1. [1 point] Prove by induction that $\sum_{k=1}^{n}(2 k-1)=n^{2}$ for all positive integers $n \geq 1$.

Base case: for $\mathrm{n}=1$ the left hand side of the equation is 1 and the right hand side is $1^{2}=1$.
Induction step: Let $\mathrm{i} \geq 1$ and assume that for $\mathrm{n}=\mathrm{i}$ the above equation holds. We have

$$
\sum_{k=1}^{i+1}(2 k-1)=\sum_{k=1}^{i}(2 k-1)+(2(i+1)-1)=i^{2}+2 i+1=(i+1)^{2}
$$

Here we have used the induction hypothesis in one but the last equality.
2. [2 points] Give a proof in natural deduction for each of the following sequents:
a) $\neg \mathrm{p} \wedge(\mathrm{q} \vee \mathrm{r}) \vdash \mathrm{q} \rightarrow(\mathrm{r} \rightarrow \neg \mathrm{p})$

1	$\neg \mathrm{p} \wedge(\mathrm{q} \vee \mathrm{r})$	premise
2	q	assumption
3	r	assumption
4	$\neg \mathrm{p}$	$\wedge \mathrm{eL} \mathrm{3,2}$
5	$\mathrm{r} \rightarrow \neg \mathrm{p}$	$\rightarrow \mathrm{i}$ 3-4
6	$\mathrm{q} \rightarrow(\mathrm{r} \rightarrow \neg \mathrm{p})$	$\rightarrow \mathrm{i}$ 2-5

b) $\mathrm{p} \rightarrow \mathrm{q}, \neg(\mathrm{q} \vee \mathrm{r}) \vdash \neg \mathrm{p}$

1	$\mathrm{p} \rightarrow \mathrm{q}$	premise
2	$\neg(\mathrm{q} \vee \mathrm{r})$	premise
3	p	assumption
4	q	$\rightarrow \mathrm{e}_{\mathrm{L}} 3,1$
5	$\mathrm{q} \vee \mathrm{r}$	vi 4
6	\perp	\neg e 2,5
7	$\neg \mathrm{p}$	\neg i $2-5$

c) $\mathrm{p} \wedge \mathrm{q}, \neg \mathrm{p} \vdash \neg \mathrm{q} \rightarrow \mathrm{p}$

1	$\mathrm{p} \wedge \mathrm{q}$	premise
2	$\neg \mathrm{p}$	premise
3	p	$\wedge \mathrm{e}_{\mathrm{L}} 1$
4	\perp	$\neg \mathrm{e} 2,3$
5	$\neg \mathrm{q} \rightarrow \mathrm{p}$	$\perp \mathrm{e} 4$

d) $\mathrm{p} \rightarrow(\mathrm{p} \rightarrow(\mathrm{p} \rightarrow \mathrm{q})) \vdash \neg \mathrm{q} \rightarrow \neg \mathrm{p}$

1	$\mathrm{p} \rightarrow(\mathrm{p} \rightarrow(\mathrm{p} \rightarrow \mathrm{q}))$	premise
2	$\neg \mathrm{q}$	assumption
3	p	assumption
4	$\mathrm{p} \rightarrow(\mathrm{p} \rightarrow \mathrm{q})$	$\rightarrow \mathrm{e} 3,1$
5	$\mathrm{p} \rightarrow \mathrm{q}$	$\rightarrow \mathrm{e} 3,4$
6	q	$\rightarrow \mathrm{e} 3,5$
7	\perp	$\neg \mathrm{e} 2,6$
8	$\neg \mathrm{p}$	$\neg \mathrm{i} 3-7$
9	$\neg \mathrm{q} \rightarrow \neg \mathrm{p}$	$\rightarrow \mathrm{i} 1-8$

3. $[1,5$ points $]$ Give a semantic tableau to show that the following sequents are not valid:
a) $\mathrm{p} \vee \mathrm{q} \vdash \neg \mathrm{p} \wedge \neg \mathrm{q}$

b) $\mathrm{p} \vee \mathrm{q} \vdash \mathrm{q} \rightarrow \mathrm{p}$

c) $\mathrm{p} \rightarrow \mathrm{q} \vdash \neg \mathrm{p} \rightarrow \neg \mathrm{q}$

4. [1 point] Consider the following truth table for the formulas ϕ and ψ :

p	q	ϕ	ψ
T	T	F	F
T	F	F	T
F	T	T	F
F	F	T	F

Find propositional logic formulas in conjunctive normal form equivalent to ϕ and ψ, respectively.

The equivalent formula in CNF for ϕ can be obtained as conjunction of the clauses stemming from lines 1 and 2: $(\neg p \vee \neg q) \wedge(\neg p \vee q)$. A formula in CNF for ψ is obtained as conjunction of the clauses stemming from lines 1,3 and 4: $(\neg p \vee \neg q) \wedge(p \vee \neg q) \wedge(p \vee q)$.
5. [1,5 points]
a) Give a predicate logic formula ϕ expressing the fact that there are at least two elements. The formula $\phi \equiv \exists x \exists y \neg(x=y)$ holds in all models with at least two elements.
b) Give a predicate logic formula ϕ expressing the fact that there are exactly two elements.

