1. [1 point] Draw the parse tree of the formula $p \wedge((q \rightarrow \neg \neg p) \rightarrow \neg(q \vee p))$ and list all its subformulas.

The sub-formulas are:

$$
\begin{aligned}
& \mathrm{p} \wedge((\mathrm{q} \rightarrow \neg \neg \mathrm{p}) \rightarrow \neg(\mathrm{q} \vee \mathrm{p})) \\
& \mathrm{p} \\
& (\mathrm{q} \rightarrow \neg \neg \mathrm{p}) \rightarrow \neg(\mathrm{q} \vee \mathrm{p}) \\
& (\mathrm{q} \rightarrow \neg \neg \mathrm{p}) \\
& \neg(\mathrm{q} \vee \mathrm{p}) \\
& \mathrm{q} \\
& \neg \neg \mathrm{p} \\
& \neg \mathrm{p} \\
& \mathrm{q} \vee \mathrm{p} .
\end{aligned}
$$

2. [2 points] Give a proof in natural deduction for each of the following sequents:
a) $\neg \mathrm{p} \vee \mathrm{q}, \neg \mathrm{p} \rightarrow \mathrm{q} \vdash \mathrm{q}$

b) $\mathrm{p} \rightarrow(\neg \mathrm{p} \wedge \mathrm{q}) \vdash \neg \mathrm{p}$

1	$\mathrm{p} \rightarrow(\neg \mathrm{p} \wedge \mathrm{q})$	premise
2	p	assumption
3	$\neg \mathrm{p} \wedge \mathrm{q}$	$\rightarrow \mathrm{e} 2,1$
4	$\neg \mathrm{p}$	$\wedge \mathrm{e}_{\mathrm{L}} 3$
5	\perp	$\neg \mathrm{e} 2,4$
6	$\neg \mathrm{p}$	\neg i $2-5$

c) $\mathrm{p} \wedge \mathrm{q}, \neg(\mathrm{p} \wedge \mathrm{r}) \vdash \mathrm{p} \wedge \neg \mathrm{r}$

1	$\mathrm{p} \wedge \mathrm{q}$	premise
2	$\neg \neg(\mathrm{p} \wedge \mathrm{r})$	premise
3	p	$\wedge \mathrm{e}_{\mathrm{L}} 3$
4	r	assumption
5	$\mathrm{p} \wedge \mathrm{r}$	$\wedge \mathrm{i} 3,4$
6	\perp	$\neg \mathrm{e} 2,5$
7	$\neg \mathrm{r}$	$\neg \mathrm{i} 4-6$
8	$\mathrm{p} \wedge \neg \mathrm{r}$	\wedge i $3-7$

d) $\vdash(\mathrm{p} \rightarrow \mathrm{q}) \rightarrow((\mathrm{r} \rightarrow \mathrm{p}) \rightarrow(\mathrm{r} \rightarrow \mathrm{q}))$

1	$\mathrm{p} \rightarrow \mathrm{q}$	assumption
2	$\mathrm{r} \rightarrow \mathrm{p}$	assumption
3	r	assumption
4	p	$\rightarrow \mathrm{e} 3,2$
5	q	$\mathrm{r} \rightarrow \mathrm{q}$
6	$\mathrm{r} \rightarrow \mathrm{q}$	$\rightarrow \mathrm{i}$ 3-5
7	$(\mathrm{r} \rightarrow \mathrm{p}) \rightarrow(\mathrm{r} \rightarrow \mathrm{q})$	$\rightarrow \mathrm{i}$ 2-6
8	$(\mathrm{p} \rightarrow \mathrm{q}) \rightarrow((\mathrm{r} \rightarrow \mathrm{p}) \rightarrow(\mathrm{r} \rightarrow \mathrm{q}))$	$\rightarrow \mathrm{i}$ 1-7

