LIACS

1. [1 point] Draw the parse tree of the formula $\mathrm{p} \rightarrow((\mathrm{q} \wedge \neg \neg \mathrm{p}) \vee \neg(\mathrm{q} \rightarrow \mathrm{p}))$ and list all its subformulas.
2. [2 points] Give a proof by means of natural deduction of the following sequents:
a) $\vdash \mathrm{p} \rightarrow((\mathrm{p} \rightarrow \mathrm{q}) \rightarrow \mathrm{q})$.
b) $\neg \mathrm{p} \vdash \mathrm{p} \rightarrow(\mathrm{p} \rightarrow \mathrm{q})$.
c) $(\mathrm{p} \rightarrow \mathrm{q}) \vee(\mathrm{r} \rightarrow \mathrm{q}) \vdash(\mathrm{p} \wedge \mathrm{r}) \rightarrow \mathrm{q}$
d) $\neg p,(p \vee q) \vdash q$.
3. [1 point] Use mathematical induction to prove that $\sum_{i=1}^{n} \frac{1}{i(i+1)}=\frac{n}{n+1}$ for all $\mathrm{n} \geq 1$.
4. [2 points] Compute the conjunctive normal form of the following formulas and check which formulas are valid. Explain your answer.
a) $(p \wedge \neg q) \vee(p \wedge q)$.
b) $\neg(p \wedge \neg q) \wedge(q \vee \neg p)$.
c) $((p \rightarrow q) \vee p) \wedge(p \vee \neg(r \wedge \neg r \wedge q))$.
d) Construct a formula ϕ in conjunctive normal form from the truth table

p	q	ϕ
T	T	F
T	F	T
F	T	T
F	F	F

5. [1 point] Apply the marking algorithm to check if the following Horn formulas are satisfiable:
a) $(\mathrm{T} \rightarrow \mathrm{p}) \wedge((\mathrm{p} \wedge \mathrm{q}) \rightarrow \mathrm{r}) \wedge(\mathrm{p} \rightarrow \mathrm{q}) \wedge((\mathrm{r} \wedge \mathrm{p}) \rightarrow \mathrm{q})$.
b) $(\mathrm{T} \rightarrow \mathrm{p}) \wedge(\mathrm{p} \rightarrow \mathrm{q}) \wedge((\mathrm{p} \wedge \mathrm{q}) \rightarrow \mathrm{r}) \wedge(\mathrm{q} \rightarrow \perp) \wedge(\mathrm{T} \rightarrow \mathrm{r})$.
6. [2 points] Show the validity by means of natural deduction of the following sequents:
a) $\forall \mathrm{xP}(\mathrm{x}), \neg \exists \mathrm{xQ}(\mathrm{x}) \vdash \mathrm{P}(\mathrm{a}) \vee \mathrm{Q}(\mathrm{a})$.
b) $\mathrm{P}(\mathrm{a}) \vdash \forall \mathrm{x}(\mathrm{x}=\mathrm{a} \rightarrow \mathrm{P}(\mathrm{x}))$.
c) $\vdash \exists x(x=a \vee \neg(x=b))$.
d) $\vdash \neg \exists \mathrm{x} \neg(\mathrm{x}=\mathrm{x})$.
7. [1 point] For each of the following sequents give a model showing that it is not valid:
a) $\vdash \forall \mathrm{x} \forall \mathrm{y} \forall \mathrm{z}(\mathrm{P}(\mathrm{x}, \mathrm{y}) \rightarrow \mathrm{P}(\mathrm{y}, \mathrm{z}))$.
b) $\forall \mathrm{x}(\mathrm{P}(\mathrm{x}) \vee \mathrm{Q}(\mathrm{x})) \vdash \forall \mathrm{xP}(\mathrm{x}) \vee \forall \mathrm{xQ}(\mathrm{x})$.

The final score is given by the sum of the points obtained.

