1. [1 point] Find a formula ϕ of propositional logic which contains all and only the atoms p and q and r, and which is true only when p, q and r are all true or when $\neg p \wedge q$ is true. Give its truth table.
The truth table for the formula ϕ must be as follows:

p	q	r	$\neg \mathrm{p} \wedge \mathrm{q}$	ϕ
F	F	F	F	F
F	F	T	F	F
F	T	F	T	T
F	T	T	T	T
T	F	F	F	F
T	F	T	F	F
T	T	F	F	F
T	T	T	F	T

The resulting ϕ in CNF is obtained from those line where ϕ evaluates to true, that is ϕ is $(p \vee \neg q \vee r) \wedge(p \vee \neg q \vee \neg r) \wedge(\neg p \vee \neg q \vee \neg r)$.
2. [2 points] Give a proof in natural deduction for each of the following sequents:
a) $(p \wedge q) \vee(\neg r \wedge p) \vdash r \rightarrow p$

1	$(\mathrm{p} \wedge \mathrm{q})$	premise		
2	r	assumption	$\begin{aligned} & \neg \mathrm{r} \wedge \mathrm{p} \\ & \mathrm{p} \end{aligned}$	$\begin{aligned} & \text { assumption } \\ & \wedge_{\mathrm{R}} 3 \end{aligned}$
3	$\begin{aligned} & \mathrm{p} \wedge \mathrm{q} \\ & \mathrm{p} \end{aligned}$	assumption ヘeL 3		
5	p	ve 1,3-4,3-4		
6	$\mathrm{r} \rightarrow \mathrm{p}$	\rightarrow i 2-5		

b) $\mathrm{p} \rightarrow \mathrm{q} \vdash \mathrm{q} \vee \neg \mathrm{p}$

2	$\begin{aligned} & p \rightarrow q \\ & p \vee \neg p \end{aligned}$	premise LEM		assumption viR 3
3	p	assumption	$\begin{aligned} & \neg \mathrm{p} \\ & \mathrm{q} \vee \neg \mathrm{p} \end{aligned}$	
4	q	$\rightarrow \mathrm{e} 3,1$		
5	$q \vee \neg p$	ViL 4		
6	$q \vee \neg \mathrm{p}$	ve 2,3-5,3-4		

c) $\mathrm{p} \wedge \mathrm{q}, \neg(\mathrm{p} \wedge \mathrm{r}) \vdash \neg \mathrm{r}$

1	$\mathrm{p} \wedge \mathrm{q}$	premise
2	$\neg(\mathrm{p} \wedge \mathrm{r})$	premise
3	r	assumption
4	p	$\wedge \mathrm{e}_{\mathrm{L}} 1$
5	$\mathrm{p} \wedge \mathrm{r}$	$\wedge \mathrm{i} 3,4$
6	\perp	$\neg \mathrm{e} 2,5$
7	$\neg \mathrm{r}$	$\neg \mathrm{ii} 3-6$

c) $\mathrm{p} \rightarrow(\mathrm{q} \rightarrow \mathrm{r}) \vdash(\mathrm{p} \rightarrow \mathrm{q}) \rightarrow(\mathrm{p} \rightarrow \mathrm{r})$

1	$\mathrm{p} \rightarrow(\mathrm{q} \rightarrow \mathrm{r})$	premise
2	$\mathrm{p} \rightarrow \mathrm{q}$	assumption
3	p	assumption

4	q	$\rightarrow \mathrm{e} 3,2$
5	$\mathrm{q} \rightarrow \mathrm{r}$	$\rightarrow \mathrm{e} 3,1$
6	r	$\rightarrow \mathrm{e} 4,5$
7	$\mathrm{p} \rightarrow \mathrm{r}$	$\rightarrow \mathrm{i} 3-6$
8	$(\mathrm{p} \rightarrow \mathrm{q}) \rightarrow(\mathrm{p} \rightarrow \mathrm{r})$	$\rightarrow \mathrm{i} 2-7$

3. [1,5 points] Compute the conjunctive normal form of the following formulas and check if they are valid. Explain your answers and state which laws (de Morgan law, distributive law, ...) you have applied.
a) $(p \wedge \neg q) \vee(p \wedge q)$.

