1. [1 point] Draw the parse tree of the formula $\mathrm{p} \wedge((\mathrm{q} \rightarrow \neg \neg \mathrm{p}) \rightarrow \neg(\mathrm{q} \vee \mathrm{p}))$ and list all its subformulas.
2. [2 points] Give a proof in natural deduction for each of the following sequents:
a) $\neg \mathrm{p} \vee \mathrm{q}, \neg \mathrm{p} \rightarrow \mathrm{q} \vdash \mathrm{q}$
b) $\mathrm{p} \rightarrow(\neg \mathrm{p} \wedge \mathrm{q}) \vdash \neg \mathrm{p}$
c) $\mathrm{p} \wedge \mathrm{q}, \neg(\mathrm{p} \wedge \mathrm{r}) \vdash \mathrm{p} \wedge \neg \mathrm{r}$
d) $\vdash(\mathrm{p} \rightarrow \mathrm{q}) \rightarrow((\mathrm{r} \rightarrow \mathrm{p}) \rightarrow(\mathrm{r} \rightarrow \mathrm{q}))$
3. [1,5 points] Apply the marking algorithm to find a valuation witness for the satisfiability of the following Horn formulas:
a) $(\mathrm{T} \rightarrow \mathrm{p}) \wedge(\mathrm{p} \wedge \mathrm{q} \rightarrow \mathrm{r}) \wedge(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{q} \wedge \mathrm{r} \rightarrow \mathrm{s}) \wedge(\mathrm{r} \rightarrow \perp)$
b) $(\mathrm{p} \wedge \mathrm{q} \rightarrow \mathrm{r}) \wedge(\mathrm{q} \rightarrow \mathrm{p}) \wedge(\mathrm{r} \wedge \mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{r} \rightarrow \mathrm{s}) \wedge(\mathrm{T} \rightarrow \mathrm{p})$
c) $(\mathrm{p} \wedge \mathrm{q} \wedge \mathrm{r} \rightarrow \mathrm{s}) \wedge(\mathrm{p} \wedge \mathrm{q} \rightarrow \mathrm{r}) \wedge(\mathrm{r} \rightarrow \mathrm{q}) \wedge(\mathrm{p} \rightarrow \perp) \wedge(\mathrm{T} \rightarrow \mathrm{r})$
4. [1 point] Draw the DAG corresponding to the formula $\neg(\neg q \wedge \neg p) \wedge((p \wedge \neg q) \wedge \neg q)$ and use a SAT solver to give a witness for its satisfiability.
5. [1,5 points] Let ϕ be the formula $\exists x(x=y \rightarrow \forall y(y=z \wedge x=z))$ where x, y, z are three variables. Draw the parse tree of ϕ and compute, when possible, the following substitutions:

- $\quad \phi[f(\mathrm{v}) / \mathrm{y}]$
- $\quad \phi[f(\mathrm{y}) / \mathrm{y}]$
- $\quad \phi[f(\mathrm{v}) / \mathrm{z}]$.

Here f is a function symbol of arity 1 and v is a variable.
6. [1 points] Find a model for each of the following sequent showing that it is not valid.
a) $\exists x P(x), \exists x Q(x) \vdash \exists x(P(x) \wedge Q(x))$,
b) $\forall \mathrm{x} \forall \mathrm{y}(\neg \mathrm{x}=\mathrm{y} \rightarrow(\mathrm{P}(\mathrm{x}) \wedge \mathrm{P}(\mathrm{y}))) \vdash \forall \mathrm{xP}(\mathrm{x})$,
where P and Q are predicates of arity 1 . where P is a predicate of arity 1.
7. [2 points] Show the validity of each of the following sequent by means of a proof in natural deduction, where P, Q, are predicates of arity 1 , and R is a predicate of arity 2 :
a) $\forall x \forall y(x=y \rightarrow R(x, y)) \vdash \forall x R(x, x)$,
b) $\exists \mathrm{x}(\mathrm{P}(\mathrm{x}) \wedge \neg \mathrm{Q}(\mathrm{x})), \exists \mathrm{x}(\neg \mathrm{P}(\mathrm{x}) \wedge \mathrm{Q}(\mathrm{x})) \vdash \exists \mathrm{x} \exists \mathrm{y}(\mathrm{P}(\mathrm{x}) \wedge \mathrm{Q}(\mathrm{y}))$.

The final score is given by the sum of the points obtained.

