1. **[1 point]** Find a formula ϕ of propositional logic which contains all and only the atoms p and q and r, and which is true only when p, q and r are all true or when $\neg p \land q$ is true. Give its truth table.

The truth table for the formula ϕ must be as follows:

р	q	r	$\neg p \land q$	¢
F	F	F	F	F
F	F	Т	F	F
F	Т	F	Т	Т
F	Т	Т	Т	Т
Т	F	F	F	F
Т	F	Т	F	F
Т	Т	F	F	F
Т	Т	Т	F	Т

The resulting ϕ in CNF is obtained from those line where ϕ evaluates to true, that is ϕ is $(p \lor \neg q \lor r) \land (p \lor \neg q \lor \neg r) \land (\neg p \lor \neg q \lor \neg r)$.

2. [2 points] Give a proof in *natural deduction* for each of the following sequents: a) $(p \land q) \lor ((-r \land p) + r \land p)$

a) $(p \land q) \lor (\neg r \land p) \vdash r \rightarrow p$							
$1 (p \land q) \lor (\neg r \land p)$							
2 <u>r</u>	assumption						
3 $p \wedge q$	assumption	$\neg r \land p$ assumption					
4 p	∧e _L 3	$p \wedge i_R 3$					
5 p	∨e 1,3-4,3-4						
$6 r \rightarrow p$	→i 2-5						
b) $p \rightarrow q \vdash q \lor \neg p$							
$p \rightarrow q$	premise						
2 <u>p ∨ ¬p</u>	LEM						
3 p	assumption	¬p assumption					
4 q	→e 3,1	$q \lor \neg p \lor i_R 3$					
5 $q \lor \neg p$	$\vee i_L 4$						
$6 q \lor \neg p$	∨e 2,3-5,3-4						
c) $p \wedge q, \neg (p \wedge r) \vdash \neg r$							
1	$p \wedge q$	premise					
2	$\neg(p \land r)$	premise					
3	r	assumption					
4	р	$\wedge e_L 1$ $\wedge i 3,4$					
5	$p \wedge r$						
6	\perp						
7	$\neg r$						
c) $p \rightarrow (q \rightarrow r) \models (p \rightarrow q) \rightarrow (p \rightarrow r)$							
	$p \rightarrow (q \rightarrow r)$	premise					
	$p \rightarrow q$	assumption					
3	р	assumption					

4	q	→e 3,2
5	$q \rightarrow r$	→e 3,1
6	r	→e 4,5
7	$p \rightarrow r$	→i 3-6
8	$(p \rightarrow q) \rightarrow (p \rightarrow r)$	→i 2-7

3. **[1,5 points]** Compute the *conjunctive normal form* of the following formulas and check if they are valid. Explain your answers and state which laws (de Morgan law, distributive law, ...) you have applied.

a) $(p \land \neg q) \lor (p \land q)$.

We have $(p \land \neg q) \lor (p \land q) \equiv (p \lor (p \land q)) \land (\neg q \lor (p \land q))$ (distributive laws) $\equiv (p \lor p) \land (p \lor q) \land (\neg q \lor p) \land (\neg q \lor q)$ (distributive laws)

Since, for example, in the first conjunct there is no atom appearing both positively and negatively, the entire formula is not valid.

b)
$$\neg (p \land \neg q) \land (q \lor \neg p)$$
.
We have $\neg (p \land \neg q) \land (q \lor \neg p) \equiv (\neg p \lor \neg \neg q) \land (q \lor \neg p)$ (De Morgan's laws)
 $\equiv (\neg p \lor q) \land (q \lor \neg p)$ (double negation)
 $\equiv (\neg p \lor (q \lor \neg p)) \land (q \lor (q \lor \neg p))$ (distributive laws)
 $\equiv (\neg p \lor q \lor \neg p) \land (q \lor q \lor \neg p)$ (associativity)
Since, for example, in the first conjunct there is no atom appearing both positively and
negatively, the entire formula is not valid.

c)
$$((p \rightarrow q) \lor p) \land (p \lor \neg (r \land \neg r \land q))$$
.
We have $((p \rightarrow q) \lor p) \land (p \lor \neg (r \land \neg r \land q)) \equiv ((\neg p \lor q) \lor p) \land (p \lor \neg (r \land \neg r \land q))$ (implication)
 $\equiv (\neg p \lor q \lor p) \land (p \lor (\neg r \lor \neg \neg r \lor \neg q))$ (De Morgan)
 $\equiv (\neg p \lor q \lor p) \land (p \lor \neg r \lor r \lor \neg q)$ (double negation)
Since the both conjuncts have one atomic proposition appearing positively and negatively, the

entire formula is valid.