The formula $\phi \equiv \exists \mathrm{x} \exists \mathrm{y}(\neg(\mathrm{x}=\mathrm{y}) \wedge \forall \mathrm{z}(\mathrm{x}=\mathrm{z} \vee \mathrm{y}=\mathrm{z}))$ holds in all models with exactly two elements.
c) Give a predicate logic formula ϕ such that $\phi[y / x]$ is not the same as $(\phi[z / x])[y / z]$.

Take any formula where there are free occurrences of both x and z. For example, consider the formula $\phi \equiv x=z$. Then $\phi[y / x] \equiv y=z$ whereas $(\phi[z / x])[y / z] \equiv(z=z)[y / z] \equiv(y=y)$.
6. [1 point] Write a formula ϕ in predicate logic such that, for each of the following pair of models M and N, ϕ holds in the model M but not in the model N .
a) $\mathrm{M}=\left(\mathrm{Q}, \mathrm{P}^{\mathrm{M}}\right)$ and $\mathrm{N}=\left(\mathrm{Z},, \mathrm{P}^{\mathrm{N}}\right)$. Here Q is the set of rational numbers, Z is the set of integers, and P^{M} is the strict (thus not equal) order relation < between rational numbers, and, P^{N} is the strict order relation < between integer number.
Consider the formula $\forall \mathrm{x} \forall \mathrm{y}(\mathrm{P}(\mathrm{x}, \mathrm{y}) \rightarrow \exists \mathrm{z}(\mathrm{P}(\mathrm{x}, \mathrm{z}) \wedge \mathrm{P}(\mathrm{z}, \mathrm{y}))$. It holds in M because for every pairs of rational numbers p and q with p strictly smaller than q , we can take the number $\mathrm{r}=(\mathrm{p}+\mathrm{q})$: p . The number r is always strictly greater than p , but strictly smaller than q . However the formula does not hold in N as there is, for example, no integer strictly in between 3 and 4 .
b) $\mathrm{M}=\left(\mathrm{Z}, \mathrm{P}^{\mathrm{M}}\right)$ and $\mathrm{N}=\left(\mathrm{Z}, \mathrm{P}^{\mathrm{N}}\right)$. Here Z is the set of integers, and P^{M} is the strict (thus not equal) order relation < between integers, and, P^{N} is the less or equal order relation \leq between integers.
Consider the formula $\forall x \forall y(P x, y) \rightarrow \neg(x=y))$. It holds in M because for every pairs of integers n and m, if n is strictly smaller than m then n is not equal to m. Clearly this is not true if n is less or equal to m , and the formula does not hold in the model N .
7. [2 points] Show the validity of each of the following sequent by means of a proof in natural deduction, where P, Q, are predicates of arity 1 , and R is a predicate of arity 2 :
a) $\forall \mathrm{y} \neg \mathrm{P}(\mathrm{y}),(\mathrm{Q}(\mathrm{y}) \vee \mathrm{R}(\mathrm{y}, \mathrm{y})) \rightarrow \mathrm{P}(\mathrm{x}) \vdash \exists \mathrm{x} \neg(\mathrm{Q}(\mathrm{x}) \vee \mathrm{R}(\mathrm{x}, \mathrm{x}))$

1	$\forall y \neg P(y)$	premise
2	$(Q(y) \vee R(y, y)) \rightarrow P(x)$	premise
3	$\neg P(x)$	$\forall \mathrm{e} 1$
4	$\neg(\mathrm{Q}(\mathrm{y}) \vee \mathrm{R}(\mathrm{y}, \mathrm{y}))$	MT, 2,4
5	$\exists \mathrm{x} \neg(\mathrm{Q}(\mathrm{x}) \vee \mathrm{R}(\mathrm{x}, \mathrm{x}))$	$\exists \mathrm{i} 4$

b) $\exists \mathrm{x} \forall \mathrm{yR}(\mathrm{x}, \mathrm{y}) \vdash \forall \mathrm{y} \exists \mathrm{xR}(\mathrm{x}, \mathrm{y})$

c) $\mathrm{P}(\mathrm{x}) \rightarrow \forall \mathrm{yQ}(\mathrm{y}) \vdash \forall \mathrm{y}(\mathrm{P}(\mathrm{x}) \rightarrow \mathrm{Q}(\mathrm{y}))$

1	$\mathrm{P}(\mathrm{x}) \rightarrow \forall \mathrm{yQ}(\mathrm{y})$	premise
2	y0	
3	$\mathrm{P}(\mathrm{x})$	assumption
4	$\forall y Q(y)$	$\rightarrow \mathrm{e} 1,3$
5	Q (y_{0})	\forall e 4
6	$\mathrm{P}(\mathrm{x}) \rightarrow \mathrm{Q}\left(\mathrm{y}_{0}\right)$	$\rightarrow \mathrm{i}$ 3-5
7	$\forall \mathrm{y}(\mathrm{P}(\mathrm{x}) \rightarrow \mathrm{Q}(\mathrm{y})$)	$\exists \mathrm{e} 1,3-10$

The final score is given by the sum of the points obtained.

