1. [1 point] Find a formula ϕ of propositional logic which contains all and only the atoms p and q and r, and which is true only when p, q and r are all true or when $\neg p \wedge q$ is true. Give its truth table.
2. [2 points] Give a proof in natural deduction for each of the following sequents:
a) $(\mathrm{p} \wedge \mathrm{q}) \vee(\neg \mathrm{r} \wedge \mathrm{p}) \vdash \mathrm{r} \rightarrow \mathrm{p}$
b) $\mathrm{p} \rightarrow \mathrm{q} \vdash \mathrm{q} \vee \neg \mathrm{p}$
c) $\mathrm{p} \wedge \mathrm{q}, \neg(\mathrm{p} \wedge \mathrm{r}) \vdash \neg \mathrm{r}$
c) $\mathrm{p} \rightarrow(\mathrm{q} \rightarrow \mathrm{r}) \vdash(\mathrm{p} \rightarrow \mathrm{q}) \rightarrow(\mathrm{p} \rightarrow \mathrm{r})$
3. [1,5 points] Compute the conjunctive normal form of the following formulas and check if they are valid. Explain your answers and state which laws (de Morgan law, distributive law, ...) you have applied.
a) $(p \wedge \neg q) \vee(p \wedge q)$.
b) $\neg(p \wedge \neg q) \wedge(q \vee \neg p)$.
c) $((p \rightarrow q) \vee p) \wedge(p \vee \neg(r \wedge \neg r \wedge q))$.
4. [2 points] Use the tableau method to find a counterexample for the validity of each the following sequent
a) $\vdash(\mathrm{p} \wedge \neg \mathrm{q}) \vee(\mathrm{q} \rightarrow \neg \mathrm{p})$
b) $\mathrm{r} \rightarrow(\mathrm{q} \rightarrow \mathrm{p}) \vdash \mathrm{q} \rightarrow(\mathrm{p} \rightarrow \mathrm{r})$
5. [1 point] Let P be a predicate symbol of arity 2 , and f, g be two function symbols of arity 1 and 2 , respectively.
a) Draw the parse tree of the formula ϕ given by $\forall \mathrm{x} \exists \mathrm{y}(\mathrm{P}(\mathrm{x}, \mathrm{y}) \rightarrow \mathrm{P}(\mathrm{z}, \mathrm{y})) \wedge \exists \mathrm{zP}(\mathrm{x}, \mathrm{z})$, where $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are three variables.
b) Compute the substitutions $\phi[\mathrm{t} / \mathrm{x}]$ and $\phi[\mathrm{t} / \mathrm{y}]$ where $\mathrm{t}=\mathrm{g}(\mathrm{y}, \mathrm{f}(\mathrm{x}))$. Is the term t free for z in ϕ ?
6. [1 point] Let P be a unary predicate symbol, R a binary predicate symbol and c be a constant. Consider the model M with $\mathrm{A}=\{\mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}\}, \mathrm{P}^{\mathrm{M}}=\{\mathrm{c}\}, \mathrm{R}^{\mathrm{M}}=\{(\mathrm{c}, \mathrm{d}),(\mathrm{d}, \mathrm{e}),(\mathrm{e} . \mathrm{f})\}$, and $\mathrm{c}^{\mathrm{M}}=\mathrm{c}$.
a) Does $M \vDash P(c)$ hold? Explain your answer.
b) Does $M \vDash \forall x \exists y R(x, y)$ hold? Explain your answer.
c) Does $\mathrm{M} \vDash \forall \mathrm{x}(\mathrm{P}(\mathrm{x}) \rightarrow \exists \mathrm{yR}(\mathrm{x}, \mathrm{y}))$ hold? Explain your answer.
d) Does there exist a look-up table ℓ such that $M \vDash_{\ell} R(c, x)$ hold? Explain your answer.
7. [1,5 points] Show the validity of each of the following sequent by means of a proof in natural deduction, where P is a predicate of arity $1, \mathrm{R}$ is a predicate of arity 2 , and a, b are two constants:
a) $\forall \mathrm{xP}(\mathrm{x}) \vdash \forall \mathrm{x}(\mathrm{P}(\mathrm{x}) \wedge \mathrm{P}(\mathrm{x}))$.
b) $\mathrm{a}=\mathrm{b}, \neg \mathrm{R}(\mathrm{a}, \mathrm{b}) \mapsto \neg \forall \mathrm{xR}(\mathrm{x}, \mathrm{x})$.
c) $\vdash \forall \mathrm{x} \exists \mathrm{y}(\mathrm{P}(\mathrm{x}) \rightarrow \mathrm{P}(\mathrm{y}))$.

The final score is given by the sum of the points obtained.