We have $(\mathrm{p} \wedge \neg \mathrm{q}) \vee(\mathrm{p} \wedge \mathrm{q}) \equiv(\mathrm{p} \vee(\mathrm{p} \wedge \mathrm{q})) \wedge(\neg \mathrm{q} \vee(\mathrm{p} \wedge \mathrm{q})) \quad$ (distributive laws)

$$
\equiv(p \vee p) \wedge(p \vee q) \wedge(\neg q \vee p) \wedge(\neg q \vee q) \quad \text { (distributive laws) }
$$

Since, for example, in the first conjunct there is no atom appearing both positively and negatively, the entire formula is not valid.
b) $\neg(p \wedge \neg q) \wedge(q \vee \neg p)$.

$$
\begin{array}{rlrl}
\text { We have } \neg(p \wedge \neg q) \wedge(q \vee \neg p) \equiv(\neg p \vee \neg \neg q) \wedge(q \vee \neg p) & & \text { (De Morgan’s laws) } \\
& \equiv(\neg p \vee q) \wedge(q \vee \neg p) & & \text { (double negation) } \\
\equiv(\neg p \vee(q \vee \neg p)) \wedge(q \vee(q \vee \neg p)) & \text { (distributive laws) } \\
\equiv(\neg p \vee q \vee \neg p) \wedge(q \vee q \vee \neg p) & & \text { (associativity) }
\end{array}
$$

Since, for example, in the first conjunct there is no atom appearing both positively and negatively, the entire formula is not valid.
c) $((\mathrm{p} \rightarrow \mathrm{q}) \vee \mathrm{p}) \wedge(\mathrm{p} \vee \neg(\mathrm{r} \wedge \neg \mathrm{r} \wedge \mathrm{q}))$.

```
We have \(((p \rightarrow q) \vee p) \wedge(p \vee \neg(r \wedge \neg r \wedge q)) \equiv((\neg p \vee q) \vee p) \wedge(p \vee \neg(r \wedge \neg r \wedge q)) \quad\) (implication)
```

```
\(\equiv(\neg p \vee q \vee p) \wedge(p \vee(\neg \vee \vee \neg \neg r \vee \neg q))\)
```

$\equiv(\neg p \vee q \vee p) \wedge(p \vee(\neg \vee \vee \neg \neg r \vee \neg q))$
$\equiv(\neg p \vee q \vee p) \wedge(p \vee \neg \vee \vee r \vee \neg q)$
$\equiv(\neg p \vee q \vee p) \wedge(p \vee \neg \vee \vee r \vee \neg q)$
(De Morgan)
(De Morgan)
(double negation)

```
    (double negation)
```

Since the both conjuncts have one atomic proposition appearing positively and negatively, the entire formula is valid.
4. [2 points] Use the tableau method to find a counterexample for the validity of each of the following sequent
a) $\vdash(\mathrm{p} \wedge \neg \mathrm{q}) \vee(\mathrm{q} \rightarrow \neg \mathrm{p})$

The open branch gives us the counterexample: p is true and q is true.
b) $\mathrm{r} \rightarrow(\mathrm{q} \rightarrow \mathrm{p}) \vdash \mathrm{q} \rightarrow(\mathrm{p} \rightarrow \mathrm{r})$

The two open branches give us the same counterexample: p is true, q is true, and r is false.
5. [1 point] Let P be a predicate symbol of arity 2 , and f, g be two function symbols of arity 1 and 2, respectively.
a) Draw the parse tree of the formula ϕ given by $\forall \mathrm{x} \exists \mathrm{y}(\mathrm{P}(\mathrm{x}, \mathrm{y}) \rightarrow \mathrm{P}(\mathrm{z}, \mathrm{y})) \wedge \exists \mathrm{zP}(\mathrm{x}, \mathrm{z})$, where $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are three variables.

b) Compute the substitutions $\phi[\mathrm{t} / \mathrm{x}]$ and $\phi[\mathrm{t} / \mathrm{y}]$ where $\mathrm{t}=\mathrm{g}(\mathrm{y}, \mathrm{f}(\mathrm{x}))$. Is the term t free for z in ϕ ? $\phi[t / \mathrm{x}]=\forall \mathrm{x} \exists \mathrm{y}(\mathrm{P}(\mathrm{x}, \mathrm{y}) \rightarrow \mathrm{P}(\mathrm{z}, \mathrm{y})) \wedge \exists \mathrm{zP}(\mathrm{g}(\mathrm{y}, \mathrm{f}(\mathrm{x})), \mathrm{z})$, and $\phi[\mathrm{t} / \mathrm{y}]=\phi$ as y always occurs as a bound variable ϕ. The term t is not free in z , because there exists a leave z free in ϕ but with the variable x (but also y) of t falling in the scope of a quantifier.
6. [1 point] Let P be a unary predicate symbol, R a binary predicate symbol and c be a constant. Consider the model M with $\mathrm{A}=\{\mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}\}, \mathrm{P}^{\mathrm{M}}=\{\mathrm{c}\}, \mathrm{R}^{\mathrm{M}}=\{(\mathrm{c}, \mathrm{d}),(\mathrm{d}, \mathrm{e}),(\mathrm{e} . \mathrm{f})\}$, and $\mathrm{c}^{\mathrm{M}}=\mathrm{c}$.
a) Does $\mathrm{M} \vDash \mathrm{P}(\mathrm{c})$ hold? Explain your answer.