4. **[2 points]** Use the *tableau method* to find a counterexample for the validity of each of the following sequent

a)
$$\vdash (p \land \neg q) \lor (q \to \neg p)$$

The open branch gives us the counterexample: p is true and q is true. b) $r \rightarrow (q \rightarrow p) \models q \rightarrow (p \rightarrow r)$

The two open branches give us the same counterexample: p is true, q is true, and r is false.

- 5. **[1 point]** Let P be a predicate symbol of arity 2, and f, g be two function symbols of arity 1 and 2, respectively.
 - a) Draw the *parse tree* of the formula ϕ given by $\forall x \exists y(P(x,y) \rightarrow P(z,y)) \land \exists z P(x,z)$, where x,y,z are three variables.

- b) Compute the *substitutions* $\phi[t/x]$ and $\phi[t/y]$ where t = g(y,f(x)). Is the term t *free for* z in ϕ ? $\phi[t/x] = \forall x \exists y(P(x,y) \rightarrow P(z,y)) \land \exists z P(g(y,f(x)),z)$, and $\phi[t/y] = \phi$ as y always occurs as a bound variable ϕ . The term t is not free in z, because there exists a leave z free in ϕ but with the variable x (but also y) of t falling in the scope of a quantifier.
- 6. **[1 point]** Let P be a unary predicate symbol, R a binary predicate symbol and c be a constant. Consider the model M with A = {c,d,e,f}, $P^M = \{c\}, R^M = \{(c,d), (d,e), (e,f)\}$, and $c^M = c$.
 - a) Does $M \models P(c)$ hold? Explain your answer. Yes, because $c \in P^{M}$.
 - b) Does $M \models \forall x \exists y R(x,y)$ hold? Explain your answer. No, because there is no pair with f as first component (i.e. (f,...)) in \mathbb{R}^{M} .
 - c) Does $M \models \forall x(P(x) \rightarrow \exists yR(x,y))$ hold? Explain your answer.

Yes, because c is the only element making P(x), and the pair (c,d) is in R^M .

- d) Does there exist a look-up table ℓ such that $M \models_{\ell} R(c,x)$ hold? Explain your answer. Yes, take any look-up table with $\ell(x) = d$, so that the pair (c,d) is in \mathbb{R}^{M} .
- 7. **[1,5 points]** Show the validity of each of the following sequent by means of a proof in *natural deduction*, where P is a predicate of arity 1, R is a predicate of arity 2, and a, b are two constants:

a) $\forall x P(x) \vdash \forall x (P(x) \land P(x))$.									
		1	$\forall x P(x)$	premise					
		$2 x_0$	$P(x_0)$	∀e 1					
		3	$P(x_0) \wedge P(x_0)$	∧i 2, 2					
		4	$\forall x (P(x) \land P(x))$	∀i 2-3					
b) $a = b, \neg R(a,b) \models \neg \forall x R(x,x)$.									
	1 a	. = b		assumption					
	2	R(a,b)		assumption					
	3 $\forall x R(x,x)$			assumption					
	4 R	R(b,b)		∀e 3					
	5 $\neg R(b,b)$			=e 1,2 {using ¬F	(x,b)				
	6 _	_		¬e 4,5					
	7 –	$\forall x R(x,x)$		¬i 3-6					
c) $\vdash \forall x \exists y(\mathbf{I})$	$P(x) \rightarrow$	P(y)).							
	1	X0							
	2	P(x ₀))	assumpti	on				
	3)	copy 2					
	4	$P(x_0) \rightarrow P(x_0)$		→i 2-3					
	5	∃y(I	$P(x_0) \rightarrow P(y))$	∃i 4					
	6	$\forall x \exists$	$P(P(x) \rightarrow P(y))$	∀i 1-5					

The final score is given by the sum of the points obtained.