- 1. [1 point] Prove by induction that $\sum_{k=1}^{n} (2k-1) = n^2$ for all positive integers $n \ge 1$.
- 2. [2 points] Give a proof in natural deduction for each of the following sequents:
 - a) $\neg p \land (q \lor r) \vdash q \rightarrow (r \rightarrow \neg p)$
 - b) $p \rightarrow q, \neg (q \lor r) \vdash \neg p$
 - c) $p \land q, \neg p \vdash \neg q \rightarrow p$
 - d) $p \rightarrow (p \rightarrow (p \rightarrow q)) \models \neg q \rightarrow \neg p$
- 3. [1,5 points] Give a semantic tableau to show that the following sequents are not valid:
 - a) $p \lor q \models \neg p \land \neg q$
 - b) $p \lor q \vdash q \rightarrow p$
 - c) $p \rightarrow q \vdash \neg p \rightarrow \neg q$
- 4. **[1 point]** Consider the following truth table for the formulas ϕ and ψ :

	<u> </u>		
р	q	φ	Ψ
Т	Т	F	F
Т	F	F	Т
F	Т	Т	F
F	F	Т	F

Find propositional logic formulas in *conjunctive normal form* equivalent to ϕ and ψ , respectively.

5. **[1,5 points]**

- a) Give a predicate logic formula ϕ expressing the fact that there are at least two elements.
- b) Give a predicate logic formula ϕ expressing the fact that there are exactly two elements.
- c) Give a predicate logic formula ϕ such that $\phi[y/x]$ is not the same as $(\phi[z/x])[y/z]$.
- 6. **[1 point]** Write a formula ϕ in predicate logic such that, for each of the following pair of models M and N, ϕ holds in the model M but not in the model N.
 - a) $M = (Q, P^M)$ and $N = (Z, P^N)$. Here Q is the set of rational numbers, Z is the set of integers, and P^M is the strict (thus not equal) order relation < between rational numbers, and, P^N is the strict order relation < between integer number.
 - b) $M = (Z, P^M)$ and $N = (Z, P^N)$. Here Z is the set of integers, and P^M is the strict (thus not equal) order relation < between integers, and, P^N is the less or equal order relation \leq between integers.
- 7. **[2 points]** Show the validity of each of the following sequent by means of a proof in natural deduction, where P, Q, are predicates of arity 1, and R is a predicate of arity 2:
 - a) $\forall y \neg P(y), (Q(y) \lor R(y,y)) \rightarrow P(x) \models \exists x \neg (Q(x) \lor R(x,x))$
 - b) $\exists x \forall y R(x,y) \models \forall y \exists x R(x,y)$
 - c) $P(x) \rightarrow \forall y Q(y) \models \forall y (P(x) \rightarrow Q(y))$

The final score is given by the sum of the points obtained.