1. **[1 point]** Draw the parse tree of the formula $p \land ((q \rightarrow \neg \neg p) \rightarrow \neg (q \lor p))$ and list *all* its sub-formulas.

The sub-formulas are:

$$p \land ((q \rightarrow \neg \neg p) \rightarrow \neg (q \lor p))$$

 p
 $(q \rightarrow \neg \neg p) \rightarrow \neg (q \lor p)$
 $(q \rightarrow \neg \neg p)$
 $\neg (q \lor p)$
 q
 $\neg \neg p$
 $\neg p$
 $q \lor p.$

2. [2 points] Give a proof in natural deduction for each of the following sequents:

a) $\neg p \lor a$	$q, \neg p \rightarrow q \vdash$	- q					
1	$\neg p \lor q$	pre	emise				
2	$\neg p \rightarrow q$	pre	emise				
3	−p	ass	sumption		q	assumption	
4	q	\rightarrow	e 3,2				
5	q	∨e	1,3-4,3				
b) p→(-	$\neg p \land q) \vdash -$	-p					
		1	$p \rightarrow (\neg p \land q)$	premise			
		2	р	assumption			
		3	$\neg p \land q$	→e 2,1			
		4	$\neg p$	$\wedge e_L$ 3			
		5	\perp	¬e 2,4			
		6	$\neg p$	<i>¬</i> i 2-5			
c) $p \wedge q$,	$\neg (p \land r) \vdash $	p ∧ -	٦ľ			_	
		1	$p \wedge q$	premise			
		2	\neg (p \land r)	premise			
		3	р	$\wedge e_L$ 3	-		
	2	4	r	assumption			
	4	5	$p \wedge r$	∧i 3,4			
	(5	\perp	–e 2,5			
		7	¬r	−i 4-6			
	8	8	$p \wedge \neg r$	∧i 3-7			
d) $\vdash (p \rightarrow q) \rightarrow ((r \rightarrow p) \rightarrow (r \rightarrow q))$							

1	$p \rightarrow q$	assumption
2	$r \rightarrow p$	assumption
3	r	assumption
4	p p	→e 3,2
5	q	$r \rightarrow q$
6	$r \rightarrow q$	→i 3-5
7	$(r \to p) \to (r \to q)$	→i 2-6
8	$(p \to q) \to ((r \to p) \to (r \to q))$	→i 1-7

- 3. **[1,5 points]** Apply the marking algorithm to find a valuation witness for the satisfiability of the following Horn formulas:
 - a) $(T \to p) \land (p \land q \to r) \land (p \to q) \land (q \land r \to s) \land (r \to \bot)$ 1^{st} round: $(T \to p) \land (p \land q \to r) \land (p \to q) \land (q \land r \to s) \land (r \to \bot)$ 2^{nd} round: $(T \to p) \land (p \land q \to r) \land (p \to q) \land (q \land r \to s) \land (r \to \bot)$ 3^{rd} round: $(T \to p) \land (p \land q \to r) \land (p \to q) \land (q \land r \to s) \land (r \to \bot)$ 4^{th} round: $(T \to p) \land (p \land q \to r) \land (p \to q) \land (q \land r \to s) \land (r \to \bot)$ 5^{th} round: $(T \to p) \land (p \land q \to r) \land (p \to q) \land (q \land r \to s) \land (r \to \bot)$ 5^{th} round: $(T \to p) \land (p \land q \to r) \land (p \to q) \land (q \land r \to s) \land (r \to \bot)$ Since \bot is marked, the formula is not satisfiable.
 - b) $(p \land q \rightarrow r) \land (q \rightarrow p) \land (r \land p \rightarrow q) \land (r \rightarrow s) \land (T \rightarrow p)$ 1^{st} round: $(p \land q \rightarrow r) \land (q \rightarrow p) \land (r \land p \rightarrow q) \land (r \rightarrow s) \land (T \rightarrow p)$ 2^{nd} round: $(p \land q \rightarrow r) \land (q \rightarrow p) \land (r \land p \rightarrow q) \land (r \rightarrow s) \land (T \rightarrow p)$ Nothing else can be marked, so the formula is satisfiable with a valuation mapping p to true and all other atomic propositions to false.
 - c) $(p \land q \land r \rightarrow s) \land (p \land q \rightarrow r) \land (r \rightarrow q) \land (p \rightarrow \bot) \land (T \rightarrow r)$ 1^{st} round: $(p \land q \land r \rightarrow s) \land (p \land q \rightarrow r) \land (r \rightarrow q) \land (p \rightarrow \bot) \land (T \rightarrow r)$ 2^{nd} round: $(p \land q \land r \rightarrow s) \land (p \land q \rightarrow r) \land (r \rightarrow q) \land (p \rightarrow \bot) \land (T \rightarrow r)$ 3^{rd} round: : $(p \land q \land r \rightarrow s) \land (p \land q \rightarrow r) \land (r \rightarrow q) \land (p \rightarrow \bot) \land (T \rightarrow r)$ Nothing else can be marked, so the formula is satisfiable with a valuation mapping q and r to true and all other atomic propositions to false.
- 4. [1 point] Draw the DAG corresponding to the formula ¬(¬q ∧ ¬p) ∧ ((p ∧ ¬q) ∧ ¬q) and use a SAT solver to give a witness for its satisfiability.
 A DAG for this formula (and a valuation for its satisfiability) is

