- [1 point] Prove by induction that ∑ⁿ_{k=1}(2k − 1) = n² for all positive integers n ≥ 1. <u>Base case</u>: for n = 1 the left hand side of the equation is 1 and the right hand side is 1² = 1. <u>Induction step</u>: Let i ≥ 1 and assume that for n =i the above equation holds.We have ∑ⁱ⁺¹_{k=1}(2k − 1) = ∑ⁱ_{k=1}(2k − 1) + (2(i + 1) − 1) = i² + 2i + 1 = (i + 1)². Here we have used the induction hypothesis in one but the last equality.
- 2. [2 points] Give a proof in natural deduction for each of the following sequents: a) $\neg p \land (a \lor r) \vdash a \rightarrow (r \rightarrow \neg p)$

a) $\neg p \land (q \lor r) \vdash q \rightarrow (r \rightarrow \neg p)$					
	1 _ $\neg p \land (q \lor r)$	premise			
	2 <u>q</u>	assumption			
	3 r	assumption			
	4p	∧eL 3,2			
	5 $r \rightarrow \neg p$	→i 3-4			
	$6 \qquad q \rightarrow (r \rightarrow \neg p)$	→i 2-5			
b) $p \rightarrow q, \neg(q \lor r) \vdash$	¬p				
	1 $p \rightarrow q$	premise			
	2 $\neg(q \lor r)$	premise			
	3 p	assumption			
	4 q	$\rightarrow e_L 3,1$			
	5 $q \lor r$	∨i 4			
	6 🔟	e 2,5			
	7 ¬p				
c) $p \land q, \neg p \vdash \neg q \rightarrow$					
1	1 1	premise			
2	-	premise			
3	L	$\wedge e_L$ 1			
4		¬e 2,3			
5	-1 r	$\perp e 4$			
d) $p \rightarrow (p \rightarrow (p \rightarrow q))$					
	$\rightarrow (p \rightarrow (p \rightarrow q))$	premise			
	q	assumption			
3 p		assumption			
	\rightarrow (p \rightarrow q)	$\rightarrow e 3,1$			
-	\rightarrow q	$\rightarrow e 3,4$			
$\begin{array}{c c}6 & q\\7 & l\end{array}$		$\rightarrow e 3,5$			
	"	e 2,6			
	•	<u> </u>			
9	$q \rightarrow \neg p$	→i 1-8			

3. [1,5 points] Give a semantic tableau to show that the following sequents are not valid:
a) p∨q ⊢ ¬p ∧¬q

 $\begin{array}{c} p \lor q \bullet \neg p \land \neg q \\ | \end{array}$

 $p \bullet \neg p \land \neg q$ $q \bullet \neg p \land \neg q$ $q \bullet \neg p$ $q \bullet \neg p$ $q \bullet \neg p$ $q \bullet \neg p$

p ● ¬p

p•

 $q \bullet \neg q$

q•

4. **[1 point]** Consider the following truth table for the formulas ϕ and ψ :

p q	φ	Ψ
Т Т	F	F
T F	F	Т
FΤ	Т	F
F F	Т	F

Find propositional logic formulas in *conjunctive normal form* equivalent to ϕ and ψ , respectively.

The equivalent formula in CNF for ϕ can be obtained as conjunction of the clauses stemming from lines 1 and 2: $(\neg p \lor \neg q) \land (\neg p \lor q)$. A formula in CNF for ψ is obtained as conjunction of the clauses stemming from lines 1, 3 and 4: $(\neg p \lor \neg q) \land (p \lor \neg q) \land (p \lor q)$.

5. **[1,5 points]**

- a) Give a predicate logic formula ϕ expressing the fact that there are at least two elements. The formula $\phi \equiv \exists x \exists y \neg (x=y)$ holds in all models with at least two elements.
- b) Give a predicate logic formula ϕ expressing the fact that there are exactly two elements. The formula $\phi \equiv \exists x \exists y(\neg(x=y) \land \forall z(x=z \lor y=z))$ holds in all models with exactly two elements.
- c) Give a predicate logic formula ϕ such that $\phi[y/x]$ is not the same as $(\phi[z/x])[y/z]$. Take any formula where there are free occurrences of both x and z. For example, consider the formula $\phi \equiv x=z$. Then $\phi[y/x] \equiv y=z$ whereas $(\phi[z/x])[y/z] \equiv (z=z)[y/z] \equiv (y=y)$.
- 6. **[1 point]** Write a formula ϕ in predicate logic such that, for each of the following pair of models M and N, ϕ holds in the model M but not in the model N.
 - a) $M = (Q,P^M)$ and $N = (Z, P^N)$. Here Q is the set of rational numbers, Z is the set of integers, and P^M is the strict (thus not equal) order relation < between rational numbers, and, P^N is the strict order relation < between integer number. Consider the formula $\forall x \forall y (P(x,y) \rightarrow \exists z (P(x,z) \land P(z,y))$. It holds in M because for every pairs of rational numbers p and q with p strictly smaller than q, we can take the number r=(p+q):p. The number r is always strictly greater than p, but strictly smaller than q. However the formula does not hold in N as there is, for example, no integer strictly in between 3 and 4.
 - b) $M = (Z, P^M)$ and $N = (Z, P^N)$. Here Z is the set of integers, and P^M is the strict (thus not equal) order relation < between integers, and, P^N is the less or equal order relation \leq between integers.

Consider the formula $\forall x \forall y(Px,y) \rightarrow \neg(x=y)$). It holds in M because for every pairs of integers n and m, if n is strictly smaller than m then n is not equal to m. Clearly this is not true if n is less or equal to m, and the formula does not hold in the model N.

premise

7. **[2 points]** Show the validity of each of the following sequent by means of a proof in natural deduction, where P, Q, are predicates of arity 1, and R is a predicate of arity 2:

	2	$(Q(y) \lor R(y,y)) \rightarrow P(x)$	premise			
	3	$\neg P(x)$	∀e 1			
	4	$\neg(Q(y) \lor R(y,y))$	MT, 2,4			
	5	$\exists x \neg (Q(x) \lor R(x,x))$	∃i 4			
b) $\exists x \forall y R(x,y) \models \forall y \exists x R(x,y)$						
	1	$\exists x \forall y R(x,y)$	premise			
	2 y	0				
	3	$x_0 \forall y R(x_0, y)$	assumption			
	4	$R(x_0, y_0)$	∀e 3			
	5	$\exists \mathbf{x} \mathbf{R}(\mathbf{x}, \mathbf{y}_0)$	∃i 4			
	6	$\exists x R(x,y_0)$	∃e 1,3-5			
	7	$\forall y \exists x R(x,y)$	∀i 2-6			

a) $\forall y \neg P(y), (Q(y) \lor R(y,y)) \rightarrow P(x) \models \exists x \neg (Q(x) \lor R(x,x))$

 $\forall y \neg P(y)$

1

c) $P(x) \rightarrow \forall y Q(y) \models \forall y (P(x) \rightarrow Q(y))$						
1	$P(x) \rightarrow \forall y Q(y)$	premise				
2	Y0					
3	P(x)	assumption				
4	$\forall yQ(y)$	→e 1,3				
5	$Q(y_0)$	∀e 4				
6	$P(x) \rightarrow Q(y_0)$	→i 3-5				
7	$\forall y(P(x) \rightarrow Q(y))$	∃e 1, 3-10				
	1 2 3 4 5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				

The final score is given by the sum of the points obtained.