3. [1,5 points] Apply the marking algorithm to find a valuation witness for the satisfiability of the following Horn formulas:
a) $(\mathrm{T} \rightarrow \mathrm{p}) \wedge(\mathrm{p} \wedge \mathrm{q} \rightarrow \mathrm{r}) \wedge(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{q} \wedge \mathrm{r} \rightarrow \mathrm{s}) \wedge(\mathrm{r} \rightarrow \perp)$
$1^{\text {st }}$ round: $(\mathrm{T} \rightarrow \mathrm{p}) \wedge(\mathrm{p} \wedge \mathrm{q} \rightarrow \mathrm{r}) \wedge(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{q} \wedge \mathrm{r} \rightarrow \mathrm{s}) \wedge(\mathrm{r} \rightarrow \perp)$
$2^{\text {nd }}$ round: $(T \rightarrow p) \wedge(p \wedge q \rightarrow r) \wedge(p \rightarrow q) \wedge(q \wedge r \rightarrow s) \wedge(r \rightarrow \perp)$
$3^{\text {rd }}$ round: $(\mathrm{T} \rightarrow \mathrm{p}) \wedge(\mathrm{p} \wedge \mathrm{q} \rightarrow \mathrm{r}) \wedge(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{q} \wedge \mathrm{r} \rightarrow \mathrm{s}) \wedge(\mathrm{r} \rightarrow \perp)$
$4^{\text {th }}$ round: $(T \rightarrow p) \wedge(p \wedge q \rightarrow r) \wedge(p \rightarrow q) \wedge(q \wedge r \rightarrow s) \wedge(r \rightarrow \perp)$
$5^{\text {th }}$ round: $(T \rightarrow p) \wedge(p \wedge q \rightarrow r) \wedge(p \rightarrow q) \wedge(q \wedge r \rightarrow s) \wedge(r \rightarrow \perp)$
Since \perp is marked, the formula is not satisfiable.
b) $(\mathrm{p} \wedge \mathrm{q} \rightarrow \mathrm{r}) \wedge(\mathrm{q} \rightarrow \mathrm{p}) \wedge(\mathrm{r} \wedge \mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{r} \rightarrow \mathrm{s}) \wedge(\mathrm{T} \rightarrow \mathrm{p})$
$1^{\text {st }}$ round: $(\mathrm{p} \wedge \mathrm{q} \rightarrow \mathrm{r}) \wedge(\mathrm{q} \rightarrow \mathrm{p}) \wedge(\mathrm{r} \wedge \mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{r} \rightarrow \mathrm{s}) \wedge(\mathrm{T} \rightarrow \mathrm{p})$
$2^{\text {nd }}$ round: $(\mathrm{p} \wedge \mathrm{q} \rightarrow \mathrm{r}) \wedge(\mathrm{q} \rightarrow \mathrm{p}) \wedge(\mathrm{r} \wedge \mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{r} \rightarrow \mathrm{s}) \wedge(\mathrm{T} \rightarrow \mathrm{p})$
Nothing else can be marked, so the formula is satisfiable with a valuation mapping p to true and all other atomic propositions to false.
c) $(\mathrm{p} \wedge \mathrm{q} \wedge \mathrm{r} \rightarrow \mathrm{s}) \wedge(\mathrm{p} \wedge \mathrm{q} \rightarrow \mathrm{r}) \wedge(\mathrm{r} \rightarrow \mathrm{q}) \wedge(\mathrm{p} \rightarrow \perp) \wedge(\mathrm{T} \rightarrow \mathrm{r})$
$1^{\text {st }}$ round: $(p \wedge q \wedge r \rightarrow s) \wedge(p \wedge q \rightarrow r) \wedge(r \rightarrow q) \wedge(p \rightarrow \perp) \wedge(T \rightarrow r)$
$2^{\text {nd }}$ round: $(\mathrm{p} \wedge \mathrm{q} \wedge \mathrm{r} \rightarrow \mathrm{s}) \wedge(\mathrm{p} \wedge \mathrm{q} \rightarrow \mathrm{r}) \wedge(\mathrm{r} \rightarrow \mathrm{q}) \wedge(\mathrm{p} \rightarrow \perp) \wedge(\mathrm{T} \rightarrow \mathrm{r})$
$3^{\text {rd }}$ round: $:(\mathrm{p} \wedge \mathrm{q} \wedge \mathrm{r} \rightarrow \mathrm{s}) \wedge(\mathrm{p} \wedge \mathrm{q} \rightarrow \mathrm{r}) \wedge(\mathrm{r} \rightarrow \mathrm{q}) \wedge(\mathrm{p} \rightarrow \perp) \wedge(\mathrm{T} \rightarrow \mathrm{r})$
Nothing else can be marked, so the formula is satisfiable with a valuation mapping q and r to true and all other atomic propositions to false.
4. [1 point] Draw the DAG corresponding to the formula $\neg(\neg q \wedge \neg p) \wedge((p \wedge \neg q) \wedge \neg q)$ and use a SAT solver to give a witness for its satisfiability.
A DAG for this formula (and a valuation for its satisfiability) is

5. [1,5 points] Let ϕ be the formula $\exists x(x=y \rightarrow \forall y(y=z \wedge x=z))$ where x, y, z are three variables. Draw the parse tree of ϕ and compute, when possible, the following substitutions:

- $\quad \phi[f(\mathrm{v}) / \mathrm{y}]$
- $\quad \phi[f(\mathrm{y}) / \mathrm{y}]$
- $\quad \phi[\mathrm{f}(\mathrm{v}) / \mathrm{z}]$.

Here f is a function symbol of arity 1 and v is a variable.

- $\phi[\mathrm{f}(\mathrm{v}) / \mathrm{y}]=\exists \mathrm{x}(\mathrm{x}=\mathrm{f}(\mathrm{v}) \rightarrow \forall \mathrm{y}(\mathrm{y}=\mathrm{z} \wedge \mathrm{x}=\mathrm{z}))$
- $\phi[\mathrm{f}(\mathrm{y}) / \mathrm{y}]=\exists \mathrm{x}(\mathrm{x}=\mathrm{f}(\mathrm{y}) \rightarrow \forall \mathrm{y}(\mathrm{y}=\mathrm{z} \wedge \mathrm{x}=\mathrm{z}))$
- $\phi[f(\mathrm{v}) / \mathrm{z}]=\exists \mathrm{x}(\mathrm{x}=\mathrm{y} \rightarrow \forall \mathrm{y}(\mathrm{y}=\mathrm{f}(\mathrm{v}) \wedge \mathrm{x}=\mathrm{f}(\mathrm{v})))$

6. [1 points] Find a model for each of the following sequent showing that it is not valid.
a) $\exists \mathrm{xP}(\mathrm{x}), \exists \mathrm{xQ}(\mathrm{x}) \vdash \exists \mathrm{x}(\mathrm{P}(\mathrm{x}) \wedge \mathrm{Q}(\mathrm{x}))$,
where P and Q are predicates of arity 1.

