1. [1 point] Prove by induction that $\sum_{k=1}^{n}(2 k-1)=n^{2}$ for all positive integers $\mathrm{n} \geq 1$.
2. [2 points] Give a proof in natural deduction for each of the following sequents:
a) $\neg \mathrm{p} \wedge(\mathrm{q} \vee \mathrm{r}) \vdash \mathrm{q} \rightarrow(\mathrm{r} \rightarrow \neg \mathrm{p})$
b) $\mathrm{p} \rightarrow \mathrm{q}, \neg(\mathrm{q} \vee \mathrm{r}) \vdash \neg \mathrm{p}$
c) $\mathrm{p} \wedge \mathrm{q}, \neg \mathrm{p} \vdash \neg \mathrm{q} \rightarrow \mathrm{p}$
d) $\mathrm{p} \rightarrow(\mathrm{p} \rightarrow(\mathrm{p} \rightarrow \mathrm{q})) \vdash \neg \mathrm{q} \rightarrow \neg \mathrm{p}$
3. $[\mathbf{1 , 5}$ points] Give a semantic tableau to show that the following sequents are not valid:
a) $\mathrm{p} \vee \mathrm{q} \vdash \neg \mathrm{p} \wedge \neg \mathrm{q}$
b) $\mathrm{p} \vee \mathrm{q} \vdash \mathrm{q} \rightarrow \mathrm{p}$
c) $\mathrm{p} \rightarrow \mathrm{q} \vdash \neg \mathrm{p} \rightarrow \neg \mathrm{q}$
4. [1 point] Consider the following truth table for the formulas ϕ and ψ :

p	q	ϕ	ψ
T	T	F	F
T	F	F	T
F	T	T	F
F	F	T	F

Find propositional logic formulas in conjunctive normal form equivalent to ϕ and ψ, respectively.

5. [1,5 points]

a) Give a predicate logic formula ϕ expressing the fact that there are at least two elements.
b) Give a predicate logic formula ϕ expressing the fact that there are exactly two elements.
c) Give a predicate logic formula ϕ such that $\phi[y / x]$ is not the same as $(\phi[z / x])[y / z]$.
6. [1 point] Write a formula ϕ in predicate logic such that, for each of the following pair of models M and N, ϕ holds in the model M but not in the model N .
a) $\mathrm{M}=\left(\mathrm{Q}, \mathrm{P}^{\mathrm{M}}\right)$ and $\mathrm{N}=\left(\mathrm{Z},, \mathrm{P}^{\mathrm{N}}\right)$. Here Q is the set of rational numbers, Z is the set of integers, and P^{M} is the strict (thus not equal) order relation < between rational numbers, and, P^{N} is the strict order relation < between integer number.
b) $\mathrm{M}=\left(\mathrm{Z}, \mathrm{P}^{\mathrm{M}}\right)$ and $\mathrm{N}=\left(\mathrm{Z}, \mathrm{P}^{\mathrm{N}}\right)$. Here Z is the set of integers, and P^{M} is the strict (thus not equal) order relation < between integers, and, P^{N} is the less or equal order relation \leq between integers.
7. [2 points] Show the validity of each of the following sequent by means of a proof in natural deduction, where P, Q, are predicates of arity 1 , and R is a predicate of arity 2 :
a) $\forall \mathrm{y} \neg \mathrm{P}(\mathrm{y}),(\mathrm{Q}(\mathrm{y}) \vee \mathrm{R}(\mathrm{y}, \mathrm{y})) \rightarrow \mathrm{P}(\mathrm{x}) \vdash \exists \mathrm{x} \neg(\mathrm{Q}(\mathrm{x}) \vee \mathrm{R}(\mathrm{x}, \mathrm{x}))$
b) $\exists \mathrm{x} \forall \mathrm{yR}(\mathrm{x}, \mathrm{y}) \vdash \forall \mathrm{y} \exists \mathrm{xR}(\mathrm{x}, \mathrm{y})$
c) $\mathrm{P}(\mathrm{x}) \rightarrow \forall \mathrm{yQ}(\mathrm{y}) \vdash \forall \mathrm{y}(\mathrm{P}(\mathrm{x}) \rightarrow \mathrm{Q}(\mathrm{y}))$

The final score is given by the sum of the points obtained.