- 5. **[1,5 points]** Let ϕ be the formula $\exists x(x=y \rightarrow \forall y(y=z \land x=z))$ where x,y,z are three variables. Draw the parse tree of ϕ and compute, when possible, the following substitutions:
 - $\phi[f(v)/y]$
 - $\phi[f(y)/y]$
 - $\phi[f(v)/z]$.

Here f is a function symbol of arity 1 and v is a variable.

6. [1 points] Find a model for each of the following sequent showing that it is not valid.
a) ∃xP(x), ∃xQ(x) ⊢∃x(P(x) ∧ Q(x)), where P and Q are predicates of arity 1.

Consider the model M where A = $\{a,b\}$, $P^M = \{a\}$, and $Q^M = \{b\}$. Then the two leftmost formulas are both true but the rightmost one is not.

b) $\forall x \forall y(\neg x=y \rightarrow (P(x) \land P(y))) \models \forall x P(x)$, where P is a predicate of arity 1. Consider the model M where A = {a}, P^M=Ø. Then the leftmost formula is true (because $\neg x=y$ is false for all elements of the universe) but the rightmost one is not.

7. [2 points] Show the validity of each of the following sequent by means of a proof in natural deduction, where P, Q, are predicates of arity 1, and R is a predicate of arity 2:
a) ∀x∀v(x=v → R(x,v)) ⊢ ∀xR(x,x).

ч)			-,,,,,,,	V 11	V MIC(1,11),			
		1		$\forall x \forall y$	$y(x=y \rightarrow R(x,y))$	premise		
		2	X 0	$\forall y(x)$	$y \to R(x_0, y)$	∀e 1		
		3		$x_0 = x_0$	$\to \mathbf{R}(\mathbf{x}_0,\mathbf{x}_0)$	∀e 1		
		4		$X_0 = X_0$)	=i		
		5		$\mathbf{R}(\mathbf{x}_0,$	x ₀)	→e 4,3		
		6		$\forall \mathbf{x} \mathbf{R}$	(x,x)	∀i 1-5		
b) $\exists x(P(x) \land \neg Q(x)), \exists x(\neg P(x) \land Q(x)) \models \exists x \exists y(P(x) \land Q(y))$								
		1			$\exists x (P(x) \land \neg Q(x))$	premise		
		2			$\exists x(\neg P(x) \land Q(x))$	premise		
		3	X 0		$P(x_0) \wedge \neg Q(x_0)$	assumption		
		4		y 0	$\neg P(y_0) \land Q(y_0)$	assumption		
		5			$P(x_0)$	$\wedge e_R$ 3		
		6			$Q(y_0)$	$\wedge e_L 4$		
		7			$P(x_0) \wedge Q(y_0)$	∧i 5, 6		
		8			$\exists y(P(x_0) \land Q(y))$	∃i 7		
		9			$\exists y(P(x_0) \land Q(y))$	∃e 2, 4-8		
		10			$\exists x \exists y (P(x) \land Q(y))$	∃i 9		
		11			$\exists x \exists y (P(x) \land Q(y))$	∃e 1, 3-10		

The final score is given by the sum of the points obtained.