Consider the model M where $A=\{a, b\}, P^{M}=\{a\}$, and $Q^{M}=\{b\}$. Then the two leftmost formulas are both true but the rightmost one is not.
b) $\forall \mathrm{x} \forall \mathrm{y}(\neg \mathrm{x}=\mathrm{y} \rightarrow(\mathrm{P}(\mathrm{x}) \wedge \mathrm{P}(\mathrm{y}))) \vdash \forall \mathrm{xP}(\mathrm{x})$,
where P is a predicate of arity 1.
Consider the model M where $\mathrm{A}=\{\mathrm{a}\}, \mathrm{P}^{\mathrm{M}}=\varnothing$. Then the leftmost formula is true (because $\neg \mathrm{x}=\mathrm{y}$ is false for all elements of the universe) but the rightmost one is not.
7. [2 points] Show the validity of each of the following sequent by means of a proof in natural deduction, where P, Q, are predicates of arity 1 , and R is a predicate of arity 2 :
a) $\forall x \forall y(x=y \rightarrow R(x, y)) \vdash \forall x R(x, x)$,

1	$\forall \mathrm{x} \forall \mathrm{y}(\mathrm{x}=\mathrm{y} \rightarrow \mathrm{R}(\mathrm{x}, \mathrm{y}))$	premise
2	x_{0}	$\forall \mathrm{y}\left(\mathrm{x}_{0}=\mathrm{y} \rightarrow \mathrm{R}\left(\mathrm{x}_{0}, \mathrm{y}\right)\right.$
3		$\mathrm{x}_{0}=\mathrm{x}_{0} \rightarrow \mathrm{R}\left(\mathrm{x}_{0}, \mathrm{x}_{0}\right)$
4	$\mathrm{x}_{0}=\mathrm{x}_{0}$	$\forall \mathrm{e} 1$
5	$\mathrm{R}\left(\mathrm{x}_{0}, \mathrm{x}_{0}\right)$	$\forall \mathrm{e} 1$
6	$\forall \mathrm{xR}(\mathrm{x}, \mathrm{x})$	$=\mathrm{i}$
		$\rightarrow \mathrm{e} 4,3$

b) $\exists \mathrm{x}(\mathrm{P}(\mathrm{x}) \wedge \neg \mathrm{Q}(\mathrm{x})), \exists \mathrm{x}(\neg \mathrm{P}(\mathrm{x}) \wedge \mathrm{Q}(\mathrm{x})) \vdash \exists \mathrm{x} \exists \mathrm{y}(\mathrm{P}(\mathrm{x}) \wedge \mathrm{Q}(\mathrm{y}))$

1			$\exists \mathrm{x}(\mathrm{P}(\mathrm{x}) \wedge \neg \mathrm{Q}(\mathrm{x})$)	premise
2			$\exists \mathrm{x}(\neg \mathrm{P}(\mathrm{x}) \wedge \mathrm{Q}(\mathrm{x}))$	premise
3	X_{0}		$\mathrm{P}\left(\mathrm{x}_{0}\right) \wedge \neg \mathrm{Q}\left(\mathrm{x}_{0}\right)$	assumption
4		yo	$\neg \mathrm{P}\left(\mathrm{y}_{0}\right) \wedge \mathrm{Q}\left(\mathrm{y}_{0}\right)$	assumption
5			$\mathrm{P}\left(\mathrm{x}_{0}\right)$	$\wedge \mathrm{e}_{\mathrm{R}} 3$
6			$\mathrm{Q}\left(\mathrm{y}_{0}\right)$	$\wedge \mathrm{e}_{\mathrm{L}} 4$
7			$\mathrm{P}\left(\mathrm{x}_{0}\right) \wedge \mathrm{Q}\left(\mathrm{y}_{0}\right)$	^i 5, 6
8			$\exists \mathrm{y}\left(\mathrm{P}\left(\mathrm{x}_{0}\right) \wedge \mathrm{Q}(\mathrm{y})\right.$)	$\exists \mathrm{i} 7$
9			$\exists \mathrm{y}\left(\mathrm{P}\left(\mathrm{x}_{0}\right) \wedge \mathrm{Q}(\mathrm{y})\right.$)	ヨe 2, 4-8
10			$\exists \mathrm{x} \exists \mathrm{y}(\mathrm{P}(\mathrm{x}) \wedge \mathrm{Q}(\mathrm{y})$)	$\exists \mathrm{i} 9$
11			$\exists x \exists y(P(x) \wedge Q(y))$	ヨe 1, 3-10

The final score is given by the sum of the points obtained.

