mathrm{xP}(\mathrm{x}), \neg \exists \mathrm{xQ}(\mathrm{x}) \vdash \mathrm{P}(\mathrm{a}) \vee \mathrm{Q}(\mathrm{a})$.

$$
1 \quad \forall \mathrm{xP}(\mathrm{x}) \quad \text { premise }
$$

2	$\neg \exists \mathrm{xQ}(\mathrm{x})$	premise
3	$\mathrm{P}(\mathrm{a})$	$\forall \mathrm{e} 1$
4	$\mathrm{P}(\mathrm{a}) \vee \mathrm{Q}(\mathrm{a})$	$\vee \mathrm{i}_{\mathrm{L}} 3$

b) $\mathrm{P}(\mathrm{a}) \vdash \forall \mathrm{x}(\mathrm{x}=\mathrm{a} \rightarrow \mathrm{P}(\mathrm{x}))$.

$1 \quad \mathrm{P}(\mathrm{a})$		assumption
2	x_{0}	
3	$\mathrm{x}_{0}=\mathrm{a}$	assumption
4	$\mathrm{P}\left(\mathrm{x}_{0}\right)$	=e 2,1
6	$\mathrm{x}_{0}=\mathrm{a} \rightarrow \mathrm{P}\left(\mathrm{x}_{0}\right)$	$\rightarrow \mathrm{i}$ 3-4
7	$\forall x(x=a \rightarrow P(x))$	\forall i 2-6

c) $\vdash \exists x(x=a \vee \neg(x=b))$.

1	$a=a$	$=$ i
2	$a=a \vee \neg(a=b)$	$\vee i 1$
3	$\exists x(x=a \vee \neg(x=b))$	\exists i $1-2$

d) $\vdash \neg \exists \mathrm{x} \neg(\mathrm{x}=\mathrm{x})$.

1	$\exists \mathrm{x} \neg(\mathrm{x}=\mathrm{x})$	assumption
2	$\mathrm{x}_{0} \quad \neg\left(\mathrm{X}_{0}=\mathrm{x}_{0}\right)$	assumption
3	$\mathrm{x}_{0}=\mathrm{x}_{0}$	
4	\perp	ᄀe 2,3
5	\perp	ヨe 1,2-4
6	$\neg \exists \mathrm{x} \neg(\mathrm{x}=\mathrm{x})$	ᄀi 1,5

7. [1 point] For each of the following sequents give a model showing that it is not valid:
a) $\vdash \forall \mathrm{x} \forall \mathrm{y} \forall \mathrm{z}(\mathrm{P}(\mathrm{x}, \mathrm{y}) \rightarrow \mathrm{P}(\mathrm{y}, \mathrm{z}))$.

Take the model M with the set $\{0,1\}$ as universe, and $\mathrm{P}^{\mathrm{M}}=\{(0,1)\}$. Then for the environment assigning x to 0 , y to 1 and z to 0 we have that $\mathrm{P}(\mathrm{x}, \mathrm{y}) \rightarrow \mathrm{P}(\mathrm{y}, \mathrm{z})$ does not hold.
b) $\forall \mathrm{x}(\mathrm{P}(\mathrm{x}) \vee \mathrm{Q}(\mathrm{x})) \vdash \forall \mathrm{xP}(\mathrm{x}) \vee \forall \mathrm{xQ}(\mathrm{x})$.

Take the model M with the set $\{0,1\}$ as universe, and $P^{M}=\{0\}, Q^{M}=\{1\}$. Then the right hand side clearly does not hold, while for every environment either $\mathrm{P}(\mathrm{x})$ or $\mathrm{Q}(\mathrm{x})$ holds.

The final score is given by the sum of the points obtained.