Yes, because $c \in P^{M}$.
b) Does $\mathrm{M} \vDash \forall \mathrm{x} \exists \mathrm{yR}(\mathrm{x}, \mathrm{y})$ hold? Explain your answer.

No, because there is no pair with f as first component (i.e. (f,...)) in R^{M}.
c) Does $\mathrm{M} \vDash \forall \mathrm{x}(\mathrm{P}(\mathrm{x}) \rightarrow \exists \mathrm{yR}(\mathrm{x}, \mathrm{y}))$ hold? Explain your answer.

Yes, because c is the only element making $\mathrm{P}(\mathrm{x})$, and the pair (c, d) is in R^{M}.
d) Does there exist a look-up table ℓ such that $M \vDash \ell(c, x)$ hold? Explain your answer.

Yes, take any look-up table with $\ell(x)=d$, so that the pair (c, d) is in R^{M}.
7. [1,5 points] Show the validity of each of the following sequent by means of a proof in natural deduction, where P is a predicate of arity $1, \mathrm{R}$ is a predicate of arity 2 , and a, b are two constants:
a) $\forall \mathrm{xP}(\mathrm{x}) \vdash \forall \mathrm{x}(\mathrm{P}(\mathrm{x}) \wedge \mathrm{P}(\mathrm{x}))$.

1		$\forall \mathrm{xP}(\mathrm{x})$	premise
2	x_{0}	$\mathrm{P}\left(\mathrm{x}_{0}\right)$	$\forall \mathrm{e} 1$
3		$\mathrm{P}\left(\mathrm{x}_{0}\right) \wedge \mathrm{P}\left(\mathrm{x}_{0}\right)$	$\wedge \mathrm{i} 2,2$
4		$\forall \mathrm{x}(\mathrm{P}(\mathrm{x}) \wedge \mathrm{P}(\mathrm{x}))$	$\forall \mathrm{i} 2-3$

b) $\mathrm{a}=\mathrm{b}, \neg \mathrm{R}(\mathrm{a}, \mathrm{b}) \vdash \neg \forall \mathrm{xR}(\mathrm{x}, \mathrm{x})$.

1	$\mathrm{a}=\mathrm{b}$	assumption
2	$\neg \mathrm{R}(\mathrm{a}, \mathrm{b})$	assumption
3	$\forall \mathrm{xR}(\mathrm{x}, \mathrm{x})$	assumption
4	$\mathrm{R}(\mathrm{b}, \mathrm{b})$	$\forall \mathrm{e} 3$
5	$\neg \mathrm{R}(\mathrm{b}, \mathrm{b})$	$=\mathrm{e} 1,2\{$ using $\neg \mathrm{R}(\mathrm{x}, \mathrm{b})\}$
6	\perp	$\neg \mathrm{e} 4,5$
7	$\neg \forall \mathrm{xR}(\mathrm{x}, \mathrm{x})$	$\neg \mathrm{i} 3-6$

c) $\vdash \forall \mathrm{x} \exists \mathrm{y}(\mathrm{P}(\mathrm{x}) \rightarrow \mathrm{P}(\mathrm{y}))$.

1	X_{0}		
2		$\mathrm{P}\left(\mathrm{x}_{0}\right)$	assumption
3		$\mathrm{P}\left(\mathrm{x}_{0}\right)$	copy 2
4		$\mathrm{P}\left(\mathrm{x}_{0}\right) \rightarrow \mathrm{P}\left(\mathrm{x}_{0}\right)$	$\rightarrow \mathrm{i}$ 2-3
5		$\exists \mathrm{y}\left(\mathrm{P}\left(\mathrm{x}_{0}\right) \rightarrow \mathrm{P}(\mathrm{y})\right.$)	$\exists \mathrm{i} 4$
6		$\forall \mathrm{x} \exists \mathrm{y}(\mathrm{P}(\mathrm{x}) \rightarrow \mathrm{P}(\mathrm{y})$)	$\forall \mathrm{i} 1-5$

The final score is given by the sum of the points obtained.

